CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
PixelHitMatcher.cc
Go to the documentation of this file.
1 
12 
13 #include <typeinfo>
14 
15 using namespace reco ;
16 using namespace std ;
17 
19  ( float phi1min, float phi1max,
20  float phi2minB, float phi2maxB, float phi2minF, float phi2maxF,
21  float z2minB, float z2maxB, float r2minF, float r2maxF,
22  float rMinI, float rMaxI, bool searchInTIDTEC)
23  : //zmin1 and zmax1 are dummy at this moment, set from beamspot later
24  meas1stBLayer(phi1min,phi1max,0.,0.), meas2ndBLayer(phi2minB,phi2maxB,z2minB,z2maxB),
25  meas1stFLayer(phi1min,phi1max,0.,0.), meas2ndFLayer(phi2minF,phi2maxF,r2minF,r2maxF),
26  startLayers(),
27  prop1stLayer(0), prop2ndLayer(0),theGeometricSearchTracker(0),theLayerMeasurements(0),vertex_(0.),
28  searchInTIDTEC_(searchInTIDTEC), useRecoVertex_(false)
29  {
30  meas1stFLayer.setRRangeI(rMinI,rMaxI) ;
31  meas2ndFLayer.setRRangeI(rMinI,rMaxI) ;
32  }
33 
35  {
36  delete prop1stLayer ;
37  delete prop2ndLayer ;
38  delete theLayerMeasurements ;
39  }
40 
41 void PixelHitMatcher::set1stLayer( float dummyphi1min, float dummyphi1max )
42  {
43  meas1stBLayer.setPhiRange(dummyphi1min,dummyphi1max) ;
44  meas1stFLayer.setPhiRange(dummyphi1min,dummyphi1max) ;
45  }
46 
47 void PixelHitMatcher::set1stLayerZRange( float zmin1, float zmax1 )
48  {
49  meas1stBLayer.setZRange(zmin1,zmax1) ;
50  meas1stFLayer.setRRange(zmin1,zmax1) ;
51  }
52 
53 void PixelHitMatcher::set2ndLayer( float dummyphi2minB, float dummyphi2maxB, float dummyphi2minF, float dummyphi2maxF )
54  {
55  meas2ndBLayer.setPhiRange(dummyphi2minB,dummyphi2maxB) ;
56  meas2ndFLayer.setPhiRange(dummyphi2minF,dummyphi2maxF) ;
57  }
58 
60  { useRecoVertex_ = val ; }
61 
63  ( const MagneticField * magField,
64  const MeasurementTracker * theMeasurementTracker,
65  const TrackerGeometry * trackerGeometry )
66  {
67  if (theMeasurementTracker)
68  {
69  theGeometricSearchTracker=theMeasurementTracker->geometricSearchTracker() ;
70  startLayers.setup(theGeometricSearchTracker) ;
71  if (theLayerMeasurements ) delete theLayerMeasurements ;
72  theLayerMeasurements = new LayerMeasurements(theMeasurementTracker) ;
73  }
74 
75  theMagField = magField ;
76  theTrackerGeometry = trackerGeometry ;
77  float mass=.000511 ; // electron propagation
78  if (prop1stLayer) delete prop1stLayer ;
79  prop1stLayer = new PropagatorWithMaterial(oppositeToMomentum,mass,theMagField) ;
80  if (prop2ndLayer) delete prop2ndLayer ;
81  prop2ndLayer = new PropagatorWithMaterial(alongMomentum,mass,theMagField) ;
82  }
83 
84 vector<CLHEP::Hep3Vector> PixelHitMatcher::predicted1Hits()
85  { return pred1Meas ; }
86 
87 vector<CLHEP::Hep3Vector> PixelHitMatcher::predicted2Hits()
88  { return pred2Meas ; }
89 
91  { return vertex_ ; }
92 
93 //CLHEP::Hep3Vector point_to_vector( const GlobalPoint & p )
94 // { return CLHEP::Hep3Vector(p.x(),p.y(),p.z()) ; }
95 
96 std::vector<SeedWithInfo>
98  ( TrajectorySeedCollection * seeds, const GlobalPoint & xmeas,
99  const GlobalPoint & vprim, float energy, float fcharge )
100  {
101  int charge = int(fcharge) ;
102 
103  FreeTrajectoryState fts = myFTS(theMagField,xmeas, vprim, energy, charge);
105  TrajectoryStateOnSurface tsos(fts, *bpb(fts.position(), fts.momentum()));
106 
107  std::vector<SeedWithInfo> result ;
108  mapTsos_.clear() ;
109  mapTsos2_.clear() ;
110  mapTsos_.reserve(seeds->size()) ;
111  mapTsos2_.reserve(seeds->size()) ;
112 
113  for (unsigned int i=0;i<seeds->size();++i)
114  {
115  if ((*seeds)[i].nHits()>9)
116  {
117  edm::LogWarning("GsfElectronAlgo|UnexpectedSeed") <<"We cannot deal with seeds having more than 9 hits." ;
118  continue ;
119  }
120  TrajectorySeed::range rhits=(*seeds)[i].recHits() ;
121 
122  // build all possible pairs
123  unsigned char rank1, rank2, hitsMask ;
125  for ( rank1=0, it1=rhits.first ; it1!=rhits.second ; rank1++, it1++ )
126  {
127  for ( rank2=rank1+1, it2=it1+1 ; it2!=rhits.second ; rank2++, it2++ )
128  {
129  //TrajectorySeed::range r(it1,it2) ;
130 
131  // first Hit
133  if (!(*it).isValid()) continue;
134  DetId id=(*it).geographicalId();
135  const GeomDet *geomdet=theTrackerGeometry->idToDet((*it).geographicalId());
136  LocalPoint lp=(*it).localPosition() ;
137  GlobalPoint hitPos=geomdet->surface().toGlobal(lp) ;
138 
140  bool found = false;
141  std::vector<std::pair<const GeomDet *, TrajectoryStateOnSurface> >::iterator itTsos ;
142  for (itTsos=mapTsos_.begin();itTsos!=mapTsos_.end();++itTsos)
143  {
144  if ((*itTsos).first==geomdet)
145  { found=true ; break ; }
146  }
147  if (!found)
148  {
149  tsos1 = prop1stLayer->propagate(tsos,geomdet->surface()) ;
150  mapTsos_.push_back(std::pair<const GeomDet *, TrajectoryStateOnSurface>(geomdet,tsos1));
151  }
152  else
153  { tsos1=(*itTsos).second ; }
154 
155  if (tsos1.isValid())
156  {
157  std::pair<bool,double> est;
158  if (id.subdetId()%2==1) est=meas1stBLayer.estimate(vprim, tsos1,hitPos);
159  else est=meas1stFLayer.estimate(vprim, tsos1,hitPos);
160  if (!est.first) continue ;
161 
162  if (std::abs(normalized_phi(hitPos.phi()-xmeas.phi()))>2.5) continue ;
163  EleRelPointPair pp1(hitPos,tsos1.globalParameters().position(),vprim) ;
164  int subDet1 = id.subdetId() ;
165  float dRz1 = (subDet1%2==1)?pp1.dZ():pp1.dPerp() ;
166  float dPhi1 = pp1.dPhi() ;
167 
168  // now second Hit
169  //CC@@
170  //it++;
171  it=it2 ;
172  if (!(*it).isValid()) continue ;
173 
174  DetId id2=(*it).geographicalId();
175  const GeomDet *geomdet2=theTrackerGeometry->idToDet((*it).geographicalId());
177 
178  double zVertex;
179  if (!useRecoVertex_) // we don't know the z vertex position, get it from linear extrapolation
180  {
181  // compute the z vertex from the cluster point and the found pixel hit
182  double pxHit1z = hitPos.z();
183  double pxHit1x = hitPos.x();
184  double pxHit1y = hitPos.y();
185  double r1diff = (pxHit1x-vprim.x())*(pxHit1x-vprim.x()) + (pxHit1y-vprim.y())*(pxHit1y-vprim.y()) ;
186  r1diff=sqrt(r1diff) ;
187  double r2diff = (xmeas.x()-pxHit1x)*(xmeas.x()-pxHit1x) + (xmeas.y()-pxHit1y)*(xmeas.y()-pxHit1y) ;
188  r2diff=sqrt(r2diff);
189  zVertex = pxHit1z - r1diff*(xmeas.z()-pxHit1z)/r2diff;
190  }
191  else // here use rather the reco vertex z position
192  { zVertex = vprim.z() ; }
193 
194  GlobalPoint vertex(vprim.x(),vprim.y(),zVertex) ;
195  FreeTrajectoryState fts2 = myFTS(theMagField,hitPos,vertex,energy, charge) ;
196 
197  found = false;
198  std::vector<std::pair< std::pair<const GeomDet *,GlobalPoint>, TrajectoryStateOnSurface> >::iterator itTsos2 ;
199  for (itTsos2=mapTsos2_.begin();itTsos2!=mapTsos2_.end();++itTsos2)
200  {
201  if (((*itTsos2).first).first==geomdet2 &&
202  (((*itTsos2).first).second).x()==hitPos.x() &&
203  (((*itTsos2).first).second).y()==hitPos.y() &&
204  (((*itTsos2).first).second).z()==hitPos.z() )
205  {
206  found=true;
207  break;
208  }
209  }
210  if (!found)
211  {
212  tsos2 = prop2ndLayer->propagate(fts2,geomdet2->surface()) ;
213  std::pair<const GeomDet *,GlobalPoint> pair(geomdet2,hitPos);
214  mapTsos2_.push_back(std::pair<std::pair<const GeomDet *,GlobalPoint>, TrajectoryStateOnSurface> (pair,tsos2));
215  }
216  else
217  { tsos2=(*itTsos2).second ; }
218 
219  if (tsos2.isValid())
220  {
221  LocalPoint lp2=(*it).localPosition() ;
222  GlobalPoint hitPos2=geomdet2->surface().toGlobal(lp2) ;
223  std::pair<bool,double> est2 ;
224  if (id2.subdetId()%2==1) est2=meas2ndBLayer.estimate(vertex, tsos2,hitPos2) ;
225  else est2=meas2ndFLayer.estimate(vertex, tsos2,hitPos2) ;
226  if (est2.first)
227  {
228  EleRelPointPair pp2(hitPos2,tsos2.globalParameters().position(),vertex) ;
229  int subDet2 = id2.subdetId() ;
230  float dRz2 = (subDet2%2==1)?pp2.dZ():pp2.dPerp() ;
231  float dPhi2 = pp2.dPhi() ;
232  hitsMask = (1<<rank1)|(1<<rank2) ;
233  result.push_back(SeedWithInfo((*seeds)[i],hitsMask,subDet2,dRz2,dPhi2,subDet1,dRz1,dPhi1)) ;
234  }
235  }
236  } // end tsos1 is valid
237  } // end loop on second seed hit
238  } // end loop on first seed hit
239  } // end loop on seeds
240 
241  mapTsos_.clear() ;
242  mapTsos2_.clear() ;
243 
244  return result ;
245  }
246 
247 //========================= OBSOLETE ? =========================
248 
249 vector< pair< RecHitWithDist, PixelHitMatcher::ConstRecHitPointer > >
251  ( const GlobalPoint & xmeas,
252  const GlobalPoint & vprim,
253  float energy, float fcharge )
254  {
255  float SCl_phi = xmeas.phi();
256 
257  int charge = int(fcharge);
258  // return all compatible RecHit pairs (vector< TSiPixelRecHit>)
259  vector<pair<RecHitWithDist, ConstRecHitPointer> > result;
260  LogDebug("") << "[PixelHitMatcher::compatibleHits] entering .. ";
261 
262  vector<TrajectoryMeasurement> validMeasurements;
263  vector<TrajectoryMeasurement> invalidMeasurements;
264 
265  typedef vector<TrajectoryMeasurement>::const_iterator aMeas;
266 
267  pred1Meas.clear();
268  pred2Meas.clear();
269 
270  typedef vector<BarrelDetLayer*>::const_iterator BarrelLayerIterator;
271  BarrelLayerIterator firstLayer = startLayers.firstBLayer();
272 
273  FreeTrajectoryState fts =myFTS(theMagField,xmeas, vprim,
274  energy, charge);
275 
277  TrajectoryStateOnSurface tsos(fts, *bpb(fts.position(), fts.momentum()));
278 
279  if (tsos.isValid()) {
280  vector<TrajectoryMeasurement> pixelMeasurements =
281  theLayerMeasurements->measurements(**firstLayer,tsos,
282  *prop1stLayer, meas1stBLayer);
283 
284  LogDebug("") <<"[PixelHitMatcher::compatibleHits] nbr of hits compatible with extrapolation to first layer: " << pixelMeasurements.size();
285  for (aMeas m=pixelMeasurements.begin(); m!=pixelMeasurements.end(); m++){
286  if (m->recHit()->isValid()) {
287  float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()) ;
288  if(std::abs(localDphi)>2.5)continue;
289  CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(),
290  m->forwardPredictedState().globalPosition().y(),
291  m->forwardPredictedState().globalPosition().z());
292  LogDebug("") << "[PixelHitMatcher::compatibleHits] compatible hit position " << m->recHit()->globalPosition();
293  LogDebug("") << "[PixelHitMatcher::compatibleHits] predicted position " << m->forwardPredictedState().globalPosition();
294  pred1Meas.push_back( prediction);
295 
296  validMeasurements.push_back(*m);
297 
298  LogDebug("") <<"[PixelHitMatcher::compatibleHits] Found a rechit in layer ";
299  const BarrelDetLayer *bdetl = dynamic_cast<const BarrelDetLayer *>(*firstLayer);
300  if (bdetl) {
301  LogDebug("") <<" with radius "<<bdetl->specificSurface().radius();
302  }
303  else LogDebug("") <<"Could not downcast!!";
304  }
305  }
306 
307 
308  // check if there are compatible 1st hits in the second layer
309  firstLayer++;
310 
311  vector<TrajectoryMeasurement> pixel2Measurements =
312  theLayerMeasurements->measurements(**firstLayer,tsos,
313  *prop1stLayer, meas1stBLayer);
314 
315  for (aMeas m=pixel2Measurements.begin(); m!=pixel2Measurements.end(); m++){
316  if (m->recHit()->isValid()) {
317  float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()) ;
318  if(std::abs(localDphi)>2.5)continue;
319  CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(),
320  m->forwardPredictedState().globalPosition().y(),
321  m->forwardPredictedState().globalPosition().z());
322  pred1Meas.push_back( prediction);
323  LogDebug("") << "[PixelHitMatcher::compatibleHits] compatible hit position " << m->recHit()->globalPosition() << endl;
324  LogDebug("") << "[PixelHitMatcher::compatibleHits] predicted position " << m->forwardPredictedState().globalPosition() << endl;
325 
326  validMeasurements.push_back(*m);
327  LogDebug("") <<"[PixelHitMatcher::compatibleHits] Found a rechit in layer ";
328  const BarrelDetLayer *bdetl = dynamic_cast<const BarrelDetLayer *>(*firstLayer);
329  if (bdetl) {
330  LogDebug("") <<" with radius "<<bdetl->specificSurface().radius();
331  }
332  else LogDebug("") <<"Could not downcast!!";
333  }
334 
335  }
336  }
337 
338 
339  // check if there are compatible 1st hits the forward disks
340  typedef vector<ForwardDetLayer*>::const_iterator ForwardLayerIterator;
341  ForwardLayerIterator flayer;
342 
343  TrajectoryStateOnSurface tsosfwd(fts, *bpb(fts.position(), fts.momentum()));
344  if (tsosfwd.isValid()) {
345 
346  for (int i=0; i<2; i++) {
347  i == 0 ? flayer = startLayers.pos1stFLayer() : flayer = startLayers.neg1stFLayer();
348 
349  if (i==0 && xmeas.z() < -100. ) continue;
350  if (i==1 && xmeas.z() > 100. ) continue;
351 
352  vector<TrajectoryMeasurement> pixelMeasurements =
353  theLayerMeasurements->measurements(**flayer, tsosfwd,
354  *prop1stLayer, meas1stFLayer);
355 
356  for (aMeas m=pixelMeasurements.begin(); m!=pixelMeasurements.end(); m++){
357  if (m->recHit()->isValid()) {
358  float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi());
359  if(std::abs(localDphi)>2.5)continue;
360  CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(),
361  m->forwardPredictedState().globalPosition().y(),
362  m->forwardPredictedState().globalPosition().z());
363  pred1Meas.push_back( prediction);
364 
365  validMeasurements.push_back(*m);
366  }
367  }
368 
369  //check if there are compatible 1st hits the outer forward disks
370  if (searchInTIDTEC_) {
371  flayer++;
372 
373  vector<TrajectoryMeasurement> pixel2Measurements =
374  theLayerMeasurements->measurements(**flayer, tsosfwd,
375  *prop1stLayer, meas1stFLayer);
376 
377  for (aMeas m=pixel2Measurements.begin(); m!=pixel2Measurements.end(); m++){
378  if (m->recHit()->isValid()) {
379  float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()) ;
380  if(std::abs(localDphi)>2.5)continue;
381  CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(),
382  m->forwardPredictedState().globalPosition().y(),
383  m->forwardPredictedState().globalPosition().z());
384  pred1Meas.push_back( prediction);
385 
386  validMeasurements.push_back(*m);
387  }
388  // else{std::cout<<" hit non valid "<<std::endl; }
389  } //end 1st hit in outer f disk
390  }
391  }
392  }
393 
394  // now we have the vector of all valid measurements of the first point
395  for (unsigned i=0; i<validMeasurements.size(); i++){
396 
397  const DetLayer * newLayer = theGeometricSearchTracker->detLayer(validMeasurements[i].recHit()->det()->geographicalId());
398 
399  double zVertex ;
400  if (!useRecoVertex_)
401  {
402  // we don't know the z vertex position, get it from linear extrapolation
403  // compute the z vertex from the cluster point and the found pixel hit
404  double pxHit1z = validMeasurements[i].recHit()->det()->surface().toGlobal(
405  validMeasurements[i].recHit()->localPosition()).z();
406  double pxHit1x = validMeasurements[i].recHit()->det()->surface().toGlobal(
407  validMeasurements[i].recHit()->localPosition()).x();
408  double pxHit1y = validMeasurements[i].recHit()->det()->surface().toGlobal(
409  validMeasurements[i].recHit()->localPosition()).y();
410  double r1diff = (pxHit1x-vprim.x())*(pxHit1x-vprim.x()) + (pxHit1y-vprim.y())*(pxHit1y-vprim.y());
411  r1diff=sqrt(r1diff);
412  double r2diff = (xmeas.x()-pxHit1x)*(xmeas.x()-pxHit1x) + (xmeas.y()-pxHit1y)*(xmeas.y()-pxHit1y);
413  r2diff=sqrt(r2diff);
414  zVertex = pxHit1z - r1diff*(xmeas.z()-pxHit1z)/r2diff;
415  }
416  else
417  {
418  // here we use the reco vertex z position
419  zVertex = vprim.z();
420  }
421 
422  if (i==0)
423  { vertex_ = zVertex; }
424 
425  GlobalPoint vertexPred(vprim.x(),vprim.y(),zVertex) ;
426  GlobalPoint hitPos( validMeasurements[i].recHit()->det()->surface().toGlobal( validMeasurements[i].recHit()->localPosition() ) ) ;
427 
428  FreeTrajectoryState secondFTS=myFTS(theMagField,hitPos,vertexPred,energy, charge);
429 
430  PixelMatchNextLayers secondHit(theLayerMeasurements, newLayer, secondFTS,
431  prop2ndLayer, &meas2ndBLayer,&meas2ndFLayer,searchInTIDTEC_);
432  vector<CLHEP::Hep3Vector> predictions = secondHit.predictionInNextLayers();
433 
434  for (unsigned it = 0; it < predictions.size(); it++) pred2Meas.push_back(predictions[it]);
435 
436  // we may get more than one valid second measurements here even for single electrons:
437  // two hits from the same layer/disk (detector overlap) or from the loop over the
438  // next layers in EPMatchLoopNextLayers. Take only the 1st hit.
439 
440  if(!secondHit.measurementsInNextLayers().empty()){
441  for(unsigned int shit=0; shit<secondHit.measurementsInNextLayers().size(); shit++)
442  {
443  float dphi = normalized_phi(pred1Meas[i].phi()-validMeasurements[i].recHit()->globalPosition().phi()) ;
444  if (std::abs(dphi)<2.5)
445  {
446  ConstRecHitPointer pxrh = validMeasurements[i].recHit();
447  RecHitWithDist rh(pxrh,dphi);
448 
449  // pxrh = secondHit.measurementsInNextLayers()[0].recHit();
450  pxrh = secondHit.measurementsInNextLayers()[shit].recHit();
451 
452  pair<RecHitWithDist,ConstRecHitPointer> compatiblePair = pair<RecHitWithDist,ConstRecHitPointer>(rh,pxrh) ;
453  result.push_back(compatiblePair);
454  break;
455  }
456  }
457  }
458  }
459  return result;
460 }
461 
462 
#define LogDebug(id)
GlobalPoint toGlobal(const Point2DBase< Scalar, LocalTag > lp) const
Definition: Surface.h:78
virtual const BoundSurface & surface() const =0
The surface of the GeometricSearchDet.
int i
Definition: DBlmapReader.cc:9
std::vector< std::pair< RecHitWithDist, ConstRecHitPointer > > compatibleHits(const GlobalPoint &xmeas, const GlobalPoint &vprim, float energy, float charge)
void setES(const MagneticField *, const MeasurementTracker *theMeasurementTracker, const TrackerGeometry *trackerGeometry)
Geom::Phi< T > phi() const
Definition: PV3DBase.h:68
T y() const
Definition: PV3DBase.h:62
#define abs(x)
Definition: mlp_lapack.h:159
std::vector< CLHEP::Hep3Vector > predictionInNextLayers() const
double charge(const std::vector< uint8_t > &Ampls)
void set2ndLayer(float dummyphi2minB, float dummyphi2maxB, float dummyphi2minF, float dummyphi2maxF)
U second(std::pair< T, U > const &p)
void set1stLayerZRange(float zmin1, float zmax1)
PixelHitMatcher(float phi1min, float phi1max, float phi2minB, float phi2maxB, float phi2minF, float phi2maxF, float z2minB, float z2maxB, float r2minF, float r2maxF, float rMinI, float rMaxI, bool searchInTIDTEC)
Scalar radius() const
Radius of the cylinder.
Definition: Cylinder.h:55
std::vector< TrajectorySeed > TrajectorySeedCollection
recHitContainer::const_iterator const_iterator
RealType normalized_phi(RealType phi)
T sqrt(T t)
Definition: SSEVec.h:46
T z() const
Definition: PV3DBase.h:63
tuple result
Definition: query.py:137
std::pair< const_iterator, const_iterator > range
std::vector< CLHEP::Hep3Vector > predicted1Hits()
int subdetId() const
get the contents of the subdetector field (not cast into any detector&#39;s numbering enum) ...
Definition: DetId.h:39
GlobalVector momentum() const
Definition: DetId.h:20
GlobalPoint position() const
std::vector< TrajectoryMeasurement > measurementsInNextLayers() const
const GlobalTrajectoryParameters & globalParameters() const
void set1stLayer(float dummyphi1min, float dummyphi1max)
virtual const BoundCylinder & specificSurface() const
Extension of the interface.
virtual ~PixelHitMatcher()
const BoundPlane & surface() const
The nominal surface of the GeomDet.
Definition: GeomDet.h:35
tuple mass
Definition: scaleCards.py:27
std::vector< SeedWithInfo > compatibleSeeds(TrajectorySeedCollection *seeds, const GlobalPoint &xmeas, const GlobalPoint &vprim, float energy, float charge)
std::vector< CLHEP::Hep3Vector > predicted2Hits()
T x() const
Definition: PV3DBase.h:61
void setUseRecoVertex(bool val)
Definition: DDAxes.h:10