CMS 3D CMS Logo

Basic3DVector< T > Class Template Reference

#include <DataFormats/GeometryVector/interface/Basic3DVector.h>

List of all members.

Public Types

typedef
Geom::Cylindrical2Cartesian< T > 
Cylindrical
typedef Spherical Polar
typedef T ScalarType
typedef
Geom::Spherical2Cartesian< T > 
Spherical

Public Member Functions

barePhi () const
 Azimuthal angle.
bareTheta () const
 Polar angle.
template<typename U>
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.
 Basic3DVector (const T &x, const T &y, const T &z)
 construct from cartesian coordinates
template<class OtherPoint>
 Basic3DVector (const OtherPoint &p)
 Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T.
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero)
template<class U>
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision.
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685.
 Basic3DVector ()
 default constructor uses default constructor of T to initialize the components.
template<class U>
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
cross (const Basic3DVector< U > &v) const
 Vector (or cross) product with a vector of different precision.
Basic3DVector cross (const Basic3DVector &v) const
 Vector product, or "cross" product, with a vector of same type.
template<class U>
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &v) const
 Scalar (or dot) product with a vector of different precision.
dot (const Basic3DVector &v) const
 Scalar product, or "dot" product, with a vector of same type.
eta () const
 Pseudorapidity.
mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()).
mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec).
Basic3DVectoroperator *= (const T &t)
 Scaling by a scalar value (multiplication).
template<class U>
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 Operator += with a Basic3DVector of possibly different precision.
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()).
template<class U>
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 Operator -= with a Basic3DVector of possibly different precision.
Basic3DVectoroperator/= (const T &t)
 Scaling by a scalar value (division).
perp () const
 Magnitude of transverse component.
perp2 () const
 Squared magnitude of transverse component.
Geom::Phi< T > phi () const
Geom::Theta< T > theta () const
transverse () const
 Another name for perp().
Basic3DVector unit () const
 Unit vector parallel to this.
x () const
 Cartesian x coordinate.
y () const
 Cartesian y coordinate.
z () const
 Cartesian z coordinate.

Private Attributes

theX
theY
theZ


Detailed Description

template<typename T>
class Basic3DVector< T >

Definition at line 14 of file Basic3DVector.h.


Member Typedef Documentation

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 18 of file Basic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 20 of file Basic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 17 of file Basic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 19 of file Basic3DVector.h.


Constructor & Destructor Documentation

template<typename T>
Basic3DVector< T >::Basic3DVector (  )  [inline]

default constructor uses default constructor of T to initialize the components.

For built-in floating-point types this means initialization to zero

Definition at line 26 of file Basic3DVector.h.

Referenced by Basic3DVector< T >::cross(), and Basic3DVector< T >::operator-().

00026 : theX( T()), theY( T()), theZ( T()) {}

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p  )  [inline]

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 29 of file Basic3DVector.h.

00029                                           : 
00030     theX(p.x()), theY(p.y()), theZ(p.z()) {}

template<typename T>
template<class U>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p  )  [inline]

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 34 of file Basic3DVector.h.

00034                                              : 
00035     theX(p.x()), theY(p.y()), theZ(p.z()) {}

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p  )  [inline]

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 38 of file Basic3DVector.h.

00038                                              : 
00039     theX(p.x()), theY(p.y()), theZ(0) {}

template<typename T>
template<class OtherPoint>
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p  )  [inline, explicit]

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T.

Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 50 of file Basic3DVector.h.

00050                                                : 
00051     theX(p.x()), theY(p.y()), theZ(p.z()) {}

template<typename T>
Basic3DVector< T >::Basic3DVector ( const T &  x,
const T &  y,
const T &  z 
) [inline]

construct from cartesian coordinates

Definition at line 54 of file Basic3DVector.h.

00054                                                      : 
00055     theX(x), theY(y), theZ(z) {}

template<typename T>
template<typename U>
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T &  r 
) [inline]

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 62 of file Basic3DVector.h.

References p, Basic3DVector< T >::theX, Basic3DVector< T >::theY, Basic3DVector< T >::theZ, Geom::Phi< T >::value(), and Geom::Theta< T >::value().

00063                                                     {
00064     Polar p( theta.value(), phi.value(), r);
00065     theX = p.x(); theY = p.y(); theZ = p.z();
00066   }


Member Function Documentation

template<typename T>
T Basic3DVector< T >::barePhi (  )  const [inline]

Azimuthal angle.

The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 96 of file Basic3DVector.h.

References Basic3DVector< T >::theX, and Basic3DVector< T >::theY.

Referenced by PV3DBase< T, PointTag, FrameTag >::barePhi().

00096 {return atan2(theY,theX);}

template<typename T>
T Basic3DVector< T >::bareTheta (  )  const [inline]

Polar angle.

The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 103 of file Basic3DVector.h.

References Basic3DVector< T >::perp(), and Basic3DVector< T >::z().

Referenced by PV3DBase< T, PointTag, FrameTag >::bareTheta().

00103 {return atan2(perp(),z());}

template<typename T>
template<class U>
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  v  )  const [inline]

Vector (or cross) product with a vector of different precision.

The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 189 of file Basic3DVector.h.

References Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

00189                                           {
00190     return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(), 
00191                                                                 z()*v.x() - v.z()*x(), 
00192                                                                 x()*v.y() - v.x()*y());
00193   }

template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  v  )  const [inline]

Vector product, or "cross" product, with a vector of same type.

Definition at line 176 of file Basic3DVector.h.

References Basic3DVector< T >::Basic3DVector(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

Referenced by CartesianLorentzForce::operator()().

00176                                                      {
00177     return Basic3DVector( y()*v.z() - v.y()*z(), 
00178                           z()*v.x() - v.z()*x(), 
00179                           x()*v.y() - v.x()*y());
00180   }

template<typename T>
template<class U>
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  v  )  const [inline]

Scalar (or dot) product with a vector of different precision.

The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 171 of file Basic3DVector.h.

References Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

00171                                                                            { 
00172     return x()*v.x() + y()*v.y() + z()*v.z();
00173   }

template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  v  )  const [inline]

Scalar product, or "dot" product, with a vector of same type.

Definition at line 161 of file Basic3DVector.h.

References Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

Referenced by Vector3DBase< T, FrameTag >::dot(), operator *(), HelixExtrapolatorToLine2Order::pathLength(), and TkRotation< T >::rotateAxes().

00161                                        { 
00162     return x()*v.x() + y()*v.y() + z()*v.z();
00163   }

template<typename T>
T Basic3DVector< T >::eta (  )  const [inline]

Pseudorapidity.

Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 111 of file Basic3DVector.h.

References funct::log(), Basic3DVector< T >::perp(), funct::sqrt(), Basic3DVector< T >::x(), and Basic3DVector< T >::z().

Referenced by PV3DBase< T, PointTag, FrameTag >::eta().

00111 { T x(z()/perp()); return log(x+sqrt(x*x+1));} // faster 

template<typename T>
T Basic3DVector< T >::mag (  )  const [inline]

The vector magnitude. Equivalent to sqrt(vec.mag2()).

Definition at line 81 of file Basic3DVector.h.

References Basic3DVector< T >::mag2(), and funct::sqrt().

Referenced by SurveyInputTrackerFromDB::addSurveyInfo(), HelixBarrelPlaneCrossingByCircle::init(), PV3DBase< T, PointTag, FrameTag >::mag(), PathToPlane2Order::operator()(), RKCurvilinearDistance< T, N >::operator()(), HelixArbitraryPlaneCrossing::pathLength(), AnalyticalTrajectoryExtrapolatorToLine::propagateWithHelix(), AnalyticalImpactPointExtrapolator::propagateWithHelix(), AnalyticalPropagator::propagateWithHelixCrossing(), and Basic3DVector< T >::unit().

00081 { return sqrt( mag2());}

template<typename T>
T Basic3DVector< T >::mag2 (  )  const [inline]

The vector magnitude squared. Equivalent to vec.dot(vec).

Definition at line 78 of file Basic3DVector.h.

References Basic3DVector< T >::theX, Basic3DVector< T >::theY, and Basic3DVector< T >::theZ.

Referenced by Basic3DVector< T >::mag(), PV3DBase< T, PointTag, FrameTag >::mag2(), HelixExtrapolatorToLine2Order::pathLength(), and TkRotation< T >::rotateAxes().

00078 { return theX*theX + theY*theY + theZ*theZ;}

template<typename T>
Basic3DVector& Basic3DVector< T >::operator *= ( const T &  t  )  [inline]

Scaling by a scalar value (multiplication).

Definition at line 145 of file Basic3DVector.h.

References Basic3DVector< T >::theX, Basic3DVector< T >::theY, and Basic3DVector< T >::theZ.

00145                                           {
00146     theX *= t;
00147     theY *= t;
00148     theZ *= t;
00149     return *this;
00150   } 

template<typename T>
template<class U>
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p  )  [inline]

Operator += with a Basic3DVector of possibly different precision.

Definition at line 124 of file Basic3DVector.h.

References Basic3DVector< T >::theX, Basic3DVector< T >::theY, Basic3DVector< T >::theZ, Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

00124                                                          {
00125     theX += p.x();
00126     theY += p.y();
00127     theZ += p.z();
00128     return *this;
00129   } 

template<typename T>
Basic3DVector Basic3DVector< T >::operator- (  )  const [inline]

Unary minus, returns a vector with components (-x(),-y(),-z()).

Definition at line 142 of file Basic3DVector.h.

References Basic3DVector< T >::Basic3DVector(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

00142 { return Basic3DVector(-x(),-y(),-z());}

template<typename T>
template<class U>
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p  )  [inline]

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 134 of file Basic3DVector.h.

References Basic3DVector< T >::theX, Basic3DVector< T >::theY, Basic3DVector< T >::theZ, Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

00134                                                          {
00135     theX -= p.x();
00136     theY -= p.y();
00137     theZ -= p.z();
00138     return *this;
00139   } 

template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( const T &  t  )  [inline]

Scaling by a scalar value (division).

Definition at line 153 of file Basic3DVector.h.

References Basic3DVector< T >::theX, Basic3DVector< T >::theY, and Basic3DVector< T >::theZ.

00153                                           {
00154     theX /= t;
00155     theY /= t;
00156     theZ /= t;
00157     return *this;
00158   } 

template<typename T>
T Basic3DVector< T >::perp (  )  const [inline]

Magnitude of transverse component.

Definition at line 87 of file Basic3DVector.h.

References Basic3DVector< T >::perp2(), and funct::sqrt().

Referenced by Basic3DVector< T >::bareTheta(), Basic3DVector< T >::eta(), HelixBarrelPlaneCrossingByCircle::init(), PV3DBase< T, PointTag, FrameTag >::perp(), Basic3DVector< T >::theta(), and Basic3DVector< T >::transverse().

00087 { return sqrt( perp2());}

template<typename T>
T Basic3DVector< T >::perp2 (  )  const [inline]

Squared magnitude of transverse component.

Definition at line 84 of file Basic3DVector.h.

References Basic3DVector< T >::x(), and Basic3DVector< T >::y().

Referenced by Basic3DVector< T >::perp(), and PV3DBase< T, PointTag, FrameTag >::perp2().

00084 { return x()*x() + y()*y();}

template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi (  )  const [inline]

Definition at line 97 of file Basic3DVector.h.

References Basic3DVector< T >::theX, and Basic3DVector< T >::theY.

Referenced by PV3DBase< T, PointTag, FrameTag >::phi(), AlCaHOCalibProducer::produce(), and TkRotation< T >::TkRotation().

00097 {return Geom::Phi<T>(atan2(theY,theX));}

template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta (  )  const [inline]

Definition at line 104 of file Basic3DVector.h.

References Basic3DVector< T >::perp(), and Basic3DVector< T >::z().

Referenced by AlCaHOCalibProducer::produce(), PV3DBase< T, PointTag, FrameTag >::theta(), and TkRotation< T >::TkRotation().

00104 {return Geom::Theta<T>(atan2(perp(),z()));}

template<typename T>
T Basic3DVector< T >::transverse (  )  const [inline]

Another name for perp().

Definition at line 90 of file Basic3DVector.h.

References Basic3DVector< T >::perp().

Referenced by PV3DBase< T, PointTag, FrameTag >::transverse().

00090 { return perp();}

template<typename T>
Basic3DVector Basic3DVector< T >::unit (  )  const [inline]

Unit vector parallel to this.

If mag() is zero, a zero vector is returned.

Definition at line 116 of file Basic3DVector.h.

References Basic3DVector< T >::mag().

Referenced by PathToPlane2Order::operator()(), and HelixBarrelPlaneCrossingByCircle::position().

00116                              {
00117     T my_mag = mag();
00118     return my_mag == 0 ? *this : *this / my_mag;
00119   }

template<typename T>
T Basic3DVector< T >::x (  )  const [inline]

Cartesian x coordinate.

Definition at line 69 of file Basic3DVector.h.

References Basic3DVector< T >::theX.

Referenced by VisEventSetupService::addBoxWafer(), VisTrackingGeometry::addBoxWafer(), LinearEquation3< T >::Array3< U >::Array3(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), VisTrackingGeometry::createRotation(), VisEventSetupService::createRotation(), Basic3DVector< T >::cross(), HelixArbitraryPlaneCrossing::direction(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< T >::dot(), Basic3DVector< T >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvParabola::MappedPoint< T >::MappedPoint(), TkRotation< T >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), TkRotation< T >::operator *(), operator *(), PathToPlane2Order::operator()(), operator+(), Basic3DVector< T >::operator+=(), Basic3DVector< T >::operator-(), operator-(), Basic3DVector< T >::operator-=(), operator/(), LinearEquation3< T >::Array3< U >::operator=(), TrackAssociatorByChi2::parametersAtClosestApproach(), HelixArbitraryPlaneCrossing::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), HelixBarrelPlaneCrossingByCircle::pathLength(), Basic3DVector< T >::perp2(), HelixArbitraryPlaneCrossing::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixBarrelPlaneCrossingByCircle::position(), HelixExtrapolatorToLine2Order::positionInDouble(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< T >::rotateAxes(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), ThirdHitPredictionFromInvParabola::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), and PV3DBase< T, PointTag, FrameTag >::x().

00069 { return theX;}

template<typename T>
T Basic3DVector< T >::y (  )  const [inline]

Cartesian y coordinate.

Definition at line 72 of file Basic3DVector.h.

References Basic3DVector< T >::theY.

Referenced by VisEventSetupService::addBoxWafer(), VisTrackingGeometry::addBoxWafer(), LinearEquation3< T >::Array3< U >::Array3(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), VisTrackingGeometry::createRotation(), VisEventSetupService::createRotation(), Basic3DVector< T >::cross(), HelixArbitraryPlaneCrossing::direction(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< T >::dot(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvParabola::MappedPoint< T >::MappedPoint(), TkRotation< T >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), TkRotation< T >::operator *(), operator *(), PathToPlane2Order::operator()(), operator+(), Basic3DVector< T >::operator+=(), Basic3DVector< T >::operator-(), operator-(), Basic3DVector< T >::operator-=(), operator/(), LinearEquation3< T >::Array3< U >::operator=(), TrackAssociatorByChi2::parametersAtClosestApproach(), HelixArbitraryPlaneCrossing::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), HelixBarrelPlaneCrossingByCircle::pathLength(), Basic3DVector< T >::perp2(), HelixArbitraryPlaneCrossing::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixBarrelPlaneCrossingByCircle::position(), HelixExtrapolatorToLine2Order::positionInDouble(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< T >::rotateAxes(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), ThirdHitPredictionFromInvParabola::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), and PV3DBase< T, PointTag, FrameTag >::y().

00072 { return theY;}

template<typename T>
T Basic3DVector< T >::z (  )  const [inline]

Cartesian z coordinate.

Definition at line 75 of file Basic3DVector.h.

References Basic3DVector< T >::theZ.

Referenced by VisEventSetupService::addBoxWafer(), VisTrackingGeometry::addBoxWafer(), LinearEquation3< T >::Array3< U >::Array3(), Basic3DVector< T >::bareTheta(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), VisTrackingGeometry::createRotation(), VisEventSetupService::createRotation(), Basic3DVector< T >::cross(), HelixArbitraryPlaneCrossing::direction(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< T >::dot(), Basic3DVector< T >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), TkRotation< T >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), TkRotation< T >::operator *(), operator *(), PathToPlane2Order::operator()(), operator+(), Basic3DVector< T >::operator+=(), Basic3DVector< T >::operator-(), operator-(), Basic3DVector< T >::operator-=(), operator/(), LinearEquation3< T >::Array3< U >::operator=(), TrackAssociatorByChi2::parametersAtClosestApproach(), HelixForwardPlaneCrossing::pathLength(), HelixArbitraryPlaneCrossing::pathLength(), HelixArbitraryPlaneCrossing::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixBarrelPlaneCrossingByCircle::position(), HelixExtrapolatorToLine2Order::positionInDouble(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< T >::rotateAxes(), VertexDistance3D::signedDistance(), Basic3DVector< T >::theta(), and PV3DBase< T, PointTag, FrameTag >::z().

00075 { return theZ;}


Member Data Documentation

template<typename T>
T Basic3DVector< T >::theX [private]

Definition at line 196 of file Basic3DVector.h.

Referenced by Basic3DVector< T >::barePhi(), Basic3DVector< T >::Basic3DVector(), Basic3DVector< T >::mag2(), Basic3DVector< T >::operator *=(), Basic3DVector< T >::operator+=(), Basic3DVector< T >::operator-=(), Basic3DVector< T >::operator/=(), Basic3DVector< T >::phi(), and Basic3DVector< T >::x().

template<typename T>
T Basic3DVector< T >::theY [private]

Definition at line 197 of file Basic3DVector.h.

Referenced by Basic3DVector< T >::barePhi(), Basic3DVector< T >::Basic3DVector(), Basic3DVector< T >::mag2(), Basic3DVector< T >::operator *=(), Basic3DVector< T >::operator+=(), Basic3DVector< T >::operator-=(), Basic3DVector< T >::operator/=(), Basic3DVector< T >::phi(), and Basic3DVector< T >::y().

template<typename T>
T Basic3DVector< T >::theZ [private]

Definition at line 198 of file Basic3DVector.h.

Referenced by Basic3DVector< T >::Basic3DVector(), Basic3DVector< T >::mag2(), Basic3DVector< T >::operator *=(), Basic3DVector< T >::operator+=(), Basic3DVector< T >::operator-=(), Basic3DVector< T >::operator/=(), and Basic3DVector< T >::z().


The documentation for this class was generated from the following file:
Generated on Tue Jun 9 18:14:57 2009 for CMSSW by  doxygen 1.5.4