test
CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
ApeEstimator.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 //
3 // Package: ApeEstimator
4 // Class: ApeEstimator
5 //
13 //
14 // Original Author: Johannes Hauk
15 // Created: Tue Jan 6 15:02:09 CET 2009
16 // Modified by: Christian Schomakers (RWTH Aachen)
17 // $Id: ApeEstimator.cc,v 1.27 2012/06/26 09:42:33 hauk Exp $
18 //
19 //
20 
21 
22 // system include files
23 #include <memory>
24 #include <sstream>
25 #include <fstream>
26 
27 // user include files
38 
41 
53 //#include "DataFormats/GeometrySurface/interface/LocalError.h" // which one of LocalError.h to include ?
62 
70 
74 //added by Ajay 6Nov 2014
75 //.......................
78 
80 
81 //...............
82 //
83 
86 
88 
90 
95 
96 
97 #include "TH1.h"
98 #include "TH2.h"
99 #include "TProfile.h"
100 #include "TFile.h"
101 #include "TTree.h"
102 #include "TF1.h"
103 #include "TString.h"
104 #include "TMath.h"
105 
106 
109 
112 //ADDED BY LOIC QUERTENMONT
125 
126 //
127 // class decleration
128 //
129 
131  public:
132  explicit ApeEstimator(const edm::ParameterSet&);
133  ~ApeEstimator();
134 
135 
136  private:
138  PositionAndError2(): posX(-999.F), posY(-999.F), errX2(-999.F), errY2(-999.F) {};
139  PositionAndError2(float x, float y, float eX, float eY): posX(x), posY(y), errX2(eX), errY2(eY) {};
140  float posX;
141  float posY;
142  float errX2;
143  float errY2;
144  };
145  typedef std::pair<TrackStruct::HitState,PositionAndError2> StatePositionAndError2;
146 
147  virtual void beginJob() ;
148  virtual void analyze(const edm::Event&, const edm::EventSetup&);
149  virtual void endJob();
150 
151  bool isHit2D(const TrackingRecHit&)const;
152 
153  void sectorBuilder();
154  bool checkIntervalsForSectors(const unsigned int sectorCounter, const std::vector<double>&)const;
155  bool checkModuleIds(const unsigned int, const std::vector<unsigned int>&)const;
156  bool checkModuleBools(const bool, const std::vector<unsigned int>&)const;
157  bool checkModuleDirections(const int, const std::vector<int>&)const;
158  bool checkModulePositions(const float, const std::vector<double>&)const;
159  void statistics(const TrackerSectorStruct&, const Int_t)const;
160 
161  void residualErrorBinning();
162 
165  void bookTrackHists();
166 
169 
173 
174  void hitSelection();
175  void setHitSelectionMap(const std::string&);
176  void setHitSelectionMapUInt(const std::string&);
178  bool inDoubleInterval(const std::vector<double>&, const float)const;
179  bool inUintInterval(const std::vector<unsigned int>&, const unsigned int, const unsigned int =999)const;
180 
185 
186  void calculateAPE();
187 
188  // ----------member data ---------------------------
190  std::map<unsigned int, TrackerSectorStruct> m_tkSector_;
192 
195 
196 
197  std::map<unsigned int, std::pair<double,double> > m_resErrBins_;
198  std::map<unsigned int, ReducedTrackerTreeVariables> m_tkTreeVar_;
199 
200  std::map<std::string,std::vector<double> > m_hitSelection_;
201  std::map<std::string,std::vector<unsigned int> > m_hitSelectionUInt_;
202 
203  bool trackCut_;
204 
205  const unsigned int maxTracksPerEvent_;
206  const unsigned int minGoodHitsPerTrack_;
207 
208  const bool analyzerMode_;
209 
210  const bool calculateApe_;
211 
213 
214 };
215 
216 //
217 // constants, enums and typedefs
218 //
219 
220 //
221 // static data member definitions
222 //
223 
224 //
225 // constructors and destructor
226 //
228 parameterSet_(iConfig),
229 tjTagToken_(consumes<TrajTrackAssociationCollection>(parameterSet_.getParameter<edm::InputTag>("tjTkAssociationMapTag"))),
230 offlinebeamSpot_(consumes<reco::BeamSpot>(edm::InputTag("offlineBeamSpot"))),
231 trackCut_(false), maxTracksPerEvent_(parameterSet_.getParameter<unsigned int>("maxTracksPerEvent")),
232 minGoodHitsPerTrack_(parameterSet_.getParameter<unsigned int>("minGoodHitsPerTrack")),
233 analyzerMode_(parameterSet_.getParameter<bool>("analyzerMode")),
234 calculateApe_(parameterSet_.getParameter<bool>("calculateApe"))
235 {
237 }
238 
239 
241 {
242 }
243 
244 
245 //
246 // member functions
247 //
248 
249 // -----------------------------------------------------------------------------------------------------------
250 
251 void
253 
254  TFile* tkTreeFile(TFile::Open((parameterSet_.getParameter<std::string>("TrackerTreeFile")).c_str()));
255  if(tkTreeFile){
256  edm::LogInfo("SectorBuilder")<<"TrackerTreeFile OK";
257  }else{
258  edm::LogError("SectorBuilder")<<"TrackerTreeFile not found";
259  return;
260  }
261  TTree* tkTree(0);
262  tkTreeFile->GetObject("TrackerTreeGenerator/TrackerTree/TrackerTree",tkTree);
263  if(tkTree){
264  edm::LogInfo("SectorBuilder")<<"TrackerTree OK";
265  }else{
266  edm::LogError("SectorBuilder")<<"TrackerTree not found in file";
267  return;
268  }
269  UInt_t rawId(999), subdetId(999), layer(999), side(999), half(999), rod(999), ring(999), petal(999),
270  blade(999), panel(999), outerInner(999), module(999), rodAl(999), bladeAl(999), nStrips(999);
271  Bool_t isDoubleSide(false), isRPhi(false);
272  Int_t uDirection(999), vDirection(999), wDirection(999);
273  Float_t posR(999.F), posPhi(999.F), posEta(999.F), posX(999.F), posY(999.F), posZ(999.F);
274  tkTree->SetBranchAddress("RawId", &rawId);
275  tkTree->SetBranchAddress("SubdetId", &subdetId);
276  tkTree->SetBranchAddress("Layer", &layer);
277  tkTree->SetBranchAddress("Side", &side);
278  tkTree->SetBranchAddress("Half", &half);
279  tkTree->SetBranchAddress("Rod", &rod);
280  tkTree->SetBranchAddress("Ring", &ring);
281  tkTree->SetBranchAddress("Petal", &petal);
282  tkTree->SetBranchAddress("Blade", &blade);
283  tkTree->SetBranchAddress("Panel", &panel);
284  tkTree->SetBranchAddress("OuterInner", &outerInner);
285  tkTree->SetBranchAddress("Module", &module);
286  tkTree->SetBranchAddress("RodAl", &rodAl);
287  tkTree->SetBranchAddress("BladeAl", &bladeAl);
288  tkTree->SetBranchAddress("NStrips", &nStrips);
289  tkTree->SetBranchAddress("IsDoubleSide", &isDoubleSide);
290  tkTree->SetBranchAddress("IsRPhi", &isRPhi);
291  tkTree->SetBranchAddress("UDirection", &uDirection);
292  tkTree->SetBranchAddress("VDirection", &vDirection);
293  tkTree->SetBranchAddress("WDirection", &wDirection);
294  tkTree->SetBranchAddress("PosR", &posR);
295  tkTree->SetBranchAddress("PosPhi", &posPhi);
296  tkTree->SetBranchAddress("PosEta", &posEta);
297  tkTree->SetBranchAddress("PosX", &posX);
298  tkTree->SetBranchAddress("PosY", &posY);
299  tkTree->SetBranchAddress("PosZ", &posZ);
300 
301  Int_t nModules(tkTree->GetEntries());
302  TrackerSectorStruct allSectors;
303 
304  //Loop over all Sectors
305  unsigned int sectorCounter(1);
306  std::vector<edm::ParameterSet> v_sectorDef(parameterSet_.getParameter<std::vector<edm::ParameterSet> >("Sectors"));
307  edm::LogInfo("SectorBuilder")<<"There are "<<v_sectorDef.size()<<" Sectors definded";
308  std::vector<edm::ParameterSet>::const_iterator i_parSet;
309  for(i_parSet = v_sectorDef.begin(); i_parSet != v_sectorDef.end();++i_parSet, ++sectorCounter){
310  const edm::ParameterSet& parSet = *i_parSet;
311  const std::string& sectorName(parSet.getParameter<std::string>("name"));
312  std::vector<unsigned int> v_rawId(parSet.getParameter<std::vector<unsigned int> >("rawId")),
313  v_subdetId(parSet.getParameter<std::vector<unsigned int> >("subdetId")),
314  v_layer(parSet.getParameter<std::vector<unsigned int> >("layer")),
315  v_side(parSet.getParameter<std::vector<unsigned int> >("side")),
316  v_half(parSet.getParameter<std::vector<unsigned int> >("half")),
317  v_rod(parSet.getParameter<std::vector<unsigned int> >("rod")),
318  v_ring(parSet.getParameter<std::vector<unsigned int> >("ring")),
319  v_petal(parSet.getParameter<std::vector<unsigned int> >("petal")),
320  v_blade(parSet.getParameter<std::vector<unsigned int> >("blade")),
321  v_panel(parSet.getParameter<std::vector<unsigned int> >("panel")),
322  v_outerInner(parSet.getParameter<std::vector<unsigned int> >("outerInner")),
323  v_module(parSet.getParameter<std::vector<unsigned int> >("module")),
324  v_rodAl(parSet.getParameter<std::vector<unsigned int> >("rodAl")),
325  v_bladeAl(parSet.getParameter<std::vector<unsigned int> >("bladeAl")),
326  v_nStrips(parSet.getParameter<std::vector<unsigned int> >("nStrips")),
327  v_isDoubleSide(parSet.getParameter<std::vector<unsigned int> >("isDoubleSide")),
328  v_isRPhi(parSet.getParameter<std::vector<unsigned int> >("isRPhi"));
329  std::vector<int> v_uDirection(parSet.getParameter<std::vector<int> >("uDirection")),
330  v_vDirection(parSet.getParameter<std::vector<int> >("vDirection")),
331  v_wDirection(parSet.getParameter<std::vector<int> >("wDirection"));
332  std::vector<double> v_posR(parSet.getParameter<std::vector<double> >("posR")),
333  v_posPhi(parSet.getParameter<std::vector<double> >("posPhi")),
334  v_posEta(parSet.getParameter<std::vector<double> >("posEta")),
335  v_posX(parSet.getParameter<std::vector<double> >("posX")),
336  v_posY(parSet.getParameter<std::vector<double> >("posY")),
337  v_posZ(parSet.getParameter<std::vector<double> >("posZ"));
338 
339  if(!this->checkIntervalsForSectors(sectorCounter,v_posR) || !this->checkIntervalsForSectors(sectorCounter,v_posPhi) ||
340  !this->checkIntervalsForSectors(sectorCounter,v_posEta) || !this->checkIntervalsForSectors(sectorCounter,v_posX) ||
341  !this->checkIntervalsForSectors(sectorCounter,v_posY) || !this->checkIntervalsForSectors(sectorCounter,v_posZ))continue;
342 
343 
344  TrackerSectorStruct tkSector;
345  tkSector.name = sectorName;
346 
347  ReducedTrackerTreeVariables tkTreeVar;
348 
349  //Loop over all Modules
350  for(Int_t module = 0; module < nModules; ++module){
351  tkTree->GetEntry(module);
352 
353  if(sectorCounter==1){
354  tkTreeVar.subdetId = subdetId;
355  tkTreeVar.nStrips = nStrips;
356  tkTreeVar.uDirection = uDirection;
357  tkTreeVar.vDirection = vDirection;
358  tkTreeVar.wDirection = wDirection;
359  m_tkTreeVar_[rawId] = tkTreeVar;
360  }
361 
362  if(!this->checkModuleIds(rawId,v_rawId))continue;
363  if(!this->checkModuleIds(subdetId,v_subdetId))continue;
364  if(!this->checkModuleIds(layer,v_layer))continue;
365  if(!this->checkModuleIds(side,v_side))continue;
366  if(!this->checkModuleIds(half,v_half))continue;
367  if(!this->checkModuleIds(rod,v_rod))continue;
368  if(!this->checkModuleIds(ring,v_ring))continue;
369  if(!this->checkModuleIds(petal,v_petal))continue;
370  if(!this->checkModuleIds(blade,v_blade))continue;
371  if(!this->checkModuleIds(panel,v_panel))continue;
372  if(!this->checkModuleIds(outerInner,v_outerInner))continue;
373  if(!this->checkModuleIds(module,v_module))continue;
374  if(!this->checkModuleIds(rodAl,v_rodAl))continue;
375  if(!this->checkModuleIds(bladeAl,v_bladeAl))continue;
376  if(!this->checkModuleIds(nStrips,v_nStrips))continue;
377  if(!this->checkModuleBools(isDoubleSide,v_isDoubleSide))continue;
378  if(!this->checkModuleBools(isRPhi,v_isRPhi))continue;
379  if(!this->checkModuleDirections(uDirection,v_uDirection))continue;
380  if(!this->checkModuleDirections(vDirection,v_vDirection))continue;
381  if(!this->checkModuleDirections(wDirection,v_wDirection))continue;
382  if(!this->checkModulePositions(posR,v_posR))continue;
383  if(!this->checkModulePositions(posPhi,v_posPhi))continue;
384  if(!this->checkModulePositions(posEta,v_posEta))continue;
385  if(!this->checkModulePositions(posX,v_posX))continue;
386  if(!this->checkModulePositions(posY,v_posY))continue;
387  if(!this->checkModulePositions(posZ,v_posZ))continue;
388 
389  tkSector.v_rawId.push_back(rawId);
390  bool moduleSelected(false);
391  for(std::vector<unsigned int>::const_iterator i_rawId = allSectors.v_rawId.begin();
392  i_rawId != allSectors.v_rawId.end(); ++i_rawId){
393  if(rawId == *i_rawId)moduleSelected = true;
394  }
395  if(!moduleSelected)allSectors.v_rawId.push_back(rawId);
396  }
397 
398  bool isPixel(false);
399  bool isStrip(false);
400  for(std::vector<unsigned int>::const_iterator i_rawId = tkSector.v_rawId.begin();
401  i_rawId != tkSector.v_rawId.end(); ++i_rawId){
402  if(m_tkTreeVar_[*i_rawId].subdetId==PixelSubdetector::PixelBarrel || m_tkTreeVar_[*i_rawId].subdetId==PixelSubdetector::PixelEndcap){
403  isPixel = true;
404  }
405  if(m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TOB ||
406  m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TEC){
407  isStrip = true;
408  }
409  }
410 
411  if(isPixel && isStrip){
412  edm::LogError("SectorBuilder")<<"Incorrect Sector Definition: there are pixel and strip modules within one sector"
413  <<"\n... sector selection is not applied, sector "<<sectorCounter<<" is not built";
414  continue;
415  }
416  tkSector.isPixel = isPixel;
417 
418  m_tkSector_[sectorCounter] = tkSector;
419  edm::LogInfo("SectorBuilder")<<"There are "<<tkSector.v_rawId.size()<<" Modules in Sector "<<sectorCounter;
420  }
421  this->statistics(allSectors, nModules);
422  return;
423 }
424 
425 
426 
427 // -----------------------------------------------------------------------------------------------------------
428 
429 
430 bool
431 ApeEstimator::checkIntervalsForSectors(const unsigned int sectorCounter, const std::vector<double>& v_id)const{
432  if(v_id.size()==0)return true;
433  if(v_id.size()%2==1){
434  edm::LogError("SectorBuilder")<<"Incorrect Sector Definition: Position Vectors need even number of arguments (Intervals)"
435  <<"\n... sector selection is not applied, sector "<<sectorCounter<<" is not built";
436  return false;
437  }
438  int entry(1); double intervalBegin(999.);
439  for(std::vector<double>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id, ++entry){
440  if(entry%2==1)intervalBegin = *i_id;
441  if(entry%2==0 && intervalBegin>*i_id){
442  edm::LogError("SectorBuilder")<<"Incorrect Sector Definition (Position Vector Intervals): \t"
443  <<intervalBegin<<" is bigger than "<<*i_id<<" but is expected to be smaller"
444  <<"\n... sector selection is not applied, sector "<<sectorCounter<<" is not built";
445  return false;
446  }
447  }
448  return true;
449 }
450 
451 bool
452 ApeEstimator::checkModuleIds(const unsigned int id, const std::vector<unsigned int>& v_id)const{
453  if(v_id.size()==0)return true;
454  for(std::vector<unsigned int>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id){
455  if(id==*i_id)return true;
456  }
457  return false;
458 }
459 
460 bool
461 ApeEstimator::checkModuleBools(const bool id, const std::vector<unsigned int>& v_id)const{
462  if(v_id.size()==0)return true;
463  for(std::vector<unsigned int>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id){
464  if(1==*i_id && id)return true;
465  if(2==*i_id && !id)return true;
466  }
467  return false;
468 }
469 
470 bool
471 ApeEstimator::checkModuleDirections(const int id, const std::vector<int>& v_id)const{
472  if(v_id.size()==0)return true;
473  for(std::vector<int>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id){
474  if(id==*i_id)return true;
475  }
476  return false;
477 }
478 
479 bool
480 ApeEstimator::checkModulePositions(const float id, const std::vector<double>& v_id)const{
481  if(v_id.size()==0)return true;
482  int entry(1); double intervalBegin(999.);
483  for(std::vector<double>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id, ++entry){
484  if(entry%2==1)intervalBegin = *i_id;
485  if(entry%2==0 && id>=intervalBegin && id<*i_id)return true;
486  }
487  return false;
488 }
489 
490 void
491 ApeEstimator::statistics(const TrackerSectorStruct& allSectors, const Int_t nModules)const{
492  bool commonModules(false);
493  for(std::map<unsigned int,TrackerSectorStruct>::const_iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
494  std::map<unsigned int,TrackerSectorStruct>::const_iterator i_sector2(i_sector);
495  for(++i_sector2; i_sector2 != m_tkSector_.end(); ++i_sector2){
496  unsigned int nCommonModules(0);
497  for(std::vector<unsigned int>::const_iterator i_module = (*i_sector).second.v_rawId.begin(); i_module != (*i_sector).second.v_rawId.end(); ++i_module){
498  for(std::vector<unsigned int>::const_iterator i_module2 = (*i_sector2).second.v_rawId.begin(); i_module2 != (*i_sector2).second.v_rawId.end(); ++i_module2){
499  if(*i_module2 == *i_module)++nCommonModules;
500  }
501  }
502  if(nCommonModules==0)
503  ;//edm::LogInfo("SectorBuilder")<<"Sector "<<(*i_sector).first<<" and Sector "<<(*i_sector2).first<< " have ZERO Modules in common";
504  else{
505  edm::LogError("SectorBuilder")<<"Sector "<<(*i_sector).first<<" and Sector "<<(*i_sector2).first<< " have "<<nCommonModules<<" Modules in common";
506  commonModules = true;
507  }
508  }
509  }
510  if(static_cast<int>(allSectors.v_rawId.size())==nModules)
511  edm::LogInfo("SectorBuilder")<<"ALL Tracker Modules are contained in the Sectors";
512  else
513  edm::LogWarning("SectorBuilder")<<"There are "<<allSectors.v_rawId.size()<<" Modules in all Sectors"
514  <<" out of "<<nModules<<" Tracker Modules";
515  if(!commonModules)
516  edm::LogInfo("SectorBuilder")<<"There are ZERO modules associated to different sectors, no ambiguities exist";
517  else
518  edm::LogError("SectorBuilder")<<"There are modules associated to different sectors, APE value cannot be assigned reasonably";
519 }
520 
521 
522 // -----------------------------------------------------------------------------------------------------------
523 
524 
525 void
527  std::vector<double> v_residualErrorBinning(parameterSet_.getParameter<std::vector<double> >("residualErrorBinning"));
528  if(v_residualErrorBinning.size()==1){
529  edm::LogError("ResidualErrorBinning")<<"Incorrect selection of Residual Error Bins (used for APE calculation): \t"
530  <<"Only one argument passed, so no interval is specified"
531  <<"\n... delete whole bin selection"; //m_resErrBins_ remains empty
532  return;
533  }
534  double xMin(0.), xMax(0.);
535  unsigned int binCounter(0);
536  for(std::vector<double>::const_iterator i_binning = v_residualErrorBinning.begin(); i_binning != v_residualErrorBinning.end(); ++i_binning, ++binCounter){
537  if(binCounter == 0){xMin = *i_binning;continue;}
538  xMax = *i_binning;
539  if(xMax<=xMin){
540  edm::LogError("ResidualErrorBinning")<<"Incorrect selection of Residual Error Bins (used for APE calculation): \t"
541  <<xMin<<" is bigger than "<<xMax<<" but is expected to be smaller"
542  <<"\n... delete whole bin selection";
543  m_resErrBins_.clear();
544  return;
545  }
546  m_resErrBins_[binCounter].first = xMin;
547  m_resErrBins_[binCounter].second = xMax;
548  xMin = xMax;
549  }
550  edm::LogInfo("ResidualErrorBinning")<<m_resErrBins_.size()<<" Intervals of residual errors used for separate APE calculation sucessfully set";
551 }
552 
553 
554 
555 // -----------------------------------------------------------------------------------------------------------
556 
557 
558 
559 void
561 
562  std::vector<unsigned int> v_errHists(parameterSet_.getParameter<std::vector<unsigned int> >("vErrHists"));
563  for(std::vector<unsigned int>::iterator i_errHists = v_errHists.begin(); i_errHists != v_errHists.end(); ++i_errHists){
564  for(std::vector<unsigned int>::iterator i_errHists2 = i_errHists; i_errHists2 != v_errHists.end();){
565  ++i_errHists2;
566  if(*i_errHists==*i_errHists2){
567  edm::LogError("BookSectorHists")<<"Value of vErrHists in config exists twice: "<<*i_errHists<<"\n... delete one of both";
568  v_errHists.erase(i_errHists2);
569  }
570  }
571  }
572 
573 
574  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
575  bool zoomHists(parameterSet_.getParameter<bool>("zoomHists"));
576 
577  double widthMax = zoomHists ? 20. : 200.;
578  double chargePixelMax = zoomHists ? 200000. : 2000000.;
579  double chargeStripMax = zoomHists ? 1000. : 10000.;
580  double sOverNMax = zoomHists ? 200. : 2000.;
581  double logClusterProbMin = zoomHists ? -5. : -15.;
582 
583  double resXAbsMax = zoomHists ? 0.5 : 5.;
584  double norResXAbsMax = zoomHists ? 10. : 50.;
585  double probXMin = zoomHists ? -0.01 : -0.1;
586  double probXMax = zoomHists ? 0.11 : 1.1;
587  double sigmaXMin = zoomHists ? 0. : -0.05;
588  double sigmaXMax = zoomHists ? 0.02 : 1.;
589  double sigmaX2Max = sigmaXMax*sigmaXMax;
590  double sigmaXHitMax = zoomHists ? 0.02 : 1.;
591  double phiSensXMax = zoomHists ? 31. : 93.;
592 
593  double norChi2Max = zoomHists ? 5. : 1000.;
594  double d0Max = zoomHists ? 0.02 : 40.; // cosmics: 100.|100.
595  double dzMax = zoomHists ? 15. : 100.; // cosmics: 200.|600.
596  double pMax = zoomHists ? 200. : 2000.;
597  double invPMax = zoomHists ? 0.05 : 10.; //begins at 20GeV, 0.1GeV
598 
599 
601  if(!fileService){
603  "TFileService is not registered in cfg file" );
604  }
605 
606  std::stringstream sector; sector << "Sector_" << (*i_sector).first;
607  TFileDirectory secDir = fileService->mkdir(sector.str().c_str());
608 
609  // Dummy histo containing the sector name as title
610  (*i_sector).second.Name = secDir.make<TH1F>("z_name",(*i_sector).second.name.c_str(),1,0,1);
611 
612  // Do not book histos for empty sectors
613  if((*i_sector).second.v_rawId.size()==0){
614  continue;
615  }
616  // Set parameters for correlationHists
617  (*i_sector).second.setCorrHistParams(&secDir,norResXAbsMax,sigmaXHitMax,sigmaXMax);
618 
619 
620  // Book pixel or strip specific hists
621  const bool pixelSector(i_sector->second.isPixel);
622 
623 
624  // Cluster Parameters
625  (*i_sector).second.m_correlationHistsX["WidthX"] = (*i_sector).second.bookCorrHistsX("WidthX","cluster width","w_{cl,x}","[# channels]",static_cast<int>(widthMax),static_cast<int>(widthMax),0.,widthMax,"nph");
626  (*i_sector).second.m_correlationHistsX["BaryStripX"] = (*i_sector).second.bookCorrHistsX("BaryStripX","barycenter of cluster charge","b_{cl,x}","[# channels]",800,100,-10.,790.,"nph");
627 
628  if(pixelSector){
629  (*i_sector).second.m_correlationHistsY["WidthY"] = (*i_sector).second.bookCorrHistsY("WidthY","cluster width","w_{cl,y}","[# channels]",static_cast<int>(widthMax),static_cast<int>(widthMax),0.,widthMax,"nph");
630  (*i_sector).second.m_correlationHistsY["BaryStripY"] = (*i_sector).second.bookCorrHistsY("BaryStripY","barycenter of cluster charge","b_{cl,y}","[# channels]",800,100,-10.,790.,"nph");
631 
632  (*i_sector).second.m_correlationHistsX["ChargePixel"] = (*i_sector).second.bookCorrHistsX("ChargePixel","cluster charge","c_{cl}","[e]",100,50,0.,chargePixelMax,"nph");
633  (*i_sector).second.m_correlationHistsX["ClusterProbXY"] = (*i_sector).second.bookCorrHistsX("ClusterProbXY","cluster probability xy","prob_{cl,xy}","",100,50,0.,1.,"nph");
634  (*i_sector).second.m_correlationHistsX["ClusterProbQ"] = (*i_sector).second.bookCorrHistsX("ClusterProbQ","cluster probability q","prob_{cl,q}","",100,50,0.,1.,"nph");
635  (*i_sector).second.m_correlationHistsX["ClusterProbXYQ"] = (*i_sector).second.bookCorrHistsX("ClusterProbXYQ","cluster probability xyq","prob_{cl,xyq}","",100,50,0.,1.,"nph");
636  (*i_sector).second.m_correlationHistsX["LogClusterProb"] = (*i_sector).second.bookCorrHistsX("LogClusterProb","cluster probability xy","log(prob_{cl,xy})","",60,30,logClusterProbMin,0.,"nph");
637  (*i_sector).second.m_correlationHistsX["IsOnEdge"] = (*i_sector).second.bookCorrHistsX("IsOnEdge","IsOnEdge","isOnEdge","",2,2,0,2,"nph");
638  (*i_sector).second.m_correlationHistsX["HasBadPixels"] = (*i_sector).second.bookCorrHistsX("HasBadPixels","HasBadPixels","hasBadPixels","",2,2,0,2,"nph");
639  (*i_sector).second.m_correlationHistsX["SpansTwoRoc"] = (*i_sector).second.bookCorrHistsX("SpansTwoRoc","SpansTwoRoc","spansTwoRoc","",2,2,0,2,"nph");
640  (*i_sector).second.m_correlationHistsX["QBin"] = (*i_sector).second.bookCorrHistsX("QBin","q bin","q bin","",8,8,0,8,"nph");
641 
642  (*i_sector).second.m_correlationHistsY["ChargePixel"] = (*i_sector).second.bookCorrHistsY("ChargePixel","cluster charge","c_{cl}","[e]",100,50,0.,chargePixelMax,"nph");
643  (*i_sector).second.m_correlationHistsY["ClusterProbXY"] = (*i_sector).second.bookCorrHistsY("ClusterProbXY","cluster probability xy","prob_{cl,xy}","",100,50,0.,1.,"nph");
644  (*i_sector).second.m_correlationHistsY["ClusterProbQ"] = (*i_sector).second.bookCorrHistsY("ClusterProbQ","cluster probability q","prob_{cl,q}","",100,50,0.,1.,"nph");
645  (*i_sector).second.m_correlationHistsY["ClusterProbXYQ"] = (*i_sector).second.bookCorrHistsY("ClusterProbXYQ","cluster probability xyq","prob_{cl,xyq}","",100,50,0.,1.,"nph");
646  (*i_sector).second.m_correlationHistsY["LogClusterProb"] = (*i_sector).second.bookCorrHistsY("LogClusterProb","cluster probability xy","log(prob_{cl,xy})","",60,30,logClusterProbMin,0.,"nph");
647  (*i_sector).second.m_correlationHistsY["IsOnEdge"] = (*i_sector).second.bookCorrHistsY("IsOnEdge","IsOnEdge","isOnEdge","",2,2,0,2,"nph");
648  (*i_sector).second.m_correlationHistsY["HasBadPixels"] = (*i_sector).second.bookCorrHistsY("HasBadPixels","HasBadPixels","hasBadPixels","",2,2,0,2,"nph");
649  (*i_sector).second.m_correlationHistsY["SpansTwoRoc"] = (*i_sector).second.bookCorrHistsY("SpansTwoRoc","SpansTwoRoc","spansTwoRoc","",2,2,0,2,"nph");
650  (*i_sector).second.m_correlationHistsY["QBin"] = (*i_sector).second.bookCorrHistsY("QBin","q bin","q bin","",8,8,0,8,"nph");
651  }
652 
653  else{
654  (*i_sector).second.m_correlationHistsX["ChargeStrip"] = (*i_sector).second.bookCorrHistsX("ChargeStrip","cluster charge","c_{cl}","[APV counts]",100,50,0.,chargeStripMax,"nph");
655  (*i_sector).second.m_correlationHistsX["MaxStrip"] = (*i_sector).second.bookCorrHistsX("MaxStrip","strip with max. charge","n_{cl,max}","[# strips]",800,800,-10.,790.,"npht");
656  (*i_sector).second.m_correlationHistsX["MaxCharge"] = (*i_sector).second.bookCorrHistsX("MaxCharge","charge of strip with max. charge","c_{cl,max}","[APV counts]",300,75,-10.,290.,"nph");
657  (*i_sector).second.m_correlationHistsX["MaxIndex"] = (*i_sector).second.bookCorrHistsX("MaxIndex","cluster-index of strip with max. charge","i_{cl,max}","[# strips]",10,10,0.,10.,"nph");
658  (*i_sector).second.m_correlationHistsX["ChargeOnEdges"] = (*i_sector).second.bookCorrHistsX("ChargeOnEdges","fraction of charge on edge strips","(c_{st,L}+c_{st,R})/c_{cl}","",60,60,-0.1,1.1,"nph");
659  (*i_sector).second.m_correlationHistsX["ChargeAsymmetry"] = (*i_sector).second.bookCorrHistsX("ChargeAsymmetry","asymmetry of charge on edge strips","(c_{st,L}-c_{st,R})/c_{cl}","",110,55,-1.1,1.1,"nph");
660  (*i_sector).second.m_correlationHistsX["ChargeLRplus"] = (*i_sector).second.bookCorrHistsX("ChargeLRplus","fraction of charge not on maxStrip","(c_{cl,L}+c_{cl,R})/c_{cl}","",60,60,-0.1,1.1,"nph");
661  (*i_sector).second.m_correlationHistsX["ChargeLRminus"] = (*i_sector).second.bookCorrHistsX("ChargeLRminus","asymmetry of charge L and R of maxStrip","(c_{cl,L}-c_{cl,R})/c_{cl}","",110,55,-1.1,1.1,"nph");
662  (*i_sector).second.m_correlationHistsX["SOverN"] = (*i_sector).second.bookCorrHistsX("SOverN","signal over noise","s/N","",100,50,0,sOverNMax,"nph");
663  (*i_sector).second.m_correlationHistsX["WidthProj"] = (*i_sector).second.bookCorrHistsX("WidthProj","projected width","w_{p}","[# strips]",200,20,0.,widthMax,"nph");
664  (*i_sector).second.m_correlationHistsX["WidthDiff"] = (*i_sector).second.bookCorrHistsX("WidthDiff","width difference","w_{p} - w_{cl}","[# strips]",200,20,-widthMax/2.,widthMax/2.,"nph");
665 
666  (*i_sector).second.WidthVsWidthProjected = secDir.make<TH2F>("h2_widthVsWidthProj","w_{cl} vs. w_{p};w_{p} [# strips];w_{cl} [# strips]",static_cast<int>(widthMax),0,widthMax,static_cast<int>(widthMax),0,widthMax);
667  (*i_sector).second.PWidthVsWidthProjected = secDir.make<TProfile>("p_widthVsWidthProj","w_{cl} vs. w_{p};w_{p} [# strips];w_{cl} [# strips]",static_cast<int>(widthMax),0,widthMax);
668 
669  (*i_sector).second.WidthDiffVsMaxStrip = secDir.make<TH2F>("h2_widthDiffVsMaxStrip","(w_{p} - w_{cl}) vs. n_{cl,max};n_{cl,max};w_{p} - w_{cl} [# strips]",800,-10.,790.,static_cast<int>(widthMax),-widthMax/2.,widthMax/2.);
670  (*i_sector).second.PWidthDiffVsMaxStrip = secDir.make<TProfile>("p_widthDiffVsMaxStrip","(w_{p} - w_{cl}) vs. n_{cl,max};n_{cl,max};w_{p} - w_{cl} [# strips]",800,-10.,790.);
671 
672  (*i_sector).second.WidthDiffVsSigmaXHit = secDir.make<TH2F>("h2_widthDiffVsSigmaXHit","(w_{p} - w_{cl}) vs. #sigma_{hit,x};#sigma_{hit,x} [cm];w_{p} - w_{cl} [# strips]",100,0.,sigmaXMax,100,-10.,10.);
673  (*i_sector).second.PWidthDiffVsSigmaXHit = secDir.make<TProfile>("p_widthDiffVsSigmaXHit","(w_{p} - w_{cl}) vs. #sigma_{hit,x};#sigma_{hit,x} [cm];w_{p} - w_{cl} [# strips]",100,0.,sigmaXMax);
674 
675  (*i_sector).second.WidthVsPhiSensX = secDir.make<TH2F>("h2_widthVsPhiSensX","w_{cl} vs. #phi_{module,x};#phi_{module,x} [ ^{o}];w_{cl} [# strips]",93,-93,93,static_cast<int>(widthMax),0,widthMax);
676  (*i_sector).second.PWidthVsPhiSensX = secDir.make<TProfile>("p_widthVsPhiSensX","w_{cl} vs. #phi_{module,x};#phi_{module,x} [ ^{o}];w_{cl} [# strips]",93,-93,93);
677  }
678 
679 
680  // Hit Parameters (transform errors and residuals from [cm] in [mum])
681  (*i_sector).second.m_correlationHistsX["SigmaXHit"] = (*i_sector).second.bookCorrHistsX("SigmaXHit","hit error","#sigma_{hit,x}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
682  (*i_sector).second.m_correlationHistsX["SigmaXTrk"] = (*i_sector).second.bookCorrHistsX("SigmaXTrk","track error","#sigma_{trk,x}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
683  (*i_sector).second.m_correlationHistsX["SigmaX"] = (*i_sector).second.bookCorrHistsX("SigmaX","residual error","#sigma_{r,x}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
684  (*i_sector).second.m_correlationHistsX["PhiSens"] = (*i_sector).second.bookCorrHistsX("PhiSens","track angle on sensor","#phi_{module}","[ ^{o}]",96,48,-3,93,"nphtr");
685  (*i_sector).second.m_correlationHistsX["PhiSensX"] = (*i_sector).second.bookCorrHistsX("PhiSensX","track angle on sensor","#phi_{module,x}","[ ^{o}]",186,93,-phiSensXMax,phiSensXMax,"nphtr");
686  (*i_sector).second.m_correlationHistsX["PhiSensY"] = (*i_sector).second.bookCorrHistsX("PhiSensY","track angle on sensor","#phi_{module,y}","[ ^{o}]",186,93,-93,93,"nphtr");
687 
688  (*i_sector).second.XHit = secDir.make<TH1F>("h_XHit"," hit measurement x_{hit};x_{hit} [cm];# hits",100,-20,20);
689  (*i_sector).second.XTrk = secDir.make<TH1F>("h_XTrk","track prediction x_{trk};x_{trk} [cm];# hits",100,-20,20);
690  (*i_sector).second.SigmaX2 = secDir.make<TH1F>("h_SigmaX2","squared residual error #sigma_{r,x}^{2};#sigma_{r,x}^{2} [#mum^{2}];# hits",105,sigmaXMin*10000.,sigmaX2Max*10000.*10000.); //no mistake !
691  (*i_sector).second.ResX = secDir.make<TH1F>("h_ResX","residual r_{x};x_{trk}-x_{hit} [#mum];# hits",100,-resXAbsMax*10000.,resXAbsMax*10000.);
692  (*i_sector).second.NorResX = secDir.make<TH1F>("h_NorResX","normalized residual r_{x}/#sigma_{r,x};(x_{trk}-x_{hit})/#sigma_{r,x};# hits",100,-norResXAbsMax,norResXAbsMax);
693  (*i_sector).second.ProbX = secDir.make<TH1F>("h_ProbX","residual probability;prob(r_{x}^{2}/#sigma_{r,x}^{2},1);# hits",60,probXMin,probXMax);
694 
695  (*i_sector).second.PhiSensXVsBarycentreX = secDir.make<TH2F>("h2_phiSensXVsBarycentreX","#phi_{module,x} vs. b_{cl,x};b_{cl,x} [# channels];#phi_{module,x} [ ^{o}]",200,-10.,790.,93,-93,93);
696  (*i_sector).second.PPhiSensXVsBarycentreX = secDir.make<TProfile>("p_phiSensXVsBarycentreX","#phi_{module,x} vs. b_{cl,x};b_{cl,x} [# channels];#phi_{module,x} [ ^{o}]",200,-10.,790.);
697 
698  if(pixelSector){
699  (*i_sector).second.m_correlationHistsY["SigmaYHit"] = (*i_sector).second.bookCorrHistsY("SigmaYHit","hit error","#sigma_{hit,y}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
700  (*i_sector).second.m_correlationHistsY["SigmaYTrk"] = (*i_sector).second.bookCorrHistsY("SigmaYTrk","track error","#sigma_{trk,y}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
701  (*i_sector).second.m_correlationHistsY["SigmaY"] = (*i_sector).second.bookCorrHistsY("SigmaY","residual error","#sigma_{r,y}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
702  (*i_sector).second.m_correlationHistsY["PhiSens"] = (*i_sector).second.bookCorrHistsY("PhiSens","track angle on sensor","#phi_{module}","[ ^{o}]",96,48,-3,93,"nphtr");
703  (*i_sector).second.m_correlationHistsY["PhiSensX"] = (*i_sector).second.bookCorrHistsY("PhiSensX","track angle on sensor","#phi_{module,x}","[ ^{o}]",186,93,-phiSensXMax,phiSensXMax,"nphtr");
704  (*i_sector).second.m_correlationHistsY["PhiSensY"] = (*i_sector).second.bookCorrHistsY("PhiSensY","track angle on sensor","#phi_{module,y}","[ ^{o}]",186,93,-93,93,"nphtr");
705 
706  (*i_sector).second.YHit = secDir.make<TH1F>("h_YHit"," hit measurement y_{hit};y_{hit} [cm];# hits",100,-20,20);
707  (*i_sector).second.YTrk = secDir.make<TH1F>("h_YTrk","track prediction y_{trk};y_{trk} [cm];# hits",100,-20,20);
708  (*i_sector).second.SigmaY2 = secDir.make<TH1F>("h_SigmaY2","squared residual error #sigma_{r,y}^{2};#sigma_{r,y}^{2} [#mum^{2}];# hits",105,sigmaXMin*10000.,sigmaX2Max*10000.*10000.); //no mistake !
709  (*i_sector).second.ResY = secDir.make<TH1F>("h_ResY","residual r_{y};y_{trk}-y_{hit} [#mum];# hits",100,-resXAbsMax*10000.,resXAbsMax*10000.);
710  (*i_sector).second.NorResY = secDir.make<TH1F>("h_NorResY","normalized residual r_{y}/#sigma_{r,y};(y_{trk}-y_{hit})/#sigma_{r,y};# hits",100,-norResXAbsMax,norResXAbsMax);
711  (*i_sector).second.ProbY = secDir.make<TH1F>("h_ProbY","residual probability;prob(r_{y}^{2}/#sigma_{r,y}^{2},1);# hits",60,probXMin,probXMax);
712 
713  (*i_sector).second.PhiSensYVsBarycentreY = secDir.make<TH2F>("h2_phiSensYVsBarycentreY","#phi_{module,y} vs. b_{cl,y};b_{cl,y} [# channels];#phi_{module,y} [ ^{o}]",200,-10.,790.,93,-93,93);
714  (*i_sector).second.PPhiSensYVsBarycentreY = secDir.make<TProfile>("p_phiSensYVsBarycentreY","#phi_{module,y} vs. b_{cl,y};b_{cl,y} [# channels];#phi_{module,y} [ ^{o}]",200,-10.,790.);
715  }
716 
717 
718  // Track Parameters
719  (*i_sector).second.m_correlationHistsX["HitsValid"] = (*i_sector).second.bookCorrHistsX("HitsValid","# hits","[valid]",50,0,50,"npt");
720  (*i_sector).second.m_correlationHistsX["HitsInvalid"] = (*i_sector).second.bookCorrHistsX("HitsInvalid","# hits","[invalid]",20,0,20,"npt");
721  (*i_sector).second.m_correlationHistsX["Hits2D"] = (*i_sector).second.bookCorrHistsX("Hits2D","# hits","[2D]",20,0,20,"npt");
722  (*i_sector).second.m_correlationHistsX["LayersMissed"] = (*i_sector).second.bookCorrHistsX("LayersMissed","# layers","[missed]",10,0,10,"npt");
723  (*i_sector).second.m_correlationHistsX["HitsPixel"] = (*i_sector).second.bookCorrHistsX("HitsPixel","# hits","[pixel]",10,0,10,"npt");
724  (*i_sector).second.m_correlationHistsX["HitsStrip"] = (*i_sector).second.bookCorrHistsX("HitsStrip","# hits","[strip]",40,0,40,"npt");
725  (*i_sector).second.m_correlationHistsX["HitsGood"] = (*i_sector).second.bookCorrHistsX("HitsGood","# hits","[good]",50,0,50,"npt");
726  (*i_sector).second.m_correlationHistsX["NorChi2"] = (*i_sector).second.bookCorrHistsX("NorChi2","#chi^{2}/f","",50,0,norChi2Max,"npr");
727  (*i_sector).second.m_correlationHistsX["Theta"] = (*i_sector).second.bookCorrHistsX("Theta","#theta","[ ^{o}]",40,-10,190,"npt");
728  (*i_sector).second.m_correlationHistsX["Phi"] = (*i_sector).second.bookCorrHistsX("Phi","#phi","[ ^{o}]",76,-190,190,"npt");
729  (*i_sector).second.m_correlationHistsX["D0Beamspot"] = (*i_sector).second.bookCorrHistsX("D0Beamspot","d_{0, BS}","[cm]",40,-d0Max,d0Max,"npt");
730  (*i_sector).second.m_correlationHistsX["Dz"] = (*i_sector).second.bookCorrHistsX("Dz","d_{z}","[cm]",40,-dzMax,dzMax,"npt");
731  (*i_sector).second.m_correlationHistsX["Pt"] = (*i_sector).second.bookCorrHistsX("Pt","p_{t}","[GeV]",50,0,pMax,"npt");
732  (*i_sector).second.m_correlationHistsX["P"] = (*i_sector).second.bookCorrHistsX("P","|p|","[GeV]",50,0,pMax,"npt");
733  (*i_sector).second.m_correlationHistsX["InvP"] = (*i_sector).second.bookCorrHistsX("InvP","1/|p|","[GeV^{-1}]",25,0,invPMax,"t");
734  (*i_sector).second.m_correlationHistsX["MeanAngle"] = (*i_sector).second.bookCorrHistsX("MeanAngle","<#phi_{module}>","[ ^{o}]",25,-5,95,"npt");
735  //(*i_sector).second.m_correlationHistsX[""] = (*i_sector).second.bookCorrHistsX("","","",,,,"nphtr");
736 
737  if(pixelSector){
738  (*i_sector).second.m_correlationHistsY["HitsValid"] = (*i_sector).second.bookCorrHistsY("HitsValid","# hits","[valid]",50,0,50,"npt");
739  (*i_sector).second.m_correlationHistsY["HitsInvalid"] = (*i_sector).second.bookCorrHistsY("HitsInvalid","# hits","[invalid]",20,0,20,"npt");
740  (*i_sector).second.m_correlationHistsY["Hits2D"] = (*i_sector).second.bookCorrHistsY("Hits2D","# hits","[2D]",20,0,20,"npt");
741  (*i_sector).second.m_correlationHistsY["LayersMissed"] = (*i_sector).second.bookCorrHistsY("LayersMissed","# layers","[missed]",10,0,10,"npt");
742  (*i_sector).second.m_correlationHistsY["HitsPixel"] = (*i_sector).second.bookCorrHistsY("HitsPixel","# hits","[pixel]",10,0,10,"npt");
743  (*i_sector).second.m_correlationHistsY["HitsStrip"] = (*i_sector).second.bookCorrHistsY("HitsStrip","# hits","[strip]",40,0,40,"npt");
744  (*i_sector).second.m_correlationHistsY["HitsGood"] = (*i_sector).second.bookCorrHistsY("HitsGood","# hits","[good]",50,0,50,"npt");
745  (*i_sector).second.m_correlationHistsY["NorChi2"] = (*i_sector).second.bookCorrHistsY("NorChi2","#chi^{2}/f","",50,0,norChi2Max,"npr");
746  (*i_sector).second.m_correlationHistsY["Theta"] = (*i_sector).second.bookCorrHistsY("Theta","#theta","[ ^{o}]",40,-10,190,"npt");
747  (*i_sector).second.m_correlationHistsY["Phi"] = (*i_sector).second.bookCorrHistsY("Phi","#phi","[ ^{o}]",76,-190,190,"npt");
748  (*i_sector).second.m_correlationHistsY["D0Beamspot"] = (*i_sector).second.bookCorrHistsY("D0Beamspot","d_{0, BS}","[cm]",40,-d0Max,d0Max,"npt");
749  (*i_sector).second.m_correlationHistsY["Dz"] = (*i_sector).second.bookCorrHistsY("Dz","d_{z}","[cm]",40,-dzMax,dzMax,"npt");
750  (*i_sector).second.m_correlationHistsY["Pt"] = (*i_sector).second.bookCorrHistsY("Pt","p_{t}","[GeV]",50,0,pMax,"npt");
751  (*i_sector).second.m_correlationHistsY["P"] = (*i_sector).second.bookCorrHistsY("P","|p|","[GeV]",50,0,pMax,"npt");
752  (*i_sector).second.m_correlationHistsY["InvP"] = (*i_sector).second.bookCorrHistsY("InvP","1/|p|","[GeV^{-1}]",25,0,invPMax,"t");
753  (*i_sector).second.m_correlationHistsY["MeanAngle"] = (*i_sector).second.bookCorrHistsY("MeanAngle","<#phi_{module}>","[ ^{o}]",25,-5,95,"npt");
754  }
755 
756 
757  // (transform errors and residuals from [cm] in [mum])
758  for(std::vector<unsigned int>::iterator i_errHists = v_errHists.begin(); i_errHists != v_errHists.end(); ++i_errHists){
759  double xMin(0.01*(*i_errHists-1)), xMax(0.01*(*i_errHists));
760  std::stringstream sigmaXHit, sigmaXTrk, sigmaX;
761  sigmaXHit << "h_sigmaXHit_" << *i_errHists;
762  sigmaXTrk << "h_sigmaXTrk_" << *i_errHists;
763  sigmaX << "h_sigmaX_" << *i_errHists;
764  (*i_sector).second.m_sigmaX["sigmaXHit"].push_back(secDir.make<TH1F>(sigmaXHit.str().c_str(),"hit error #sigma_{hit,x};#sigma_{hit,x} [#mum];# hits",100,xMin*10000.,xMax*10000.));
765  (*i_sector).second.m_sigmaX["sigmaXTrk"].push_back(secDir.make<TH1F>(sigmaXTrk.str().c_str(),"track error #sigma_{trk,x};#sigma_{trk,x} [#mum];# hits",100,xMin*10000.,xMax*10000.));
766  (*i_sector).second.m_sigmaX["sigmaX" ].push_back(secDir.make<TH1F>(sigmaX.str().c_str(),"residual error #sigma_{r,x};#sigma_{r,x} [#mum];# hits",100,xMin*10000.,xMax*10000.));
767  if(pixelSector){
768  std::stringstream sigmaYHit, sigmaYTrk, sigmaY;
769  sigmaYHit << "h_sigmaYHit_" << *i_errHists;
770  sigmaYTrk << "h_sigmaYTrk_" << *i_errHists;
771  sigmaY << "h_sigmaY_" << *i_errHists;
772  (*i_sector).second.m_sigmaY["sigmaYHit"].push_back(secDir.make<TH1F>(sigmaYHit.str().c_str(),"hit error #sigma_{hit,y};#sigma_{hit,y} [#mum];# hits",100,xMin*10000.,xMax*10000.));
773  (*i_sector).second.m_sigmaY["sigmaYTrk"].push_back(secDir.make<TH1F>(sigmaYTrk.str().c_str(),"track error #sigma_{trk,y};#sigma_{trk,y} [#mum];# hits",100,xMin*10000.,xMax*10000.));
774  (*i_sector).second.m_sigmaY["sigmaY" ].push_back(secDir.make<TH1F>(sigmaY.str().c_str(),"residual error #sigma_{r,y};#sigma_{r,y} [#mum];# hits",100,xMin*10000.,xMax*10000.));
775  }
776  }
777 
778  }
779 }
780 
781 
782 
783 void
785 
786  std::vector<unsigned int> v_errHists(parameterSet_.getParameter<std::vector<unsigned int> >("vErrHists"));
787  for(std::vector<unsigned int>::iterator i_errHists = v_errHists.begin(); i_errHists != v_errHists.end(); ++i_errHists){
788  for(std::vector<unsigned int>::iterator i_errHists2 = i_errHists; i_errHists2 != v_errHists.end();){
789  ++i_errHists2;
790  if(*i_errHists==*i_errHists2){
791  edm::LogError("BookSectorHists")<<"Value of vErrHists in config exists twice: "<<*i_errHists<<"\n... delete one of both";
792  v_errHists.erase(i_errHists2);
793  }
794  }
795  }
796 
797  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
798 
800  if(!fileService){
802  "TFileService is not registered in cfg file" );
803  }
804 
805  std::stringstream sector; sector << "Sector_" << (*i_sector).first;
806  TFileDirectory secDir = fileService->mkdir(sector.str().c_str());
807 
808  // Dummy histo containing the sector name as title
809  (*i_sector).second.Name = secDir.make<TH1F>("z_name",(*i_sector).second.name.c_str(),1,0,1);
810 
811  // Do not book histos for empty sectors
812  if((*i_sector).second.v_rawId.size()==0){
813  continue;
814  }
815 
816 
817  // Distributions in each interval (stay in [cm], to have all calculations in [cm])
818  if(m_resErrBins_.size()==0){m_resErrBins_[1].first = 0.;m_resErrBins_[1].second = 0.01;} // default if no selection taken into account: calculate APE with one bin with residual error 0-100um
819  for(std::map<unsigned int,std::pair<double,double> >::const_iterator i_errBins = m_resErrBins_.begin();
820  i_errBins != m_resErrBins_.end(); ++i_errBins){
821  std::stringstream interval; interval << "Interval_" << (*i_errBins).first;
822  TFileDirectory intDir = secDir.mkdir(interval.str().c_str());
823  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaX"] = intDir.make<TH1F>("h_sigmaX","residual resolution #sigma_{x};#sigma_{x} [cm];# hits",100,0.,0.01);
824  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResX"] = intDir.make<TH1F>("h_norResX","normalized residual r_{x}/#sigma_{r,x};(x_{trk}-x_{hit})/#sigma_{r,x};# hits",100,-10,10);
825  if((*i_sector).second.isPixel){
826  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaY"] = intDir.make<TH1F>("h_sigmaY","residual resolution #sigma_{y};#sigma_{y} [cm];# hits",100,0.,0.01);
827  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResY"] = intDir.make<TH1F>("h_norResY","normalized residual r_{y}/#sigma_{r,y};(y_{trk}-y_{hit})/#sigma_{r,y};# hits",100,-10,10);
828  }
829  }
830 
831 
832  TFileDirectory resDir = secDir.mkdir("Results");
833 
834  // TTree containing rawIds of all modules in sector
835  unsigned int rawId(0);
836  (*i_sector).second.RawId = resDir.make<TTree>("rawIdTree","Tree containing rawIds of all modules in sector");
837  (*i_sector).second.RawId->Branch("RawId", &rawId, "RawId/i");
838  for(std::vector<unsigned int>::const_iterator i_rawId=(*i_sector).second.v_rawId.begin(); i_rawId!=(*i_sector).second.v_rawId.end(); ++i_rawId){
839  rawId = (*i_rawId);
840  (*i_sector).second.RawId->Fill();
841  }
842 
843  // Result plots (one hist per sector containing one bin per interval)
844  // (transform errors and residuals from [cm] in [mum])
845  std::vector<double> v_binX(parameterSet_.getParameter<std::vector<double> >("residualErrorBinning"));
846  for(std::vector<double>::iterator i_binX = v_binX.begin(); i_binX != v_binX.end(); ++i_binX){
847  *i_binX *= 10000.;
848  }
849  (*i_sector).second.EntriesX = resDir.make<TH1F>("h_entriesX","# hits used;#sigma_{x} [#mum];# hits",v_binX.size()-1,&(v_binX[0]));
850  if((*i_sector).second.isPixel){
851  (*i_sector).second.EntriesY = resDir.make<TH1F>("h_entriesY","# hits used;#sigma_{y} [#mum];# hits",v_binX.size()-1,&(v_binX[0]));
852  }
853 
854  // In fact these are un-needed Analyzer plots, but I want to have them always for every sector visible
855  // (transform errors and residuals from [cm] in [mum])
856  (*i_sector).second.ResX = resDir.make<TH1F>("h_ResX","residual r_{x};x_{trk}-x_{hit} [#mum];# hits",100,-0.03*10000.,0.03*10000.);
857  (*i_sector).second.NorResX = resDir.make<TH1F>("h_NorResX","normalized residual r_{x}/#sigma_{r,x};(x_{trk}-x_{hit})/#sigma_{r,x};# hits",100,-5.,5.);
858  if((*i_sector).second.isPixel){
859  (*i_sector).second.ResY = resDir.make<TH1F>("h_ResY","residual r_{y};y_{trk}-y_{hit} [#mum];# hits",100,-0.03*10000.,0.03*10000.);
860  (*i_sector).second.NorResY = resDir.make<TH1F>("h_NorResY","normalized residual r_{y}/#sigma_{r,y};(y_{trk}-y_{hit})/#sigma_{r,y};# hits",100,-5.,5.);
861  }
862  }
863 }
864 
865 
866 // -----------------------------------------------------------------------------------------------------------
867 
868 void
870 
871  bool zoomHists(parameterSet_.getParameter<bool>("zoomHists"));
872 
873  int trackSizeBins = zoomHists ? 6 : 201;
874  double trackSizeMax = trackSizeBins -1;
875 
876  double chi2Max = zoomHists ? 100. : 2000.;
877  double norChi2Max = zoomHists ? 5. : 1000.;
878  double d0max = zoomHists ? 0.02 : 40.; // cosmics: 100.|100.
879  double dzmax = zoomHists ? 15. : 100.; // cosmics: 200.|600.
880  double pMax = zoomHists ? 200. : 2000.;
881 
883  TFileDirectory evtDir = fileService->mkdir("EventVariables");
884  tkDetector_.TrkSize = evtDir.make<TH1F>("h_trackSize","# tracks [all];# tracks;# events",trackSizeBins,-1,trackSizeMax);
885  tkDetector_.TrkSizeGood = evtDir.make<TH1F>("h_trackSizeGood","# tracks [good];# tracks;# events",trackSizeBins,-1,trackSizeMax);
886  TFileDirectory trkDir = fileService->mkdir("TrackVariables");
887  tkDetector_.HitsSize = trkDir.make<TH1F>("h_hitsSize","# hits;# hits;# tracks",51,-1,50);
888  tkDetector_.HitsValid = trkDir.make<TH1F>("h_hitsValid","# hits [valid];# hits [valid];# tracks",51,-1,50);
889  tkDetector_.HitsInvalid = trkDir.make<TH1F>("h_hitsInvalid","# hits [invalid];# hits [invalid];# tracks",21,-1,20);
890  tkDetector_.Hits2D = trkDir.make<TH1F>("h_hits2D","# hits [2D];# hits [2D];# tracks",21,-1,20);
891  tkDetector_.LayersMissed = trkDir.make<TH1F>("h_layersMissed","# layers [missed];# layers [missed];# tracks",11,-1,10);
892  tkDetector_.HitsPixel = trkDir.make<TH1F>("h_hitsPixel","# hits [pixel];# hits [pixel];# tracks",11,-1,10);
893  tkDetector_.HitsStrip = trkDir.make<TH1F>("h_hitsStrip","# hits [strip];# hits [strip];# tracks",41,-1,40);
894  tkDetector_.Charge = trkDir.make<TH1F>("h_charge","charge q;q [e];# tracks",5,-2,3);
895  tkDetector_.Chi2 = trkDir.make<TH1F>("h_chi2"," #chi^{2};#chi^{2};# tracks",100,0,chi2Max);
896  tkDetector_.Ndof = trkDir.make<TH1F>("h_ndof","# degrees of freedom f;f;# tracks",101,-1,100);
897  tkDetector_.NorChi2 = trkDir.make<TH1F>("h_norChi2","normalized #chi^{2};#chi^{2}/f;# tracks",200,0,norChi2Max);
898  tkDetector_.Prob = trkDir.make<TH1F>("h_prob"," #chi^{2} probability;prob(#chi^{2},f);# tracks",50,0,1);
899  tkDetector_.Eta = trkDir.make<TH1F>("h_eta","pseudorapidity #eta;#eta;# tracks",100,-5,5);
900  tkDetector_.EtaErr = trkDir.make<TH1F>("h_etaErr","Error of #eta;#sigma(#eta);# tracks",100,0,0.001);
901  tkDetector_.EtaSig = trkDir.make<TH1F>("h_etaSig","Significance of #eta;#eta/#sigma(#eta);# tracks",100,-20000,20000);
902  tkDetector_.Theta = trkDir.make<TH1F>("h_theta","polar angle #theta;#theta [ ^{o}];# tracks",100,-10,190);
903  tkDetector_.Phi = trkDir.make<TH1F>("h_phi","azimuth angle #phi;#phi [ ^{o}];# tracks",190,-190,190);
904  tkDetector_.PhiErr = trkDir.make<TH1F>("h_phiErr","Error of #phi;#sigma(#phi) [ ^{o}];# tracks",100,0,0.04);
905  tkDetector_.PhiSig = trkDir.make<TH1F>("h_phiSig","Significance of #phi;#phi/#sigma(#phi) [ ^{o}];# tracks",100,-50000,50000);
906  tkDetector_.D0Beamspot = trkDir.make<TH1F>("h_d0Beamspot","Closest approach d_{0} wrt. beamspot;d_{0, BS} [cm];# tracks",200,-d0max,d0max);
907  tkDetector_.D0BeamspotErr = trkDir.make<TH1F>("h_d0BeamspotErr","Error of d_{0, BS};#sigma(d_{0, BS}) [cm];# tracks",200,0,0.01);
908  tkDetector_.D0BeamspotSig = trkDir.make<TH1F>("h_d0BeamspotSig","Significance of d_{0, BS};d_{0, BS}/#sigma(d_{0, BS});# tracks",100,-5,5);
909  tkDetector_.Dz = trkDir.make<TH1F>("h_dz","Closest approach d_{z};d_{z} [cm];# tracks",200,-dzmax,dzmax);
910  tkDetector_.DzErr = trkDir.make<TH1F>("h_dzErr","Error of d_{z};#sigma(d_{z}) [cm];# tracks",200,0,0.01);
911  tkDetector_.DzSig = trkDir.make<TH1F>("h_dzSig","Significance of d_{z};d_{z}/#sigma(d_{z});# tracks",100,-10000,10000);
912  tkDetector_.Pt = trkDir.make<TH1F>("h_pt","transverse momentum p_{t};p_{t} [GeV];# tracks",100,0,pMax);
913  tkDetector_.PtErr = trkDir.make<TH1F>("h_ptErr","Error of p_{t};#sigma(p_{t}) [GeV];# tracks",100,0,1.6);
914  tkDetector_.PtSig = trkDir.make<TH1F>("h_ptSig","Significance of p_{t};p_{t}/#sigma(p_{t});# tracks",100,0,200);
915  tkDetector_.P = trkDir.make<TH1F>("h_p","momentum magnitude |p|;|p| [GeV];# tracks",100,0,pMax);
916  tkDetector_.MeanAngle = trkDir.make<TH1F>("h_meanAngle","mean angle on module <#phi_{module}>;<#phi_{module}> [ ^{o}];# tracks",100,-5,95);
917  tkDetector_.HitsGood = trkDir.make<TH1F>("h_hitsGood","# hits [good];# hits [good];# tracks",51,-1,50);
918 
919  tkDetector_.MeanAngleVsHits = trkDir.make<TH2F>("h2_meanAngleVsHits","<#phi_{module}> vs. # hits;# hits;<#phi_{module}> [ ^{o}]",51,-1,50,50,-5,95);
920  tkDetector_.HitsGoodVsHitsValid = trkDir.make<TH2F>("h2_hitsGoodVsHitsValid","# hits [good] vs. # hits [valid];# hits [valid];# hits [good]",51,-1,50,51,-1,50);
921  tkDetector_.HitsPixelVsEta = trkDir.make<TH2F>("h2_hitsPixelVsEta","# hits [pixel] vs. #eta;#eta;# hits [pixel]",60,-3,3,11,-1,10);
922  tkDetector_.HitsPixelVsTheta = trkDir.make<TH2F>("h2_hitsPixelVsTheta","# hits [pixel] vs. #theta;#theta;# hits [pixel]",100,-10,190,11,-1,10);
923  tkDetector_.HitsStripVsEta = trkDir.make<TH2F>("h2_hitsStripVsEta","# hits [strip] vs. #eta;#eta;# hits [strip]",60,-3,3,31,-1,40);
924  tkDetector_.HitsStripVsTheta = trkDir.make<TH2F>("h2_hitsStripVsTheta","# hits [strip] vs. #theta;#theta;# hits [strip]",100,-10,190,31,-1,40);
925  tkDetector_.PtVsEta = trkDir.make<TH2F>("h2_ptVsEta","p_{t} vs. #eta;#eta;p_{t} [GeV]",60,-3,3,100,0,pMax);
926  tkDetector_.PtVsTheta = trkDir.make<TH2F>("h2_ptVsTheta","p_{t} vs. #theta;#theta;p_{t} [GeV]",100,-10,190,100,0,pMax);
927 
928  tkDetector_.PMeanAngleVsHits = trkDir.make<TProfile>("p_meanAngleVsHits","<#phi_{module}> vs. # hits;# hits;<#phi_{module}> [ ^{o}]",51,-1,50);
929  tkDetector_.PHitsGoodVsHitsValid = trkDir.make<TProfile>("p_hitsGoodVsHitsValid","# hits [good] vs. # hits [valid];# hits [valid];# hits [good]",51,-1,50);
930  tkDetector_.PHitsPixelVsEta = trkDir.make<TProfile>("p_hitsPixelVsEta","# hits [pixel] vs. #eta;#eta;# hits [pixel]",60,-3,3);
931  tkDetector_.PHitsPixelVsTheta = trkDir.make<TProfile>("p_hitsPixelVsTheta","# hits [pixel] vs. #theta;#theta;# hits [pixel]",100,-10,190);
932  tkDetector_.PHitsStripVsEta = trkDir.make<TProfile>("p_hitsStripVsEta","# hits [strip] vs. #eta;#eta;# hits [strip]",60,-3,3);
933  tkDetector_.PHitsStripVsTheta = trkDir.make<TProfile>("p_hitsStripVsTheta","# hits [strip] vs. #theta;#theta;# hits [strip]",100,-10,190);
934  tkDetector_.PPtVsEta = trkDir.make<TProfile>("p_ptVsEta","p_{t} vs. #eta;#eta;p_{t} [GeV]",60,-3,3);
935  tkDetector_.PPtVsTheta = trkDir.make<TProfile>("p_ptVsTheta","p_{t} vs. #theta;#theta;p_{t} [GeV]",100,-10,190);
936 }
937 
938 
939 
940 // -----------------------------------------------------------------------------------------------------------
941 
942 
945 
946  const math::XYZPoint beamPoint(beamSpot.x0(),beamSpot.y0(), beamSpot.z0());
947  double d0BeamspotErr = std::sqrt( track.d0Error()*track.d0Error() + 0.5*beamSpot.BeamWidthX()*beamSpot.BeamWidthX() + 0.5*beamSpot.BeamWidthY()*beamSpot.BeamWidthY() );
948 
949  static TrajectoryStateCombiner tsoscomb;
950 
951  const reco::HitPattern& hitPattern(track.hitPattern());
952 
954 
955  trkParams.hitsSize = track.recHitsSize();
956  trkParams.hitsValid = track.found(); // invalid is every hit from every single module that expects a hit
957  trkParams.hitsInvalid = trkParams.hitsSize-trkParams.hitsValid;
958  trkParams.layersMissed = track.lost(); // lost hit means, that a crossed layer doesn't contain a hit (can be more than one invalid hit)
959  trkParams.hitsPixel = hitPattern.numberOfValidPixelHits();
960  trkParams.hitsStrip = hitPattern.numberOfValidStripHits();
961  trkParams.charge = track.charge();
962  trkParams.chi2 = track.chi2();
963  trkParams.ndof = track.ndof();
964  trkParams.norChi2 = trkParams.chi2/trkParams.ndof;
965  trkParams.prob = TMath::Prob(trkParams.chi2,trkParams.ndof);
966  trkParams.eta = track.eta();
967  trkParams.etaErr = track.etaError();
968  trkParams.theta = track.theta();
969  trkParams.phi = track.phi();
970  trkParams.phiErr = track.phiError();
971  trkParams.d0 = track.d0();
972  trkParams.d0Beamspot = -1.*track.dxy(beamPoint);
973  trkParams.d0BeamspotErr = d0BeamspotErr;
974  trkParams.dz = track.dz();
975  trkParams.dzErr = track.dzError();
976  trkParams.dzBeamspot = track.dz(beamPoint);
977  trkParams.p = track.p();
978  trkParams.pt = track.pt();
979  trkParams.ptErr = track.ptError();
980 
981  const std::vector<TrajectoryMeasurement>& v_meas = traj.measurements();
982 
983  int count2D(0); float meanPhiSensToNorm(0.F);
984  std::vector<TrajectoryMeasurement>::const_iterator i_meas;
985  for(i_meas = v_meas.begin(); i_meas != v_meas.end(); ++i_meas){
986  const TrajectoryMeasurement& meas = *i_meas;
987  const TransientTrackingRecHit& hit = *meas.recHit();
988  const TrackingRecHit& recHit = *hit.hit();
989  if(this->isHit2D(recHit))++count2D;
990 
992  const align::LocalVector mom(tsos.localDirection());
993  meanPhiSensToNorm += atan(fabs(sqrt(mom.x()*mom.x()+mom.y()*mom.y())/mom.z()));
994  }
995  meanPhiSensToNorm *= (1./static_cast<float>(trkParams.hitsSize));
996 
997  trkParams.hits2D = count2D;
998  trkParams.meanPhiSensToNorm = meanPhiSensToNorm;
999 
1000  if(parameterSet_.getParameter<bool>("applyTrackCuts")){
1001  trackCut_ = false;
1002  if(trkParams.hitsStrip<11 || trkParams.hits2D<2 || trkParams.hitsPixel<2 || //trkParams.hitsInvalid>2 ||
1003  trkParams.hitsStrip>35 || trkParams.hitsPixel>7 ||
1004  trkParams.norChi2>5. ||
1005  trkParams.pt<25. || trkParams.pt>150. ||
1006  std::abs(trkParams.d0Beamspot)>0.02 || std::abs(trkParams.dz)>15.)trackCut_ = true;
1007  }
1008  else{
1009  trackCut_ = false;
1010  }
1011 
1012  return trkParams;
1013 }
1014 
1015 
1016 
1019 
1020 
1022 
1023  static TrajectoryStateCombiner tsoscomb;
1024 
1025  const TrajectoryMeasurement& meas = i_meas;
1026  const TransientTrackingRecHit& hit = *meas.recHit();
1027  const TrackingRecHit& recHit = *hit.hit();
1028  const TrajectoryStateOnSurface& tsos = tsoscomb(meas.forwardPredictedState(),meas.backwardPredictedState());
1029 
1030  const DetId& detId(hit.geographicalId());
1031  const DetId::Detector& detector = detId.det(); if(detector != DetId::Tracker){hitParams.hitState = TrackStruct::notInTracker; return hitParams;}
1032  const uint32_t rawId(detId.rawId());
1033 
1034  for(std::map<unsigned int,TrackerSectorStruct>::const_iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
1035  for(std::vector<unsigned int>::const_iterator i_rawId = (*i_sector).second.v_rawId.begin();
1036  i_rawId != (*i_sector).second.v_rawId.end(); ++i_rawId){
1037  if(rawId==*i_rawId){hitParams.v_sector.push_back((*i_sector).first); break;}
1038  }
1039  }
1040 
1041  const align::LocalVector& mom(tsos.localDirection());
1042  int xMomentum(0), yMomentum(0), zMomentum(0);
1043  xMomentum = mom.x()>0. ? 1 : -1;
1044  yMomentum = mom.y()>0. ? 1 : -1;
1045  zMomentum = mom.z()>0. ? 1 : -1;
1046  float phiSensX = std::atan(std::fabs(mom.x()/mom.z()))*static_cast<float>(m_tkTreeVar_[rawId].vDirection); // check for orientation of E- and B- Field (thoughts for barrel)
1047  float phiSensY = std::atan(std::fabs(mom.y()/mom.z()))*static_cast<float>(m_tkTreeVar_[rawId].vDirection);
1048  hitParams.phiSens = std::atan(std::fabs(std::sqrt(mom.x()*mom.x()+mom.y()*mom.y())/mom.z()));
1049  hitParams.phiSensX = (xMomentum==zMomentum ? phiSensX : -phiSensX );
1050  hitParams.phiSensY = (yMomentum==zMomentum ? phiSensY : -phiSensY );
1051 
1052  if(!hit.isValid()){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1053 
1054 
1055  // Get local positions and errors of hit and track
1056 
1057  const LocalPoint& lPHit = hit.localPosition();
1058  const LocalPoint& lPTrk = tsos.localPosition();
1059 
1060  // use APE also for the hit error, while APE is automatically included in tsos error
1061  //
1062  // no need to add APE to hitError anymore by Ajay 27 Oct 2014
1063 
1064 
1065  const LocalError& errHitApe = hit.localPositionError(); // now sum of CPE+APE as said by MARCO?
1066  LocalError errorWithoutAPE;
1067 
1068  bool Pixel(false);
1069  bool Strip(false);
1070 
1072  Pixel = true;
1073  }
1074  else if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TOB ||
1075  m_tkTreeVar_[rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TEC){
1076  Strip = true;
1077  }
1078  else { edm::LogWarning("FillHitVariables")<<"cant identify wether hit is from pixel or strip";
1079  hitParams.hitState = TrackStruct::invalid; return hitParams;}
1080 
1081 
1082  if(!hit.detUnit()){hitParams.hitState = TrackStruct::invalid; return hitParams;} // is it a single physical module?
1083  const GeomDetUnit& detUnit = *hit.detUnit();
1084 
1085 
1086  if(Pixel){
1087  if(!dynamic_cast<const PixelTopology*>(&detUnit.type().topology())){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1088  const PixelGeomDetUnit * pixelDet = (const PixelGeomDetUnit*)(&detUnit);
1089  const LocalError& lape = pixelDet->localAlignmentError();
1090  if (lape.valid())
1091  { errorWithoutAPE = LocalError(errHitApe.xx() -lape.xx(), errHitApe.xy()- lape.xy(), errHitApe.yy()-lape.yy());
1092 
1093  }
1094  }
1095  if(Strip){
1096  if(!dynamic_cast<const StripTopology*>(&detUnit.type().topology())){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1097  const StripGeomDetUnit * stripDet = (const StripGeomDetUnit*)(&detUnit);
1098  const LocalError& lape = stripDet->localAlignmentError();
1099  if (lape.valid())
1100  { errorWithoutAPE = LocalError(errHitApe.xx() -lape.xx(), errHitApe.xy()- lape.xy(), errHitApe.yy()-lape.yy());
1101  }
1102  }
1103 
1104 
1105  const LocalError& errHitWoApe = errorWithoutAPE;
1106  const LocalError& errTrk = tsos.localError().positionError();
1107 
1108  const StatePositionAndError2 positionAndError2Hit = this->positionAndError2(lPHit, errHitApe, hit);
1109  const StatePositionAndError2 positionAndError2HitWoApe = this->positionAndError2(lPHit, errHitWoApe, hit);
1110  std::cout<<"errHitWoApe " <<errHitWoApe<<"errHitApe "<<errHitApe<<std::endl;
1111 
1112  const StatePositionAndError2 positionAndError2Trk = this->positionAndError2(lPTrk, errTrk, hit);
1113 
1114  const TrackStruct::HitState& stateHit(positionAndError2Hit.first);
1115  const TrackStruct::HitState& stateHitWoApe(positionAndError2HitWoApe.first);
1116  const TrackStruct::HitState& stateTrk(positionAndError2Trk.first);
1117 
1118  if(stateHit==TrackStruct::invalid || stateHitWoApe==TrackStruct::invalid || stateTrk==TrackStruct::invalid){
1119  hitParams.hitState = TrackStruct::invalid;
1120  return hitParams;
1121  }
1122  else if(stateHit==TrackStruct::negativeError || stateHitWoApe==TrackStruct::negativeError || stateTrk==TrackStruct::negativeError){
1123  ++counter1;
1124  // Do not print error message by default
1125  //std::stringstream ss_error;
1126  //ss_error<<"Upper values belong to: ";
1127  //if(stateHit==TrackStruct::negativeError)ss_error<<"Hit without APE, ";
1128  //if(stateHitWoApe==TrackStruct::negativeError)ss_error<<"Hit with APE, ";
1129  //if(stateTrk==TrackStruct::negativeError)ss_error<<"Track,";
1130  //edm::LogError("Negative error Value")<<"@SUB=ApeEstimator::fillHitVariables"<<ss_error.str();
1132  return hitParams;
1133  }
1134 
1135 
1136  // Calculate residuals
1137 
1138  const float xHit = positionAndError2Hit.second.posX;
1139  const float xTrk = positionAndError2Trk.second.posX;
1140  const float yHit = positionAndError2Hit.second.posY;
1141  const float yTrk = positionAndError2Trk.second.posY;
1142 
1143  const float errXHit2(positionAndError2Hit.second.errX2);
1144  const float errXHitWoApe2(positionAndError2HitWoApe.second.errX2);
1145  const float errXTrk2(positionAndError2Trk.second.errX2);
1146  const float errYHit2(positionAndError2Hit.second.errY2);
1147  const float errYHitWoApe2(positionAndError2HitWoApe.second.errY2);
1148  const float errYTrk2(positionAndError2Trk.second.errY2);
1149 
1150  const float errXHit = std::sqrt(positionAndError2Hit.second.errX2);
1151  const float errXHitWoApe = std::sqrt(positionAndError2HitWoApe.second.errX2);
1152  const float errXTrk = std::sqrt(positionAndError2Trk.second.errX2);
1153  const float errYHit = std::sqrt(positionAndError2Hit.second.errY2);
1154  const float errYHitWoApe = std::sqrt(positionAndError2HitWoApe.second.errY2);
1155  const float errYTrk = std::sqrt(positionAndError2Trk.second.errY2);
1156 
1157  const float resX = xTrk - xHit;
1158  const float resY = yTrk - yHit;
1159 
1160  const float errX = std::sqrt(errXHit2 + errXTrk2);
1161  const float errXWoApe2 = errXHitWoApe2 + errXTrk2;
1162  const float errXWoApe = std::sqrt(errXWoApe2);
1163  const float errY = std::sqrt(errYHit2 + errYTrk2);
1164  const float errYWoApe2 = errYHitWoApe2 + errYTrk2;
1165  const float errYWoApe = std::sqrt(errYWoApe2);
1166 
1167  const float norResX = resX/errX;
1168  const float norResY = resY/errY;
1169 
1170 
1171  // Take global orientation into account for residuals (sign is not important for errors)
1172 
1173  float resXprime(999.F), resYprime(999.F), norResXprime(999.F), norResYprime(999.F);
1174  if(m_tkTreeVar_[rawId].uDirection == 1){resXprime = resX; norResXprime = norResX;}
1175  else if(m_tkTreeVar_[rawId].uDirection == -1){resXprime = -resX; norResXprime = -norResX;}
1176  else {edm::LogError("FillHitVariables")<<"Incorrect value of uDirection, which gives global module orientation"; hitParams.hitState = TrackStruct::invalid; return hitParams;}
1177  if(m_tkTreeVar_[rawId].vDirection == 1){resYprime = resY; norResYprime = norResY;}
1178  else if(m_tkTreeVar_[rawId].vDirection == -1){resYprime = -resY; norResYprime = -norResY;}
1179  else {edm::LogError("FillHitVariables")<<"Incorrect value of vDirection, which gives global module orientation"; hitParams.hitState = TrackStruct::invalid; return hitParams;}
1180 
1181  hitParams.xHit = xHit;
1182  hitParams.xTrk = xTrk;
1183 
1184  hitParams.errXHit = errXHit;
1185  hitParams.errXHitWoApe = errXHitWoApe;
1186  hitParams.errXTrk = errXTrk;
1187 
1188  hitParams.errX2 = errX*errX;
1189  hitParams.errX = errX;
1190  hitParams.errXWoApe = errXWoApe;
1191 
1192  hitParams.resX = resXprime;
1193  hitParams.norResX = norResXprime;
1194 
1195  const float norResX2(norResXprime*norResXprime);
1196  hitParams.probX = TMath::Prob(norResX2,1);
1197 
1198 
1199  hitParams.yHit = yHit;
1200  hitParams.yTrk = yTrk;
1201 
1202  hitParams.errYHit = errYHit;
1203  hitParams.errYHitWoApe = errYHitWoApe;
1204  hitParams.errYTrk = errYTrk;
1205 
1206  hitParams.errY2 = errY*errY;
1207  hitParams.errY = errY;
1208  hitParams.errYWoApe = errYWoApe;
1209 
1210  hitParams.resY = resYprime;
1211  hitParams.norResY = norResYprime;
1212 
1213  const float norResY2(norResYprime*norResYprime);
1214  hitParams.probY = TMath::Prob(norResY2,1);
1215 
1216 
1217  // Cluster parameters
1218 
1220  const SiPixelRecHit& pixelHit = dynamic_cast<const SiPixelRecHit&>(recHit);
1221  const SiPixelCluster& pixelCluster = *pixelHit.cluster();
1222 
1223  hitParams.chargePixel = pixelCluster.charge();
1224  hitParams.widthX = pixelCluster.sizeX();
1225  hitParams.baryStripX = pixelCluster.x();
1226  hitParams.widthY = pixelCluster.sizeY();
1227  hitParams.baryStripY = pixelCluster.y();
1228 
1229  hitParams.clusterProbabilityXY = pixelHit.clusterProbability(0);
1230  hitParams.clusterProbabilityQ = pixelHit.clusterProbability(2);
1231  hitParams.clusterProbabilityXYQ = pixelHit.clusterProbability(1);
1232  hitParams.logClusterProbability = std::log10(hitParams.clusterProbabilityXY);
1233 
1234  hitParams.isOnEdge = pixelHit.isOnEdge();
1235  hitParams.hasBadPixels = pixelHit.hasBadPixels();
1236  hitParams.spansTwoRoc = pixelHit.spansTwoROCs();
1237  hitParams.qBin = pixelHit.qBin();
1238 
1239  hitParams.isPixelHit = true;
1240  }
1241  else if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TOB ||
1242  m_tkTreeVar_[rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TEC){
1243  if(!(dynamic_cast<const SiStripRecHit2D*>(&recHit) || dynamic_cast<const SiStripRecHit1D*>(&recHit))){
1244  edm::LogError("FillHitVariables")<<"RecHit in Strip is 'Matched' or 'Projected', but here all should be monohits per module";
1245  hitParams.hitState = TrackStruct::invalid; return hitParams;
1246  }
1247  const SiStripCluster* clusterPtr(0);
1248  if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TOB){
1249  if(dynamic_cast<const SiStripRecHit1D*>(&recHit)){
1250  const SiStripRecHit1D& stripHit = dynamic_cast<const SiStripRecHit1D&>(recHit);
1251  clusterPtr = &(*stripHit.cluster());
1252  }
1253  else if(dynamic_cast<const SiStripRecHit2D*>(&recHit)){
1254  edm::LogWarning("FillHitVariables")<<"Data has TIB/TOB hits as SiStripRecHit2D and not 1D. Probably data is processed with CMSSW<34X. Nevertheless everything should work fine";
1255  const SiStripRecHit2D& stripHit = dynamic_cast<const SiStripRecHit2D&>(recHit);
1256  clusterPtr = &(*stripHit.cluster());
1257  }
1258  }
1259  else if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TEC){
1260  const SiStripRecHit2D& stripHit = dynamic_cast<const SiStripRecHit2D&>(recHit);
1261  clusterPtr = &(*stripHit.cluster());
1262  }
1263  if(!clusterPtr){
1264  edm::LogError("FillHitVariables")<<"Pointer to cluster not valid!!! This should never happen...";
1265  hitParams.hitState = TrackStruct::invalid; return hitParams;
1266  }
1267  const SiStripCluster& stripCluster(*clusterPtr);
1268 
1269  const SiStripClusterInfo clusterInfo =SiStripClusterInfo(stripCluster,iSetup,rawId,std::string(""));
1270 
1271  const std::vector<uint8_t>::const_iterator stripChargeL(clusterInfo.stripCharges().begin());
1272  const std::vector<uint8_t>::const_iterator stripChargeR(--(clusterInfo.stripCharges().end()));
1273  const std::pair<uint16_t, uint16_t> stripChargeLR = std::make_pair(*stripChargeL,*stripChargeR);
1274 
1275  hitParams.chargeStrip = clusterInfo.charge();
1276  hitParams.widthX = clusterInfo.width();
1277  hitParams.baryStripX = clusterInfo.baryStrip() +1.;
1278  hitParams.isModuleUsable = clusterInfo.IsModuleUsable();
1279  hitParams.maxStrip = clusterInfo.maxStrip() +1;
1280  hitParams.maxStripInv = m_tkTreeVar_[rawId].nStrips - hitParams.maxStrip +1;
1281  hitParams.maxCharge = clusterInfo.maxCharge();
1282  hitParams.maxIndex = clusterInfo.maxIndex();
1283  hitParams.chargeOnEdges = static_cast<float>(stripChargeLR.first + stripChargeLR.second)/static_cast<float>(hitParams.chargeStrip);
1284  hitParams.chargeAsymmetry = static_cast<float>(stripChargeLR.first - stripChargeLR.second)/static_cast<float>(stripChargeLR.first + stripChargeLR.second);
1285  hitParams.chargeLRplus = static_cast<float>(clusterInfo.chargeLR().first + clusterInfo.chargeLR().second)/static_cast<float>(hitParams.chargeStrip);
1286  hitParams.chargeLRminus = static_cast<float>(clusterInfo.chargeLR().first - clusterInfo.chargeLR().second)/static_cast<float>(hitParams.chargeStrip);
1287  hitParams.sOverN = clusterInfo.signalOverNoise();
1288 
1289 
1290  // Calculate projection length corrected by drift
1291  if(!hit.detUnit()){hitParams.hitState = TrackStruct::invalid; return hitParams;} // is it a single physical module?
1292  const GeomDetUnit& detUnit = *hit.detUnit();
1293  if(!dynamic_cast<const StripTopology*>(&detUnit.type().topology())){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1294 
1295 
1296  edm::ESHandle<MagneticField> magFieldHandle;
1297  iSetup.get<IdealMagneticFieldRecord>().get(magFieldHandle);
1298 
1299  edm::ESHandle<SiStripLorentzAngle> lorentzAngleHandle;
1300  iSetup.get<SiStripLorentzAngleDepRcd>().get(lorentzAngleHandle); //MODIFIED BY LOIC QUERTENMONT
1301 
1302 
1303  const StripGeomDetUnit * stripDet = (const StripGeomDetUnit*)(&detUnit);
1304  const MagneticField * magField(magFieldHandle.product());
1305  LocalVector bField = (stripDet->surface()).toLocal(magField->inTesla(stripDet->surface().position()));
1306  const SiStripLorentzAngle * lorentzAngle(lorentzAngleHandle.product());
1307  float tanLorentzAnglePerTesla = lorentzAngle->getLorentzAngle(stripDet->geographicalId().rawId());
1308 
1309  float dirX = -tanLorentzAnglePerTesla * bField.y();
1310  float dirY = tanLorentzAnglePerTesla * bField.x();
1311  float dirZ = 1.; // E field always in z direction
1312  LocalVector driftDirection(dirX,dirY,dirZ);
1313 
1314 
1315  const Bounds& bounds = stripDet->specificSurface().bounds();
1316  float maxLength = std::sqrt(std::pow(bounds.length(),2)+std::pow(bounds.width(),2));
1317  float thickness = bounds.thickness();
1318 
1319 
1320 
1321  const StripTopology& topol = dynamic_cast<const StripTopology&>(detUnit.type().topology());
1322  LocalVector momentumDir(tsos.localDirection());
1323  LocalPoint momentumPos(tsos.localPosition());
1324  LocalVector scaledMomentumDir(momentumDir);
1325  if(momentumDir.z() > 0.)scaledMomentumDir *= std::fabs(thickness/momentumDir.z());
1326  else if(momentumDir.z() < 0.)scaledMomentumDir *= -std::fabs(thickness/momentumDir.z());
1327  else scaledMomentumDir *= maxLength/momentumDir.mag();
1328 
1329  float projEdge1 = topol.measurementPosition(momentumPos - 0.5*scaledMomentumDir).x();
1330  if(projEdge1 < 0.)projEdge1 = 0.;
1331  else if(projEdge1 > m_tkTreeVar_[rawId].nStrips)projEdge1 = m_tkTreeVar_[rawId].nStrips;
1332  float projEdge2 = topol.measurementPosition(momentumPos + 0.5*scaledMomentumDir).x();
1333  if(projEdge2 < 0.)projEdge1 = 0.;
1334  else if(projEdge2 > m_tkTreeVar_[rawId].nStrips)projEdge1 = m_tkTreeVar_[rawId].nStrips;
1335 
1336 
1337  float coveredStrips = std::fabs(projEdge2 - projEdge1);
1338 
1339  hitParams.projWidth = coveredStrips;
1340 
1341 
1342  }
1343  else{
1344  edm::LogError("FillHitVariables")<<"Incorrect subdetector ID, hit not associated to tracker";
1345  hitParams.hitState = TrackStruct::notInTracker; return hitParams;
1346  }
1347 
1348 
1349  if(!hitParams.isModuleUsable){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1350 
1351  if(0==hitParams.v_sector.size()){hitParams.hitState = TrackStruct::notAssignedToSectors; return hitParams;}
1352 
1353  return hitParams;
1354 //}
1355 }
1356 
1357 
1358 
1362 
1363  const DetId& detId(hit.geographicalId());
1364  const uint32_t& rawId(detId.rawId());
1365  const UInt_t& subdetId(m_tkTreeVar_[rawId].subdetId);
1366 
1367  if(localError.xx()<0. || localError.yy()<0.){
1368  // Do not print error message by default
1369  //edm::LogError("Negative error Value")<<"@SUB=ApeEstimator::fillHitVariables"
1370  // <<"One of the squared error methods gives negative result\n"
1371  // <<"\tSubdetector\tlocalError.xx()\tlocalError.yy()\n"
1372  // <<"\t"<<subdetId<<"\t\t"<<localError.xx()<<"\t"<<localError.yy();
1373  vPE2.first = TrackStruct::negativeError;
1374  return vPE2;
1375  }
1376 
1378  subdetId==StripSubdetector::TIB || subdetId==StripSubdetector::TOB){
1379  // Cartesian coordinates
1380  vPE2 = std::make_pair(TrackStruct::ok, this->rectangularPositionAndError2(localPoint, localError));
1381  }
1382  else if(subdetId==StripSubdetector::TID || subdetId==StripSubdetector::TEC){
1383  // Local x in radial coordinates
1384  if(!hit.detUnit())return vPE2; // is it a single physical module?
1385  const GeomDetUnit& detUnit = *hit.detUnit();
1386 
1387  if(!dynamic_cast<const RadialStripTopology*>(&detUnit.type().topology()))return vPE2;
1388  const RadialStripTopology& topol = dynamic_cast<const RadialStripTopology&>(detUnit.type().topology());
1389 
1390  MeasurementError measError = topol.measurementError(localPoint,localError);
1391  if(measError.uu()<0. || measError.vv()<0.){
1392  // Do not print error message by default
1393  //edm::LogError("Negative error Value")<<"@SUB=ApeEstimator::fillHitVariables"
1394  // <<"One of the squared error methods gives negative result\n"
1395  // <<"\tmeasError.uu()\tmeasError.vv()\n"
1396  // <<"\t"<<measError.uu()<<"\t"<<measError.vv()
1397  // <<"\n\nOriginalValues:\n"
1398  // <<localPoint.x()<<" "<<localPoint.y()<<"\n"
1399  // <<localError.xx()<<" "<<localError.yy()<<"\n"
1400  // <<"Subdet: "<<subdetId;
1401  vPE2.first = TrackStruct::negativeError;
1402  return vPE2;
1403  }
1404  vPE2 = std::make_pair(TrackStruct::ok, this->radialPositionAndError2(localPoint, localError, topol));
1405  }
1406  else{
1407  edm::LogError("FillHitVariables")<<"Incorrect subdetector ID, hit not associated to tracker";
1408  }
1409 
1410  return vPE2;
1411 }
1412 
1413 
1414 
1417 
1418  const float x(lP.x());
1419  const float y(lP.y());
1420  const float errX2(lE.xx());
1421  const float errY2(lE.yy());
1422 
1423  return PositionAndError2(x, y, errX2, errY2);
1424 }
1425 
1426 
1427 
1430 
1431  MeasurementPoint measPos = topol.measurementPosition(lP);
1432  MeasurementError measErr = topol.measurementError(lP,lE);
1433 
1434  const float r_0 = topol.originToIntersection();
1435  const float stripLength = topol.localStripLength(lP);
1436  const float phi = topol.stripAngle(measPos.x());
1437 
1438  float x(-999.F);
1439  float y(-999.F);
1440  float errX2(-999.F);
1441  float errY2(-999.F);
1442 
1443  x = phi*r_0;
1444  // Cartesian y
1445  y = lP.y();
1446  // Trapezoidal y (symmetric around 0; length along strip)
1447  y = measPos.y()*stripLength;
1448  // Radial y (not symmetric around 0; radial distance with minimum at middle strip at lower edge [0, yMax])
1449  const float l_0 = r_0 - topol.detHeight()/2;
1450  const float cosPhi(std::cos(phi));
1451  y = measPos.y()*stripLength - 0.5*stripLength + l_0*(1./cosPhi - 1.);
1452 
1453  const float angularWidth2(topol.angularWidth()*topol.angularWidth());
1454  const float errPhi2(measErr.uu()*angularWidth2);
1455 
1456  errX2 = errPhi2*r_0*r_0;
1457  // Cartesian y
1458  errY2 = lE.yy();
1459  // Trapezoidal y (symmetric around 0, length along strip)
1460  errY2 = measErr.vv()*stripLength*stripLength;
1461  // Radial y (not symmetric around 0, real radial distance from intersection point)
1462  const float cosPhi4(std::pow(cosPhi,4)), sinPhi2(std::sin(phi)*std::sin(phi));
1463  const float helpSummand = l_0*l_0*(sinPhi2/cosPhi4*errPhi2);
1464  errY2 = measErr.vv()*stripLength*stripLength + helpSummand;
1465 
1466  return PositionAndError2(x, y, errX2, errY2);
1467 }
1468 
1469 
1470 
1471 
1472 
1473 // -----------------------------------------------------------------------------------------------------------
1474 
1475 void
1477  this->setHitSelectionMapUInt("width");
1478  this->setHitSelectionMap("widthProj");
1479  this->setHitSelectionMap("widthDiff");
1480  this->setHitSelectionMap("charge");
1481  this->setHitSelectionMapUInt("edgeStrips");
1482  this->setHitSelectionMap("maxCharge");
1483  this->setHitSelectionMapUInt("maxIndex");
1484  this->setHitSelectionMap("chargeOnEdges");
1485  this->setHitSelectionMap("chargeAsymmetry");
1486  this->setHitSelectionMap("chargeLRplus");
1487  this->setHitSelectionMap("chargeLRminus");
1488  this->setHitSelectionMap("sOverN");
1489 
1490  this->setHitSelectionMap("chargePixel");
1491  this->setHitSelectionMapUInt("widthX");
1492  this->setHitSelectionMapUInt("widthY");
1493 
1494 
1495  this->setHitSelectionMap("baryStripX");
1496  this->setHitSelectionMap("baryStripY");
1497  this->setHitSelectionMap("clusterProbabilityXY");
1498  this->setHitSelectionMap("clusterProbabilityQ");
1499  this->setHitSelectionMap("clusterProbabilityXYQ");
1500  this->setHitSelectionMap("logClusterProbability");
1501  this->setHitSelectionMapUInt("isOnEdge");
1502  this->setHitSelectionMapUInt("hasBadPixels");
1503  this->setHitSelectionMapUInt("spansTwoRoc");
1504  this->setHitSelectionMapUInt("qBin");
1505 
1506 
1507 
1508  this->setHitSelectionMap("phiSens");
1509  this->setHitSelectionMap("phiSensX");
1510  this->setHitSelectionMap("phiSensY");
1511  this->setHitSelectionMap("resX");
1512  this->setHitSelectionMap("norResX");
1513  this->setHitSelectionMap("probX");
1514  this->setHitSelectionMap("errXHit");
1515  this->setHitSelectionMap("errXTrk");
1516  this->setHitSelectionMap("errX");
1517  this->setHitSelectionMap("errX2");
1518 
1519  this->setHitSelectionMap("resY");
1520  this->setHitSelectionMap("norResY");
1521  this->setHitSelectionMap("probY");
1522  this->setHitSelectionMap("errYHit");
1523  this->setHitSelectionMap("errYTrk");
1524  this->setHitSelectionMap("errY");
1525  this->setHitSelectionMap("errY2");
1526 
1527  edm::LogInfo("HitSelector")<<"applying hit cuts ...";
1528  bool emptyMap(true);
1529  for(std::map<std::string, std::vector<double> >::iterator i_hitSelection = m_hitSelection_.begin(); i_hitSelection != m_hitSelection_.end(); ++i_hitSelection){
1530  if(0 < (*i_hitSelection).second.size()){
1531  int entry(1); double intervalBegin(999.);
1532  for(std::vector<double>::iterator i_hitInterval = (*i_hitSelection).second.begin(); i_hitInterval != (*i_hitSelection).second.end(); ++entry){
1533  if(entry%2==1){intervalBegin = *i_hitInterval; ++i_hitInterval;}
1534  else{
1535  if(intervalBegin > *i_hitInterval){
1536  edm::LogError("HitSelector")<<"INVALID Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<" > "<<(*i_hitInterval)
1537  <<"\n ... delete Selection for "<<(*i_hitSelection).first;
1538  (*i_hitSelection).second.clear(); i_hitInterval = (*i_hitSelection).second.begin(); //emptyMap = true; i_hitSelection = m_hitSelection_.begin();
1539  }else{
1540  edm::LogInfo("HitSelector")<<"Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<", "<<(*i_hitInterval);
1541  ++i_hitInterval;
1542  }
1543  }
1544  }
1545  if(0 < (*i_hitSelection).second.size())emptyMap = false;
1546  }
1547  }
1548 
1549 
1550  bool emptyMapUInt(true);
1551  for(std::map<std::string, std::vector<unsigned int> >::iterator i_hitSelection = m_hitSelectionUInt_.begin(); i_hitSelection != m_hitSelectionUInt_.end(); ++i_hitSelection){
1552  if(0 < (*i_hitSelection).second.size()){
1553  int entry(1); unsigned int intervalBegin(999);
1554  for(std::vector<unsigned int>::iterator i_hitInterval = (*i_hitSelection).second.begin(); i_hitInterval != (*i_hitSelection).second.end(); ++entry){
1555  if(entry%2==1){intervalBegin = *i_hitInterval; ++i_hitInterval;}
1556  else{
1557  if(intervalBegin > *i_hitInterval){
1558  edm::LogError("HitSelector")<<"INVALID Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<" > "<<(*i_hitInterval)
1559  <<"\n ... delete Selection for "<<(*i_hitSelection).first;
1560  (*i_hitSelection).second.clear(); i_hitInterval = (*i_hitSelection).second.begin(); //emptyMap = true; i_hitSelection = m_hitSelection_.begin();
1561  }else{
1562  edm::LogInfo("HitSelector")<<"Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<", "<<(*i_hitInterval);
1563  ++i_hitInterval;
1564  }
1565  }
1566  }
1567  if(0 < (*i_hitSelection).second.size())emptyMapUInt = false;
1568  }
1569  }
1570 
1571  if(emptyMap && emptyMapUInt){
1572  m_hitSelection_.clear();
1573  m_hitSelectionUInt_.clear();
1574  edm::LogInfo("HitSelector")<<"NO hit cuts applied";
1575  }
1576  return;
1577 }
1578 
1579 
1580 
1581 void
1584  std::vector<double> v_cutVariable(parSet.getParameter<std::vector<double> >(cutVariable));
1585  if(v_cutVariable.size()%2==1){
1586  edm::LogError("HitSelector")<<"Invalid Hit Selection for "<<cutVariable<<": need even number of arguments (intervals)"
1587  <<"\n ... delete Selection for "<<cutVariable;
1588  v_cutVariable.clear();
1589  m_hitSelection_[cutVariable] = v_cutVariable;
1590  return;
1591  }
1592  m_hitSelection_[cutVariable] = v_cutVariable;
1593  return;
1594 }
1595 
1596 
1597 void
1600  std::vector<unsigned int> v_cutVariable(parSet.getParameter<std::vector<unsigned int> >(cutVariable));
1601  if(v_cutVariable.size()%2==1){
1602  edm::LogError("HitSelector")<<"Invalid Hit Selection for "<<cutVariable<<": need even number of arguments (intervals)"
1603  <<"\n ... delete Selection for "<<cutVariable;
1604  v_cutVariable.clear();
1605  m_hitSelectionUInt_[cutVariable] = v_cutVariable;
1606  return;
1607  }
1608  m_hitSelectionUInt_[cutVariable] = v_cutVariable;
1609  return;
1610 }
1611 
1612 
1613 
1614 // -----------------------------------------------------------------------------------------------------------
1615 
1616 bool
1618  if(hitParams.hitState == TrackStruct::notInTracker)return false;
1619  if(hitParams.hitState == TrackStruct::invalid || hitParams.hitState == TrackStruct::negativeError)return false;
1620 
1621  bool isGoodHit(true);
1622  bool isGoodHitX(true);
1623  bool isGoodHitY(true);
1624 
1625  for(std::map<std::string, std::vector<double> >::const_iterator i_hitSelection = m_hitSelection_.begin(); i_hitSelection != m_hitSelection_.end(); ++i_hitSelection){
1626  const std::string& hitSelection((*i_hitSelection).first);
1627  const std::vector<double>& v_hitSelection((*i_hitSelection).second);
1628  if(v_hitSelection.size()==0)continue;
1629 
1630  // For pixel and strip sectors in common
1631  if (hitSelection == "phiSens") {if(!this->inDoubleInterval(v_hitSelection, hitParams.phiSens))isGoodHit = false;}
1632  else if(hitSelection == "phiSensX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.phiSensX))isGoodHit = false;}
1633  else if(hitSelection == "phiSensY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.phiSensY))isGoodHit = false;}
1634 
1635  else if(hitSelection == "resX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.resX))isGoodHitX = false;}
1636  else if(hitSelection == "norResX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.norResX))isGoodHitX = false;}
1637  else if(hitSelection == "probX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.probX))isGoodHitX = false;}
1638  else if(hitSelection == "errXHit") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errXHit))isGoodHitX = false;}
1639  else if(hitSelection == "errXTrk") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errXTrk))isGoodHitX = false;}
1640  else if(hitSelection == "errX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errX))isGoodHitX = false;}
1641  else if(hitSelection == "errX2") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errX2))isGoodHitX = false;}
1642 
1643  // For pixel only
1644  if(hitParams.isPixelHit){
1645  if (hitSelection == "chargePixel") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargePixel))isGoodHit = false;}
1646  else if(hitSelection == "clusterProbabilityXY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.clusterProbabilityXY))isGoodHit = false;}
1647  else if(hitSelection == "clusterProbabilityQ") {if(!this->inDoubleInterval(v_hitSelection, hitParams.clusterProbabilityQ))isGoodHit = false;}
1648  else if(hitSelection == "clusterProbabilityXYQ"){if(!this->inDoubleInterval(v_hitSelection, hitParams.clusterProbabilityXYQ))isGoodHit = false;}
1649  else if(hitSelection == "logClusterProbability"){if(!this->inDoubleInterval(v_hitSelection, hitParams.logClusterProbability))isGoodHit = false;}
1650 
1651  else if(hitSelection == "baryStripX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.baryStripX))isGoodHitX = false;}
1652  else if(hitSelection == "baryStripY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.baryStripY))isGoodHitY = false;}
1653 
1654 
1655 
1656  else if(hitSelection == "resY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.resY))isGoodHitY = false;}
1657  else if(hitSelection == "norResY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.norResY))isGoodHitY = false;}
1658  else if(hitSelection == "probY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.probY))isGoodHitY = false;}
1659  else if(hitSelection == "errYHit") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errYHit))isGoodHitY = false;}
1660  else if(hitSelection == "errYTrk") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errYTrk))isGoodHitY = false;}
1661  else if(hitSelection == "errY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errY))isGoodHitY = false;}
1662  else if(hitSelection == "errY2") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errY2))isGoodHitY = false;}
1663  }
1664 
1665  // For strip only
1666  else{
1667  if (hitSelection == "widthProj") {if(!this->inDoubleInterval(v_hitSelection, hitParams.projWidth))isGoodHit = false;}
1668  else if(hitSelection == "widthDiff") {if(!this->inDoubleInterval(v_hitSelection, hitParams.projWidth-static_cast<float>(hitParams.widthX)))isGoodHit = false;}
1669  else if(hitSelection == "charge") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeStrip))isGoodHit = false;}
1670  else if(hitSelection == "maxCharge") {if(!this->inDoubleInterval(v_hitSelection, hitParams.maxCharge))isGoodHit = false;}
1671  else if(hitSelection == "chargeOnEdges") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeOnEdges))isGoodHit = false;}
1672  else if(hitSelection == "chargeAsymmetry"){if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeAsymmetry))isGoodHit = false;}
1673  else if(hitSelection == "chargeLRplus") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeLRplus))isGoodHit = false;}
1674  else if(hitSelection == "chargeLRminus") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeLRminus))isGoodHit = false;}
1675  else if(hitSelection == "sOverN") {if(!this->inDoubleInterval(v_hitSelection, hitParams.sOverN))isGoodHit = false;}
1676  }
1677  }
1678 
1679  for(std::map<std::string, std::vector<unsigned int> >::const_iterator i_hitSelection = m_hitSelectionUInt_.begin(); i_hitSelection != m_hitSelectionUInt_.end(); ++i_hitSelection){
1680  const std::string& hitSelection((*i_hitSelection).first);
1681  const std::vector<unsigned int>& v_hitSelection((*i_hitSelection).second);
1682  if(v_hitSelection.size()==0)continue;
1683 
1684  // For pixel and strip sectors in common
1685 
1686  // For pixel only
1687  if(hitParams.isPixelHit){
1688  if(hitSelection == "isOnEdge") {if(!this->inUintInterval(v_hitSelection, hitParams.isOnEdge))isGoodHit = false;}
1689  else if(hitSelection == "hasBadPixels"){if(!this->inUintInterval(v_hitSelection, hitParams.hasBadPixels))isGoodHit = false;}
1690  else if(hitSelection == "spansTwoRoc") {if(!this->inUintInterval(v_hitSelection, hitParams.spansTwoRoc))isGoodHit = false;}
1691  else if(hitSelection == "qBin") {if(!this->inUintInterval(v_hitSelection, hitParams.qBin))isGoodHit = false;}
1692 
1693  else if(hitSelection == "widthX") {if(!this->inUintInterval(v_hitSelection, hitParams.widthX))isGoodHitX = false;}
1694  else if(hitSelection == "widthY") {if(!this->inUintInterval(v_hitSelection, hitParams.widthY))isGoodHitY = false;}
1695  }
1696 
1697  // For strip only
1698  else{
1699  if (hitSelection == "width") {if(!this->inUintInterval(v_hitSelection, hitParams.widthX))isGoodHit = false;}
1700  else if(hitSelection == "edgeStrips"){if(!this->inUintInterval(v_hitSelection, hitParams.maxStrip, hitParams.maxStripInv))isGoodHit = false;}
1701  else if(hitSelection == "maxIndex") {if(!this->inUintInterval(v_hitSelection, hitParams.maxIndex))isGoodHit = false;}
1702  }
1703  }
1704 
1705  if(hitParams.isPixelHit){
1706  hitParams.goodXMeasurement = isGoodHit && isGoodHitX;
1707  hitParams.goodYMeasurement = isGoodHit && isGoodHitY;
1708  }
1709  else{
1710  hitParams.goodXMeasurement = isGoodHit && isGoodHitX;
1711  hitParams.goodYMeasurement = false;
1712  }
1713 
1714  if(!hitParams.goodXMeasurement && !hitParams.goodYMeasurement)return false;
1715  else return true;
1716 }
1717 
1718 
1719 bool
1720 ApeEstimator::inDoubleInterval(const std::vector<double>& v_hitSelection, const float variable)const{
1721  int entry(1); double intervalBegin(999.);
1722  bool isSelected(false);
1723  for(std::vector<double>::const_iterator i_hitInterval = v_hitSelection.begin(); i_hitInterval != v_hitSelection.end(); ++i_hitInterval, ++entry){
1724  if(entry%2==1)intervalBegin = *i_hitInterval;
1725  else if(variable>=intervalBegin && variable<*i_hitInterval)isSelected = true;
1726  }
1727  return isSelected;
1728 }
1729 
1730 
1731 bool
1732 ApeEstimator::inUintInterval(const std::vector<unsigned int>& v_hitSelection, const unsigned int variable, const unsigned int variable2)const{
1733  int entry(1); unsigned int intervalBegin(999);
1734  bool isSelected(false);
1735  for(std::vector<unsigned int>::const_iterator i_hitInterval = v_hitSelection.begin(); i_hitInterval != v_hitSelection.end(); ++i_hitInterval, ++entry){
1736  if(entry%2==1)intervalBegin = *i_hitInterval;
1737  else if(variable>=intervalBegin && variable<=*i_hitInterval){
1738  if(variable2==999 || (variable2>=intervalBegin && variable2<=*i_hitInterval))isSelected = true;
1739  }
1740  }
1741  return isSelected;
1742 }
1743 
1744 
1745 
1746 // -----------------------------------------------------------------------------------------------------------
1747 
1748 
1749 void
1751 
1752  unsigned int goodHitsPerTrack(trackStruct.v_hitParams.size());
1753  tkDetector_.HitsGood->Fill(goodHitsPerTrack);
1754  tkDetector_.HitsGoodVsHitsValid->Fill(trackStruct.trkParams.hitsValid,goodHitsPerTrack);
1755  tkDetector_.PHitsGoodVsHitsValid->Fill(trackStruct.trkParams.hitsValid,goodHitsPerTrack);
1756 
1757  if(parameterSet_.getParameter<bool>("applyTrackCuts")){
1758  // which tracks to take? need min. nr. of selected hits?
1759  if(goodHitsPerTrack < minGoodHitsPerTrack_)return;
1760  }
1761 
1762  tkDetector_.HitsSize ->Fill(trackStruct.trkParams.hitsSize);
1763  tkDetector_.HitsValid ->Fill(trackStruct.trkParams.hitsValid);
1764  tkDetector_.HitsInvalid ->Fill(trackStruct.trkParams.hitsInvalid);
1765  tkDetector_.Hits2D ->Fill(trackStruct.trkParams.hits2D);
1766  tkDetector_.LayersMissed ->Fill(trackStruct.trkParams.layersMissed);
1767  tkDetector_.HitsPixel ->Fill(trackStruct.trkParams.hitsPixel);
1768  tkDetector_.HitsStrip ->Fill(trackStruct.trkParams.hitsStrip);
1769  tkDetector_.Charge ->Fill(trackStruct.trkParams.charge);
1770  tkDetector_.Chi2 ->Fill(trackStruct.trkParams.chi2);
1771  tkDetector_.Ndof ->Fill(trackStruct.trkParams.ndof);
1772  tkDetector_.NorChi2 ->Fill(trackStruct.trkParams.norChi2);
1773  tkDetector_.Prob ->Fill(trackStruct.trkParams.prob);
1774  tkDetector_.Eta ->Fill(trackStruct.trkParams.eta);
1775  tkDetector_.EtaErr ->Fill(trackStruct.trkParams.etaErr);
1776  tkDetector_.EtaSig ->Fill(trackStruct.trkParams.eta/trackStruct.trkParams.etaErr);
1777  tkDetector_.Theta ->Fill(trackStruct.trkParams.theta*180./M_PI);
1778  tkDetector_.Phi ->Fill(trackStruct.trkParams.phi*180./M_PI);
1779  tkDetector_.PhiErr ->Fill(trackStruct.trkParams.phiErr*180./M_PI);
1780  tkDetector_.PhiSig ->Fill(trackStruct.trkParams.phi/trackStruct.trkParams.phiErr);
1781  tkDetector_.D0Beamspot ->Fill(trackStruct.trkParams.d0Beamspot);
1782  tkDetector_.D0BeamspotErr->Fill(trackStruct.trkParams.d0BeamspotErr);
1783  tkDetector_.D0BeamspotSig->Fill(trackStruct.trkParams.d0Beamspot/trackStruct.trkParams.d0BeamspotErr);
1784  tkDetector_.Dz ->Fill(trackStruct.trkParams.dz);
1785  tkDetector_.DzErr ->Fill(trackStruct.trkParams.dzErr);
1786  tkDetector_.DzSig ->Fill(trackStruct.trkParams.dz/trackStruct.trkParams.dzErr);
1787  tkDetector_.P ->Fill(trackStruct.trkParams.p);
1788  tkDetector_.Pt ->Fill(trackStruct.trkParams.pt);
1789  tkDetector_.PtErr ->Fill(trackStruct.trkParams.ptErr);
1790  tkDetector_.PtSig ->Fill(trackStruct.trkParams.pt/trackStruct.trkParams.ptErr);
1791  tkDetector_.MeanAngle ->Fill(trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1792 
1793  tkDetector_.MeanAngleVsHits ->Fill(trackStruct.trkParams.hitsSize,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1794  tkDetector_.HitsPixelVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsPixel);
1795  tkDetector_.HitsPixelVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsPixel);
1796  tkDetector_.HitsStripVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsStrip);
1797  tkDetector_.HitsStripVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsStrip);
1798  tkDetector_.PtVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.pt);
1799  tkDetector_.PtVsTheta ->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.pt);
1800 
1801  tkDetector_.PMeanAngleVsHits ->Fill(trackStruct.trkParams.hitsSize,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1802  tkDetector_.PHitsPixelVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsPixel);
1803  tkDetector_.PHitsPixelVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsPixel);
1804  tkDetector_.PHitsStripVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsStrip);
1805  tkDetector_.PHitsStripVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsStrip);
1806  tkDetector_.PPtVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.pt);
1807  tkDetector_.PPtVsTheta ->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.pt);
1808 
1809 
1810  for(std::vector<TrackStruct::HitParameterStruct>::const_iterator i_hit = trackStruct.v_hitParams.begin();
1811  i_hit != trackStruct.v_hitParams.end(); ++i_hit){
1812  const TrackStruct::HitParameterStruct& hit(*i_hit);
1813  //Put here from earlier method
1814  if(hit.hitState == TrackStruct::notAssignedToSectors)continue;
1815 
1816  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
1817  bool moduleInSector(false);
1818  for(std::vector<unsigned int>::const_iterator i_hitSector = hit.v_sector.begin(); i_hitSector != hit.v_sector.end(); ++i_hitSector){
1819  if((*i_sector).first == *i_hitSector){moduleInSector = true; break;}
1820  }
1821  if(!moduleInSector)continue;
1822  TrackerSectorStruct& sector((*i_sector).second);
1823 
1824  if(hit.goodXMeasurement){
1825  std::map<std::string,TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsX);
1826 
1827  // Cluster and Hit Parameters
1828  this->fillHitHistsXForAnalyzerMode(hit, sector);
1829 
1830  // Track Parameters
1831  m_corrHists["HitsValid"].fillCorrHistsX(hit,trackStruct.trkParams.hitsValid);
1832  m_corrHists["HitsGood"].fillCorrHistsX(hit,goodHitsPerTrack);
1833  m_corrHists["HitsInvalid"].fillCorrHistsX(hit,trackStruct.trkParams.hitsInvalid);
1834  m_corrHists["Hits2D"].fillCorrHistsX(hit,trackStruct.trkParams.hits2D);
1835  m_corrHists["LayersMissed"].fillCorrHistsX(hit,trackStruct.trkParams.layersMissed);
1836  m_corrHists["HitsPixel"].fillCorrHistsX(hit,trackStruct.trkParams.hitsPixel);
1837  m_corrHists["HitsStrip"].fillCorrHistsX(hit,trackStruct.trkParams.hitsStrip);
1838  m_corrHists["NorChi2"].fillCorrHistsX(hit,trackStruct.trkParams.norChi2);
1839  m_corrHists["Theta"].fillCorrHistsX(hit,trackStruct.trkParams.theta*180./M_PI);
1840  m_corrHists["Phi"].fillCorrHistsX(hit,trackStruct.trkParams.phi*180./M_PI);
1841  m_corrHists["D0Beamspot"].fillCorrHistsX(hit,trackStruct.trkParams.d0Beamspot);
1842  m_corrHists["Dz"].fillCorrHistsX(hit,trackStruct.trkParams.dz);
1843  m_corrHists["Pt"].fillCorrHistsX(hit,trackStruct.trkParams.pt);
1844  m_corrHists["P"].fillCorrHistsX(hit,trackStruct.trkParams.p);
1845  m_corrHists["InvP"].fillCorrHistsX(hit,1./trackStruct.trkParams.p);
1846  m_corrHists["MeanAngle"].fillCorrHistsX(hit,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1847  //m_corrHists[""].fillCorrHistsX(hit, hit.);
1848  }
1849 
1850  if(hit.goodYMeasurement){
1851  std::map<std::string,TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsY);
1852 
1853  // Cluster and Hit Parameters
1854  this->fillHitHistsYForAnalyzerMode(hit, sector);
1855 
1856  // Track Parameters
1857  m_corrHists["HitsValid"].fillCorrHistsY(hit,trackStruct.trkParams.hitsValid);
1858  m_corrHists["HitsGood"].fillCorrHistsY(hit,goodHitsPerTrack);
1859  m_corrHists["HitsInvalid"].fillCorrHistsY(hit,trackStruct.trkParams.hitsInvalid);
1860  m_corrHists["Hits2D"].fillCorrHistsY(hit,trackStruct.trkParams.hits2D);
1861  m_corrHists["LayersMissed"].fillCorrHistsY(hit,trackStruct.trkParams.layersMissed);
1862  m_corrHists["HitsPixel"].fillCorrHistsY(hit,trackStruct.trkParams.hitsPixel);
1863  m_corrHists["HitsStrip"].fillCorrHistsY(hit,trackStruct.trkParams.hitsStrip);
1864  m_corrHists["NorChi2"].fillCorrHistsY(hit,trackStruct.trkParams.norChi2);
1865  m_corrHists["Theta"].fillCorrHistsY(hit,trackStruct.trkParams.theta*180./M_PI);
1866  m_corrHists["Phi"].fillCorrHistsY(hit,trackStruct.trkParams.phi*180./M_PI);
1867  m_corrHists["D0Beamspot"].fillCorrHistsY(hit,trackStruct.trkParams.d0Beamspot);
1868  m_corrHists["Dz"].fillCorrHistsY(hit,trackStruct.trkParams.dz);
1869  m_corrHists["Pt"].fillCorrHistsY(hit,trackStruct.trkParams.pt);
1870  m_corrHists["P"].fillCorrHistsY(hit,trackStruct.trkParams.p);
1871  m_corrHists["InvP"].fillCorrHistsY(hit,1./trackStruct.trkParams.p);
1872  m_corrHists["MeanAngle"].fillCorrHistsY(hit,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1873  }
1874 
1875  // Special Histograms
1876  for(std::map<std::string,std::vector<TH1*> >::iterator i_sigmaX = sector.m_sigmaX.begin(); i_sigmaX != sector.m_sigmaX.end(); ++i_sigmaX){
1877  for(std::vector<TH1*>::iterator iHist = (*i_sigmaX).second.begin(); iHist != (*i_sigmaX).second.end(); ++iHist){
1878  if ((*i_sigmaX).first=="sigmaXHit")(*iHist)->Fill(hit.errXHit*10000.);
1879  else if((*i_sigmaX).first=="sigmaXTrk")(*iHist)->Fill(hit.errXTrk*10000.);
1880  else if((*i_sigmaX).first=="sigmaX") (*iHist)->Fill(hit.errX*10000.);
1881  }
1882  }
1883  for(std::map<std::string,std::vector<TH1*> >::iterator i_sigmaY = sector.m_sigmaY.begin(); i_sigmaY != sector.m_sigmaY.end(); ++i_sigmaY){
1884  for(std::vector<TH1*>::iterator iHist = (*i_sigmaY).second.begin(); iHist != (*i_sigmaY).second.end(); ++iHist){
1885  if ((*i_sigmaY).first=="sigmaYHit")(*iHist)->Fill(hit.errYHit*10000.);
1886  else if((*i_sigmaY).first=="sigmaYTrk")(*iHist)->Fill(hit.errYTrk*10000.);
1887  else if((*i_sigmaY).first=="sigmaY") (*iHist)->Fill(hit.errY*10000.);
1888  }
1889  }
1890  }
1891  }
1892 }
1893 
1894 
1895 
1896 void
1898  std::map<std::string, TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsX);
1899 
1900  // Cluster Parameters
1901  m_corrHists["WidthX"].fillCorrHistsX(hit, hit.widthX);
1902  m_corrHists["BaryStripX"].fillCorrHistsX(hit, hit.baryStripX);
1903 
1904  if(hit.isPixelHit){
1905  m_corrHists["ChargePixel"].fillCorrHistsX(hit, hit.chargePixel);
1906  m_corrHists["ClusterProbXY"].fillCorrHistsX(hit, hit.clusterProbabilityXY);
1907  m_corrHists["ClusterProbQ"].fillCorrHistsX(hit, hit.clusterProbabilityQ);
1908  m_corrHists["ClusterProbXYQ"].fillCorrHistsX(hit, hit.clusterProbabilityXYQ);
1909  m_corrHists["LogClusterProb"].fillCorrHistsX(hit, hit.logClusterProbability);
1910  m_corrHists["IsOnEdge"].fillCorrHistsX(hit, hit.isOnEdge);
1911  m_corrHists["HasBadPixels"].fillCorrHistsX(hit, hit.hasBadPixels);
1912  m_corrHists["SpansTwoRoc"].fillCorrHistsX(hit, hit.spansTwoRoc);
1913  m_corrHists["QBin"].fillCorrHistsX(hit, hit.qBin);
1914 
1915  }
1916  else{
1917  m_corrHists["ChargeStrip"].fillCorrHistsX(hit, hit.chargeStrip);
1918  m_corrHists["MaxStrip"].fillCorrHistsX(hit, hit.maxStrip);
1919  m_corrHists["MaxCharge"].fillCorrHistsX(hit, hit.maxCharge);
1920  m_corrHists["MaxIndex"].fillCorrHistsX(hit, hit.maxIndex);
1921  m_corrHists["ChargeOnEdges"].fillCorrHistsX(hit, hit.chargeOnEdges);
1922  m_corrHists["ChargeAsymmetry"].fillCorrHistsX(hit, hit.chargeAsymmetry);
1923  m_corrHists["ChargeLRplus"].fillCorrHistsX(hit, hit.chargeLRplus);
1924  m_corrHists["ChargeLRminus"].fillCorrHistsX(hit, hit.chargeLRminus);
1925  m_corrHists["SOverN"].fillCorrHistsX(hit, hit.sOverN);
1926  m_corrHists["WidthProj"].fillCorrHistsX(hit, hit.projWidth);
1927  m_corrHists["WidthDiff"].fillCorrHistsX(hit, hit.projWidth-static_cast<float>( hit.widthX));
1928 
1929  sector.WidthVsWidthProjected->Fill( hit.projWidth, hit.widthX);
1930  sector.PWidthVsWidthProjected->Fill( hit.projWidth, hit.widthX);
1931 
1932  sector.WidthDiffVsMaxStrip->Fill( hit.maxStrip, hit.projWidth-static_cast<float>( hit.widthX));
1933  sector.PWidthDiffVsMaxStrip->Fill( hit.maxStrip, hit.projWidth-static_cast<float>( hit.widthX));
1934 
1935  sector.WidthDiffVsSigmaXHit->Fill( hit.errXHit, hit.projWidth-static_cast<float>( hit.widthX));
1936  sector.PWidthDiffVsSigmaXHit->Fill( hit.errXHit, hit.projWidth-static_cast<float>( hit.widthX));
1937 
1938  sector.WidthVsPhiSensX->Fill( hit.phiSensX*180./M_PI, hit.widthX);
1939  sector.PWidthVsPhiSensX->Fill( hit.phiSensX*180./M_PI, hit.widthX);
1940  }
1941 
1942  // Hit Parameters
1943  m_corrHists["SigmaXHit"].fillCorrHistsX(hit, hit.errXHit*10000.);
1944  m_corrHists["SigmaXTrk"].fillCorrHistsX(hit, hit.errXTrk*10000.);
1945  m_corrHists["SigmaX"].fillCorrHistsX(hit, hit.errX*10000.);
1946 
1947  m_corrHists["PhiSens"].fillCorrHistsX(hit, hit.phiSens*180./M_PI);
1948  m_corrHists["PhiSensX"].fillCorrHistsX(hit, hit.phiSensX*180./M_PI);
1949  m_corrHists["PhiSensY"].fillCorrHistsX(hit, hit.phiSensY*180./M_PI);
1950 
1951  sector.XHit ->Fill(hit.xHit);
1952  sector.XTrk ->Fill(hit.xTrk);
1953  sector.SigmaX2->Fill(hit.errX2*10000.*10000.);
1954 
1955  sector.ResX ->Fill(hit.resX*10000.);
1956  sector.NorResX->Fill(hit.norResX);
1957 
1958  sector.ProbX->Fill(hit.probX);
1959 
1960  sector.PhiSensXVsBarycentreX->Fill(hit.baryStripX, hit.phiSensX*180./M_PI);
1961  sector.PPhiSensXVsBarycentreX->Fill(hit.baryStripX, hit.phiSensX*180./M_PI);
1962 }
1963 
1964 
1965 
1966 void
1968  std::map<std::string, TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsY);
1969  // Do not fill anything for strip
1970  if(!hit.isPixelHit)return;
1971 
1972  // Cluster Parameters
1973  m_corrHists["WidthY"].fillCorrHistsY(hit,hit.widthY);
1974  m_corrHists["BaryStripY"].fillCorrHistsY(hit,hit.baryStripY);
1975 
1976  m_corrHists["ChargePixel"].fillCorrHistsY(hit, hit.chargePixel);
1977  m_corrHists["ClusterProbXY"].fillCorrHistsY(hit, hit.clusterProbabilityXY);
1978  m_corrHists["ClusterProbQ"].fillCorrHistsY(hit, hit.clusterProbabilityQ);
1979  m_corrHists["ClusterProbXYQ"].fillCorrHistsY(hit, hit.clusterProbabilityXYQ);
1980  m_corrHists["LogClusterProb"].fillCorrHistsY(hit, hit.logClusterProbability);
1981  m_corrHists["IsOnEdge"].fillCorrHistsY(hit, hit.isOnEdge);
1982  m_corrHists["HasBadPixels"].fillCorrHistsY(hit, hit.hasBadPixels);
1983  m_corrHists["SpansTwoRoc"].fillCorrHistsY(hit, hit.spansTwoRoc);
1984  m_corrHists["QBin"].fillCorrHistsY(hit, hit.qBin);
1985 
1986  // Hit Parameters
1987  m_corrHists["SigmaYHit"].fillCorrHistsY(hit, hit.errYHit*10000.);
1988  m_corrHists["SigmaYTrk"].fillCorrHistsY(hit, hit.errYTrk*10000.);
1989  m_corrHists["SigmaY"].fillCorrHistsY(hit, hit.errY*10000.);
1990 
1991  m_corrHists["PhiSens"].fillCorrHistsY(hit, hit.phiSens*180./M_PI);
1992  m_corrHists["PhiSensX"].fillCorrHistsY(hit, hit.phiSensX*180./M_PI);
1993  m_corrHists["PhiSensY"].fillCorrHistsY(hit, hit.phiSensY*180./M_PI);
1994 
1995  sector.YHit ->Fill(hit.yHit);
1996  sector.YTrk ->Fill(hit.yTrk);
1997  sector.SigmaY2->Fill(hit.errY2*10000.*10000.);
1998 
1999  sector.ResY ->Fill(hit.resY*10000.);
2000  sector.NorResY->Fill(hit.norResY);
2001 
2002  sector.ProbY->Fill(hit.probY);
2003 
2004  sector.PhiSensYVsBarycentreY->Fill(hit.baryStripY, hit.phiSensY*180./M_PI);
2005  sector.PPhiSensYVsBarycentreY->Fill(hit.baryStripY, hit.phiSensY*180./M_PI);
2006 }
2007 
2008 
2009 
2010 void
2012 
2013  unsigned int goodHitsPerTrack(trackStruct.v_hitParams.size());
2014 
2015  if(parameterSet_.getParameter<bool>("applyTrackCuts")){
2016  // which tracks to take? need min. nr. of selected hits?
2017  if(goodHitsPerTrack < minGoodHitsPerTrack_)return;
2018  }
2019 
2020  for(std::vector<TrackStruct::HitParameterStruct>::const_iterator i_hit = trackStruct.v_hitParams.begin();
2021  i_hit != trackStruct.v_hitParams.end(); ++i_hit){
2022  // Put here from earlier method
2023  if(i_hit->hitState == TrackStruct::notAssignedToSectors)continue;
2024 
2025  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
2026 
2027  bool moduleInSector(false);
2028  for(std::vector<unsigned int>::const_iterator i_hitSector = (*i_hit).v_sector.begin(); i_hitSector != (*i_hit).v_sector.end(); ++i_hitSector){
2029  if((*i_sector).first == *i_hitSector){moduleInSector = true; break;}
2030  }
2031  if(!moduleInSector)continue;
2032 
2033  if(!calculateApe_)continue;
2034 
2035  if((*i_hit).goodXMeasurement){
2036  for(std::map<unsigned int,std::pair<double,double> >::const_iterator i_errBins = m_resErrBins_.begin();
2037  i_errBins != m_resErrBins_.end(); ++i_errBins){
2038  // Separate the bins for residual resolution w/o APE, to be consistent within iterations where APE will change (have same hit always in same bin)
2039  // So also fill this value in the histogram sigmaX
2040  // But of course use the normalized residual regarding the APE to have its influence in its width
2041  if((*i_hit).errXWoApe < (*i_errBins).second.first || (*i_hit).errXWoApe >= (*i_errBins).second.second){
2042  continue;
2043  }
2044  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaX"] ->Fill((*i_hit).errXWoApe);
2045  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResX"]->Fill((*i_hit).norResX);
2046  break;
2047  }
2048  (*i_sector).second.ResX->Fill((*i_hit).resX*10000.);
2049  (*i_sector).second.NorResX->Fill((*i_hit).norResX);
2050  }
2051 
2052  if((*i_hit).goodYMeasurement){
2053  for(std::map<unsigned int,std::pair<double,double> >::const_iterator i_errBins = m_resErrBins_.begin();
2054  i_errBins != m_resErrBins_.end(); ++i_errBins){
2055  // Separate the bins for residual resolution w/o APE, to be consistent within iterations where APE will change (have same hit always in same bin)
2056  // So also fill this value in the histogram sigmaY
2057  // But of course use the normalized residual regarding the APE to have its influence in its width
2058  if((*i_hit).errYWoApe < (*i_errBins).second.first || (*i_hit).errYWoApe >= (*i_errBins).second.second){
2059  continue;
2060  }
2061  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaY"] ->Fill((*i_hit).errYWoApe);
2062  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResY"]->Fill((*i_hit).norResY);
2063  break;
2064  }
2065  (*i_sector).second.ResY->Fill((*i_hit).resY*10000.);
2066  (*i_sector).second.NorResY->Fill((*i_hit).norResY);
2067  }
2068  }
2069  }
2070 }
2071 
2072 
2073 
2074 
2075 // -----------------------------------------------------------------------------------------------------------
2076 
2077 
2078 
2079 void
2081  // Loop over sectors for calculating APE
2082  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
2083 
2084  // Loop over residual error bins to calculate APE for every bin
2085  for(std::map<unsigned int, std::map<std::string,TH1*> >::const_iterator i_errBins = (*i_sector).second.m_binnedHists.begin();
2086  i_errBins != (*i_sector).second.m_binnedHists.end(); ++i_errBins){
2087  std::map<std::string,TH1*> m_Hists = (*i_errBins).second;
2088 
2089  // Fitting Parameters
2090  double integralX = m_Hists["norResX"]->Integral();
2091  (*i_sector).second.EntriesX->SetBinContent((*i_errBins).first, integralX);
2092 
2093  if((*i_sector).second.isPixel){
2094  double integralY = m_Hists["norResY"]->Integral();
2095  (*i_sector).second.EntriesY->SetBinContent((*i_errBins).first, integralY);
2096  }
2097  }
2098  }
2099 }
2100 
2101 
2102 
2103 
2104 // -----------------------------------------------------------------------------------------------------------
2105 
2106 
2107 bool
2109 {
2110  // we count SiStrip stereo modules as 2D if selected via countStereoHitAs2D_
2111  // (since they provide theta information)
2112  // --- NO, here it is always set to true ---
2113  if (!hit.isValid() ||
2114  (hit.dimension() < 2 && !dynamic_cast<const SiStripRecHit1D*>(&hit))){
2115  return false; // real RecHit1D - but SiStripRecHit1D depends on countStereoHitAs2D_
2116  } else {
2117  const DetId detId(hit.geographicalId());
2118  if (detId.det() == DetId::Tracker) {
2119  if (detId.subdetId() == PixelSubdetector::PixelBarrel || detId.subdetId() == PixelSubdetector::PixelEndcap) {
2120  return true; // pixel is always 2D
2121  } else { // should be SiStrip now
2122  const SiStripDetId stripId(detId);
2123  if (stripId.stereo()) return true; // stereo modules
2124  else if (dynamic_cast<const SiStripRecHit1D*>(&hit)
2125  || dynamic_cast<const SiStripRecHit2D*>(&hit)) return false; // rphi modules hit
2126  //the following two are not used any more since ages...
2127  else if (dynamic_cast<const SiStripMatchedRecHit2D*>(&hit)) return true; // matched is 2D
2128  else if (dynamic_cast<const ProjectedSiStripRecHit2D*>(&hit)) {
2129  const ProjectedSiStripRecHit2D* pH = static_cast<const ProjectedSiStripRecHit2D*>(&hit);
2130  return (this->isHit2D(pH->originalHit())); // depends on original...
2131  } else {
2132  edm::LogError("UnkownType") << "@SUB=AlignmentTrackSelector::isHit2D"
2133  << "Tracker hit not in pixel, neither SiStripRecHit[12]D nor "
2134  << "SiStripMatchedRecHit2D nor ProjectedSiStripRecHit2D.";
2135  return false;
2136  }
2137  }
2138  } else { // not tracker??
2139  edm::LogWarning("DetectorMismatch") << "@SUB=AlignmentTrackSelector::isHit2D"
2140  << "Hit not in tracker with 'official' dimension >=2.";
2141  return true; // dimension() >= 2 so accept that...
2142  }
2143  }
2144  // never reached...
2145 }
2146 
2147 
2148 
2149 // -----------------------------------------------------------------------------------------------------------
2150 
2151 // ------------ method called to for each event ------------
2152 void
2154 {
2155 
2157  edm::Handle<reco::BeamSpot> beamSpotHandle;
2158  iEvent.getByToken(offlinebeamSpot_, beamSpotHandle);
2159 
2160  if (beamSpotHandle.isValid()){
2161  beamSpot = *beamSpotHandle;
2162  }
2163  else
2164  {
2165  edm::LogError("ApeEstimator")<<"No beam spot available from EventSetup"
2166  <<"\n...skip event";
2167  return;
2168  }
2169 
2171  iEvent.getByToken(tjTagToken_, m_TrajTracksMap);
2172 
2173  if(analyzerMode_)tkDetector_.TrkSize->Fill(m_TrajTracksMap->size());
2174 
2175  if(maxTracksPerEvent_!=0 && m_TrajTracksMap->size()>maxTracksPerEvent_)return;
2176 
2177  //Creation of (traj,track)
2178  typedef std::pair<const Trajectory*, const reco::Track*> ConstTrajTrackPair;
2179  typedef std::vector<ConstTrajTrackPair> ConstTrajTrackPairCollection;
2180  ConstTrajTrackPairCollection trajTracks;
2181 
2183  for(i_trajTrack = m_TrajTracksMap->begin();i_trajTrack != m_TrajTracksMap->end();++i_trajTrack){
2184  trajTracks.push_back(ConstTrajTrackPair(&(*(*i_trajTrack).key), &(*(*i_trajTrack).val)));
2185  }
2186 
2187 
2188  //Loop over Tracks & Hits
2189  unsigned int trackSizeGood(0);
2190  ConstTrajTrackPairCollection::const_iterator iTrack;
2191  for(iTrack = trajTracks.begin(); iTrack != trajTracks.end();++iTrack){
2192 
2193  const Trajectory *traj = (*iTrack).first;
2194  const reco::Track *track = (*iTrack).second;
2195 
2196  TrackStruct trackStruct;
2197  trackStruct.trkParams = this->fillTrackVariables(*track, *traj, beamSpot);
2198 
2199  if(trackCut_)continue;
2200 
2201  const std::vector<TrajectoryMeasurement> v_meas = (*traj).measurements();
2202 
2203  //Loop over Hits
2204  for(std::vector<TrajectoryMeasurement>::const_iterator i_meas = v_meas.begin(); i_meas != v_meas.end(); ++i_meas){
2205  TrackStruct::HitParameterStruct hitParams = this->fillHitVariables(*i_meas, iSetup);
2206  if(this->hitSelected(hitParams))trackStruct.v_hitParams.push_back(hitParams);
2207  }
2208 
2209  if(analyzerMode_)this->fillHistsForAnalyzerMode(trackStruct);
2210  if(calculateApe_)this->fillHistsForApeCalculation(trackStruct);
2211 
2212  if(trackStruct.v_hitParams.size()>0)++trackSizeGood;
2213  }
2214  if(analyzerMode_ && trackSizeGood>0)tkDetector_.TrkSizeGood->Fill(trackSizeGood);
2215 }
2216 
2217 
2218 // ------------ method called once each job just before starting event loop ------------
2219 void
2221 
2222  this->hitSelection();
2223 
2224  this->sectorBuilder();
2225 
2226  this->residualErrorBinning();
2227 
2229 
2231 
2232  if(analyzerMode_)this->bookTrackHists();
2233 
2234 
2235 }
2236 
2237 // ------------ method called once each job just after ending the event loop ------------
2238 void
2240 
2241  if(calculateApe_)this->calculateAPE();
2242 
2243  edm::LogInfo("HitSelector")<<"\nThere are "<<counter1<< " negative Errors calculated\n";
2244 }
2245 
2246 //define this as a plug-in
ClusterRef cluster() const
uint8_t maxCharge() const
double p() const
momentum vector magnitude
Definition: TrackBase.h:602
bool valid() const
Definition: LocalError.h:21
bool inDoubleInterval(const std::vector< double > &, const float) const
T getParameter(std::string const &) const
double z0() const
z coordinate
Definition: BeamSpot.h:68
std::vector< unsigned int > v_sector
virtual int dimension() const =0
const edm::ParameterSet parameterSet_
float charge() const
float xx() const
Definition: LocalError.h:24
double d0Error() const
error on d0
Definition: TrackBase.h:789
void hitSelection()
float vv() const
unsigned short lost() const
Number of lost (=invalid) hits on track.
Definition: Track.h:199
float clusterProbability(unsigned int flags=0) const
T y() const
Definition: PV2DBase.h:46
virtual float length() const =0
ConstRecHitPointer const & recHit() const
virtual float localStripLength(const LocalPoint &) const =0
void bookSectorHistsForAnalyzerMode()
double d0() const
dxy parameter in perigee convention (d0 = -dxy)
Definition: TrackBase.h:584
uint32_t stereo() const
Definition: SiStripDetId.h:176
virtual const GeomDetType & type() const
Definition: GeomDet.cc:90
tuple interval
Definition: MergeJob_cfg.py:20
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:464
std::pair< uint16_t, uint16_t > chargeLR() const
double theta() const
polar angle
Definition: TrackBase.h:566
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:17
size_t recHitsSize() const
Get number of RecHits. (Warning, this includes invalid hits, which are not physical hits)...
Definition: Track.h:119
std::map< std::string, std::vector< TH1 * > > m_sigmaY
LocalVector localDirection() const
ApeEstimator(const edm::ParameterSet &)
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
const bool calculateApe_
std::map< std::string, std::vector< TH1 * > > m_sigmaX
void sectorBuilder()
unsigned int counter1
float baryStrip() const
T y() const
Definition: PV3DBase.h:63
double etaError() const
error on eta
Definition: TrackBase.h:771
double phi() const
azimuthal angle of momentum vector
Definition: TrackBase.h:632
const Bounds & bounds() const
Definition: Surface.h:128
PositionAndError2 radialPositionAndError2(const LocalPoint &, const LocalError &, const RadialStripTopology &)
unsigned int counter3
void fillHitHistsYForAnalyzerMode(const TrackStruct::HitParameterStruct &, TrackerSectorStruct &)
LocalVector toLocal(const reco::Track::Vector &v, const Surface &s)
unsigned int counter4
uint16_t maxIndex() const
void calculateAPE()
virtual float detHeight() const =0
bool isOnEdge() const
PositionAndError2 rectangularPositionAndError2(const LocalPoint &, const LocalError &)
virtual void endJob()
TrackerDetectorStruct tkDetector_
const Plane & surface() const
The nominal surface of the GeomDet.
Definition: GeomDet.h:40
LocalError positionError() const
const unsigned int maxTracksPerEvent_
bool hasBadPixels() const
TrackStruct::HitParameterStruct fillHitVariables(const TrajectoryMeasurement &, const edm::EventSetup &)
std::map< unsigned int, std::pair< double, double > > m_resErrBins_
std::pair< TrackStruct::HitState, PositionAndError2 > StatePositionAndError2
auto stripCharges() const -> decltype(cluster() ->amplitudes())
void residualErrorBinning()
uint32_t rawId() const
get the raw id
Definition: DetId.h:43
virtual float thickness() const =0
const bool analyzerMode_
DataContainer const & measurements() const
Definition: Trajectory.h:203
float signalOverNoise() const
float xy() const
Definition: LocalError.h:25
int iEvent
Definition: GenABIO.cc:230
float getLorentzAngle(const uint32_t &) const
TProfile * PPhiSensXVsBarycentreX
virtual MeasurementError measurementError(const LocalPoint &, const LocalError &) const =0
double eta() const
pseudorapidity of momentum vector
Definition: TrackBase.h:638
std::vector< HitParameterStruct > v_hitParams
uint16_t charge() const
float yy() const
Definition: LocalError.h:26
double chi2() const
chi-squared of the fit
Definition: TrackBase.h:536
virtual void beginJob()
void statistics(const TrackerSectorStruct &, const Int_t) const
double ndof() const
number of degrees of freedom of the fit
Definition: TrackBase.h:542
T sqrt(T t)
Definition: SSEVec.h:48
bool isHit2D(const TrackingRecHit &) const
TrackStruct::TrackParameterStruct fillTrackVariables(const reco::Track &, const Trajectory &, const reco::BeamSpot &)
double pt() const
track transverse momentum
Definition: TrackBase.h:608
TrackParameterStruct trkParams
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
double ptError() const
error on Pt (set to 1000 TeV if charge==0 for safety)
Definition: TrackBase.h:750
edm::EDGetTokenT< reco::BeamSpot > offlinebeamSpot_
double phiError() const
error on phi
Definition: TrackBase.h:777
float uu() const
uint16_t width() const
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
DetId geographicalId() const
The label of this GeomDet.
Definition: GeomDet.h:77
double BeamWidthX() const
beam width X
Definition: BeamSpot.h:86
virtual MeasurementPoint measurementPosition(const LocalPoint &) const =0
bool hitSelected(TrackStruct::HitParameterStruct &) const
ClusterRef cluster() const
virtual float angularWidth() const =0
virtual MeasurementPoint measurementPosition(const LocalPoint &) const =0
bool checkModulePositions(const float, const std::vector< double > &) const
T * make(const Args &...args) const
make new ROOT object
unsigned int counter6
const LocalTrajectoryError & localError() const
bool checkModuleBools(const bool, const std::vector< unsigned int > &) const
bool checkModuleIds(const unsigned int, const std::vector< unsigned int > &) const
std::map< unsigned int, TrackerSectorStruct > m_tkSector_
bool isValid() const
Definition: HandleBase.h:75
std::map< std::string, std::vector< unsigned int > > m_hitSelectionUInt_
TProfile * PWidthVsWidthProjected
#define M_PI
bool checkIntervalsForSectors(const unsigned int sectorCounter, const std::vector< double > &) const
TrajectoryStateOnSurface const & forwardPredictedState() const
Access to forward predicted state (from fitter or builder)
std::pair< const Trajectory *, const reco::Track * > ConstTrajTrackPair
void bookTrackHists()
double dz() const
dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to...
Definition: TrackBase.h:596
double dzError() const
error on dz
Definition: TrackBase.h:801
SiStripRecHit2D originalHit() const
Detector identifier class for the strip tracker.
Definition: SiStripDetId.h:17
int qBin() const
virtual float stripAngle(float strip) const =0
Definition: DetId.h:18
virtual TrackingRecHit const * hit() const
virtual void analyze(const edm::Event &, const edm::EventSetup &)
TFileDirectory mkdir(const std::string &dir, const std::string &descr="")
create a new subdirectory
Definition: TFileService.h:69
uint16_t maxStrip() const
std::map< std::string, CorrelationHists > m_correlationHistsX
edm::Service< TFileService > fileService
TFileDirectory mkdir(const std::string &dir, const std::string &descr="")
create a new subdirectory
const HitPattern & hitPattern() const
Access the hit pattern, indicating in which Tracker layers the track has hits.
Definition: TrackBase.h:437
virtual LocalError localPositionError() const =0
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
bool checkModuleDirections(const int, const std::vector< int > &) const
Detector
Definition: DetId.h:24
ClusterRef cluster() const
Definition: SiPixelRecHit.h:49
const T & get() const
Definition: EventSetup.h:56
T const * product() const
Definition: ESHandle.h:86
double BeamWidthY() const
beam width Y
Definition: BeamSpot.h:88
bool isValid() const
virtual float originToIntersection() const =0
bool inUintInterval(const std::vector< unsigned int > &, const unsigned int, const unsigned int=999) const
virtual const Topology & topology() const =0
int sizeY() const
bool IsModuleUsable() const
std::map< unsigned int, ReducedTrackerTreeVariables > m_tkTreeVar_
Pixel cluster – collection of neighboring pixels above threshold.
unsigned int counter5
virtual const GeomDetUnit * detUnit() const
void fillHistsForApeCalculation(const TrackStruct &)
unsigned short found() const
Number of valid hits on track.
Definition: Track.h:194
unsigned int counter2
bool isPixel(HitType hitType)
bool spansTwoROCs() const
double y0() const
y coordinate
Definition: BeamSpot.h:66
const unsigned int minGoodHitsPerTrack_
float y() const
void setHitSelectionMap(const std::string &)
edm::EDGetTokenT< TrajTrackAssociationCollection > tjTagToken_
tuple cout
Definition: gather_cfg.py:121
int charge() const
track electric charge
Definition: TrackBase.h:554
void fillHitHistsXForAnalyzerMode(const TrackStruct::HitParameterStruct &, TrackerSectorStruct &)
Definition: Bounds.h:22
DetId geographicalId() const
volatile std::atomic< bool > shutdown_flag false
void fillHistsForAnalyzerMode(const TrackStruct &)
void bookSectorHistsForApeCalculation()
std::map< std::string, CorrelationHists > m_correlationHistsY
static uInt32 F(BLOWFISH_CTX *ctx, uInt32 x)
Definition: blowfish.cc:281
Detector det() const
get the detector field from this detid
Definition: DetId.h:35
double dxy() const
dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close t...
Definition: TrackBase.h:578
T x() const
Definition: PV2DBase.h:45
TProfile * PWidthDiffVsSigmaXHit
std::map< std::string, std::vector< double > > m_hitSelection_
int sizeX() const
T x() const
Definition: PV3DBase.h:62
virtual LocalPoint localPosition() const =0
virtual float width() const =0
const PositionType & position() const
void setHitSelectionMapUInt(const std::string &)
Definition: vlib.h:208
float x() const
LocalError const & localAlignmentError() const
Return local alligment error.
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
std::vector< unsigned int > v_rawId
const Plane & specificSurface() const
Same as surface(), kept for backward compatibility.
Definition: GeomDet.h:43
TrajectoryStateOnSurface const & backwardPredictedState() const
Access to backward predicted state (from smoother)
Our base class.
Definition: SiPixelRecHit.h:23
double x0() const
x coordinate
Definition: BeamSpot.h:64
StatePositionAndError2 positionAndError2(const LocalPoint &, const LocalError &, const TransientTrackingRecHit &)