CMS 3D CMS Logo

Public Types | Public Member Functions | Public Attributes | Private Attributes

Basic3DVector< T > Class Template Reference

#include <newBasic3DVector.h>

List of all members.

Public Types

typedef
Geom::Cylindrical2Cartesian< T
Cylindrical
typedef
Geom::Cylindrical2Cartesian< T
Cylindrical
typedef mathSSE::Vec4< TMathVector
typedef Basic3DVector< TMathVector
typedef Spherical Polar
typedef Spherical Polar
typedef T ScalarType
typedef T ScalarType
typedef
Geom::Spherical2Cartesian< T
Spherical
typedef
Geom::Spherical2Cartesian< T
Spherical
typedef mathSSE::Vec4< TVectorType

Public Member Functions

T barePhi () const
T barePhi () const
T bareTheta () const
T bareTheta () const
 Basic3DVector ()
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero)
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 Basic3DVector ()
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685.
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision.
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685.
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero)
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
template<typename U >
 Basic3DVector (mathSSE::Vec4< U > const &iv)
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision.
template<class U >
 Basic3DVector (mathSSE::Vec4< U > const &iv)
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates
Basic3DVector cross (const Basic3DVector &lh) const
 Vector product, or "cross" product, with a vector of same type.
Basic3DVector cross (const Basic3DVector &v) const
 Vector product, or "cross" product, with a vector of same type.
template<class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
cross (const Basic3DVector< U > &v) const
template<class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
cross (const Basic3DVector< U > &lh) const
T dot (const Basic3DVector &rh) const
 Scalar product, or "dot" product, with a vector of same type.
T dot (const Basic3DVector &v) const
 Scalar product, or "dot" product, with a vector of same type.
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &v) const
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &lh) const
T eta () const
T eta () const
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2())
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2())
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec)
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec)
MathVector const & mathVector () const
MathVectormathVector ()
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication)
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication)
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z())
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z())
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division)
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division)
bool operator== (const Basic3DVector &rh) const
bool operator== (const Basic3DVector &rh) const
T perp () const
 Magnitude of transverse component.
T perp () const
 Magnitude of transverse component.
T perp2 () const
 Squared magnitude of transverse component.
T perp2 () const
 Squared magnitude of transverse component.
Geom::Phi< Tphi () const
Geom::Phi< Tphi () const
Geom::Theta< Ttheta () const
Geom::Theta< Ttheta () const
T transverse () const
 Another name for perp()
T transverse () const
 Another name for perp()
Basic3DVector unit () const
Basic3DVector unit () const
T w () const
T w () const
T x () const
 Cartesian x coordinate.
T x () const
 Cartesian x coordinate.
Basic2DVector< Txy () const
Basic2DVector< Txy () const
T y () const
 Cartesian y coordinate.
T y () const
 Cartesian y coordinate.
T z () const
 Cartesian z coordinate.
T z () const
 Cartesian z coordinate.

Public Attributes

mathSSE::Vec4< Tv

Private Attributes

T theW
T theX
T theY
T theZ

Detailed Description

template<typename T>
class Basic3DVector< T >

Definition at line 24 of file newBasic3DVector.h.


Member Typedef Documentation

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 30 of file newBasic3DVector.h.

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 34 of file oldBasic3DVector.h.

template<typename T>
typedef mathSSE::Vec4<T> Basic3DVector< T >::MathVector

Definition at line 29 of file newBasic3DVector.h.

template<typename T>
typedef Basic3DVector<T> Basic3DVector< T >::MathVector

Definition at line 30 of file oldBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 36 of file oldBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 32 of file newBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 33 of file oldBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 27 of file newBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 31 of file newBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 35 of file oldBasic3DVector.h.

template<typename T>
typedef mathSSE::Vec4<T> Basic3DVector< T >::VectorType

Definition at line 28 of file newBasic3DVector.h.


Constructor & Destructor Documentation

template<typename T>
Basic3DVector< T >::Basic3DVector ( ) [inline]

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 38 of file newBasic3DVector.h.

Referenced by Basic3DVector< long double >::cross(), Basic3DVector< align::Scalar >::cross(), Basic3DVector< align::Scalar >::operator-(), and Basic3DVector< long double >::operator-().

{}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p) [inline]

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 41 of file newBasic3DVector.h.

                                          : 
    v(p.v) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p) [inline]

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 46 of file newBasic3DVector.h.

                                             : 
    v(p.v) {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p) [inline]

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 51 of file newBasic3DVector.h.

                                             : 
    v(p.x(),p.y(),0) {}
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p) [inline, explicit]

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 64 of file newBasic3DVector.h.

                                               : 
        v(p.x(),p.y(),p.z()) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( mathSSE::Vec4< U > const &  iv) [inline]

Definition at line 70 of file newBasic3DVector.h.

: v(iv){}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
) [inline]

construct from cartesian coordinates

Definition at line 73 of file newBasic3DVector.h.

                                                                  : 
    v(x,y,z,w){}
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
) [inline]

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 81 of file newBasic3DVector.h.

                                                    {
    Polar p( theta.value(), phi.value(), r);
    v.o.theX = p.x(); v.o.theY = p.y(); v.o.theZ = p.z();
  }
template<typename T>
Basic3DVector< T >::Basic3DVector ( ) [inline]

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 42 of file oldBasic3DVector.h.

: theX(0), theY(0), theZ(0), theW(0) {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p) [inline]

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 45 of file oldBasic3DVector.h.

                                          : 
    theX(p.x()), theY(p.y()), theZ(p.z()), theW(p.w()) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p) [inline]

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 50 of file oldBasic3DVector.h.

                                             : 
    theX(p.x()), theY(p.y()), theZ(p.z()), theW(p.w()) {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p) [inline]

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 54 of file oldBasic3DVector.h.

                                             : 
    theX(p.x()), theY(p.y()), theZ(0), theW(0) {}
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p) [inline, explicit]

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 66 of file oldBasic3DVector.h.

                                               : 
    theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( mathSSE::Vec4< U > const &  iv) [inline]

Definition at line 73 of file oldBasic3DVector.h.

                                          :
    theX(iv.arr[0]), theY(iv.arr[1]), theZ(iv.arr[2]), theW(0) {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
) [inline]

construct from cartesian coordinates

Definition at line 79 of file oldBasic3DVector.h.

                                                                   : 
    theX(x), theY(y), theZ(z), theW(w) {}
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
) [inline]

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 96 of file oldBasic3DVector.h.

                                                    {
    Polar p( theta.value(), phi.value(), r);
    theX = p.x(); theY = p.y(); theZ = p.z();
  }

Member Function Documentation

template<typename T>
T Basic3DVector< T >::barePhi ( ) const [inline]

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 128 of file newBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::barePhi(), Basic3DVector< align::Scalar >::phi(), and Basic3DVector< long double >::phi().

{return std::atan2(y(),x());}
template<typename T>
T Basic3DVector< T >::barePhi ( ) const [inline]

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 141 of file oldBasic3DVector.h.

{return std::atan2(y(),x());}
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const [inline]

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 135 of file newBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::bareTheta().

{return std::atan2(perp(),z());}
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const [inline]

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 148 of file oldBasic3DVector.h.

{return std::atan2(perp(),z());}
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  lh) const [inline]

Vector product, or "cross" product, with a vector of same type.

Definition at line 202 of file newBasic3DVector.h.

Referenced by Vector3DBase< Scalar, GlobalTag >::cross(), Basic3DVector< align::Scalar >::cross(), PFDisplacedVertexFinder::getTransvDiff(), and TkRotation< align::Scalar >::TkRotation().

                                                      {
    return ::cross(v,lh.v);
  }
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  v) const [inline]

Vector product, or "cross" product, with a vector of same type.

Definition at line 228 of file oldBasic3DVector.h.

                                                     {
    return Basic3DVector( y()*v.z() - v.y()*z(), 
                          z()*v.x() - v.z()*x(), 
                          x()*v.y() - v.x()*y());
  }
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  v) const [inline]

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 242 of file oldBasic3DVector.h.

                                          {
    return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(), 
                                                                z()*v.x() - v.z()*x(), 
                                                                x()*v.y() - v.x()*y());
  }
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  lh) const [inline]

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 214 of file newBasic3DVector.h.

template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  v) const [inline]

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 223 of file oldBasic3DVector.h.

                                                                           { 
    return x()*v.x() + y()*v.y() + z()*v.z();
  }
template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  v) const [inline]

Scalar product, or "dot" product, with a vector of same type.

Definition at line 213 of file oldBasic3DVector.h.

                                       { 
    return x()*v.x() + y()*v.y() + z()*v.z();
  }
template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  lh) const [inline]

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 196 of file newBasic3DVector.h.

template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  rh) const [inline]
template<typename T>
T Basic3DVector< T >::eta ( ) const [inline]

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 143 of file newBasic3DVector.h.

Referenced by Basic3DVector< long double >::eta(), PV3DBase< long double, PointTag, GlobalTag >::eta(), and Basic3DVector< align::Scalar >::eta().

{ return detailsBasic3DVector::eta(x(),y(),z());} // correct 
template<typename T>
T Basic3DVector< T >::eta ( ) const [inline]

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 156 of file oldBasic3DVector.h.

{ return detailsBasic3DVector::eta(x(),y(),z());} // correct 
template<typename T>
T Basic3DVector< T >::mag ( ) const [inline]

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 126 of file oldBasic3DVector.h.

{ return std::sqrt( mag2());}
template<typename T>
T Basic3DVector< T >::mag ( ) const [inline]
template<typename T>
T Basic3DVector< T >::mag2 ( ) const [inline]

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 123 of file oldBasic3DVector.h.

{ return  x()*x() + y()*y()+z()*z();}
template<typename T>
T Basic3DVector< T >::mag2 ( ) const [inline]
template<typename T>
MathVector& Basic3DVector< T >::mathVector ( ) [inline]

Definition at line 88 of file newBasic3DVector.h.

{ return v;}
template<typename T>
MathVector const& Basic3DVector< T >::mathVector ( ) const [inline]

Definition at line 87 of file newBasic3DVector.h.

{ return v;}
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t) [inline]

Scaling by a scalar value (multiplication)

Definition at line 173 of file newBasic3DVector.h.

                                   {
    v = t*v;
    return *this;
  } 
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t) [inline]

Scaling by a scalar value (multiplication)

Definition at line 194 of file oldBasic3DVector.h.

                                   {
    theX *= t;
    theY *= t;
    theZ *= t;
    theW *= t;;
    return *this;
  } 
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p) [inline]

Operator += with a Basic3DVector of possibly different precision.

Definition at line 156 of file newBasic3DVector.h.

                                                         {
    v = v + p.v;
    return *this;
  } 
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p) [inline]

Operator += with a Basic3DVector of possibly different precision.

Definition at line 171 of file oldBasic3DVector.h.

                                                         {
    theX += p.x();
    theY += p.y();
    theZ += p.z();
    theW += p.w();
    return *this;
  } 
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const [inline]

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 191 of file oldBasic3DVector.h.

{ return Basic3DVector(-x(),-y(),-z());}
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const [inline]

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 170 of file newBasic3DVector.h.

{ return Basic3DVector(-v);}
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p) [inline]

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 182 of file oldBasic3DVector.h.

                                                         {
    theX -= p.x();
    theY -= p.y();
    theZ -= p.z();
    theW -= p.w();
    return *this;
  } 
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p) [inline]

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 164 of file newBasic3DVector.h.

                                                         {
    v = v - p.v;
    return *this;
  } 
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t) [inline]

Scaling by a scalar value (division)

Definition at line 203 of file oldBasic3DVector.h.

                                   {
    t = T(1)/t;
    theX *= t;
    theY *= t;   
    theZ *= t;
    theW *= t;;
    return *this;
  } 
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t) [inline]

Scaling by a scalar value (division)

Definition at line 179 of file newBasic3DVector.h.

                                   {
    //t = T(1)/t;
    v = v/t;
    return *this;
  } 
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const [inline]

Definition at line 118 of file oldBasic3DVector.h.

                                                 {
    return x()==rh.x() && y()==rh.y() && z()==rh.z();
  }
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const [inline]

Definition at line 105 of file newBasic3DVector.h.

                                                 {
    return v==rh.v;
  }
template<typename T>
T Basic3DVector< T >::perp ( ) const [inline]

Magnitude of transverse component.

Definition at line 132 of file oldBasic3DVector.h.

{ return std::sqrt( perp2());}
template<typename T>
T Basic3DVector< T >::perp ( ) const [inline]
template<typename T>
T Basic3DVector< T >::perp2 ( ) const [inline]

Squared magnitude of transverse component.

Definition at line 129 of file oldBasic3DVector.h.

{ return x()*x() + y()*y();}
template<typename T>
T Basic3DVector< T >::perp2 ( ) const [inline]

Squared magnitude of transverse component.

Definition at line 116 of file newBasic3DVector.h.

Referenced by Basic3DVector< long double >::perp(), Basic3DVector< align::Scalar >::perp(), and PV3DBase< long double, PointTag, GlobalTag >::perp2().

{ return ::dotxy(v,v);}
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const [inline]

Definition at line 142 of file oldBasic3DVector.h.

{return Geom::Phi<T>(barePhi());}
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const [inline]
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const [inline]
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const [inline]

Definition at line 149 of file oldBasic3DVector.h.

{return Geom::Theta<T>(std::atan2(perp(),z()));}
template<typename T>
T Basic3DVector< T >::transverse ( ) const [inline]

Another name for perp()

Definition at line 122 of file newBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::transverse().

{ return perp();}
template<typename T>
T Basic3DVector< T >::transverse ( ) const [inline]

Another name for perp()

Definition at line 135 of file oldBasic3DVector.h.

{ return perp();}
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const [inline]

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 148 of file newBasic3DVector.h.

Referenced by PathToPlane2Order::operator()(), and TkRotation< align::Scalar >::TkRotation().

                             {
    T my_mag = mag2();
    return (0!=my_mag) ? (*this)*(T(1)/std::sqrt(my_mag)) : *this;
  }
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const [inline]

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 161 of file oldBasic3DVector.h.

                             {
    T my_mag = mag2();
    if (my_mag==0) return *this;
    my_mag = T(1)/std::sqrt(my_mag);
    return *this * my_mag;
  }
template<typename T>
T Basic3DVector< T >::w ( ) const [inline]

Definition at line 111 of file oldBasic3DVector.h.

{ return theW;}
template<typename T>
T Basic3DVector< T >::w ( ) const [inline]
template<typename T>
T Basic3DVector< T >::x ( ) const [inline]

Cartesian x coordinate.

Definition at line 92 of file newBasic3DVector.h.

Referenced by LinearEquation3< T >::Array3< U >::Array3(), Basic3DVector< align::Scalar >::barePhi(), Basic3DVector< long double >::barePhi(), Basic3DVector(), Basic3DVector< long double >::cross(), Basic3DVector< align::Scalar >::cross(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), TkRotation< align::Scalar >::multiplyInverse(), PathToPlane2Order::operator()(), operator*(), TkRotation< align::Scalar >::operator*(), operator+(), Basic3DVector< long double >::operator+=(), Basic3DVector< align::Scalar >::operator+=(), Basic3DVector< align::Scalar >::operator-(), Basic3DVector< long double >::operator-(), operator-(), Basic3DVector< align::Scalar >::operator-=(), Basic3DVector< long double >::operator-=(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< align::Scalar >::operator==(), Basic3DVector< long double >::operator==(), TrackAssociatorByChi2::parametersAtClosestApproach(), Basic3DVector< align::Scalar >::perp2(), Basic3DVector< long double >::perp2(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), ThirdHitPredictionFromInvLine::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::x().

{ return v.o.theX;}
template<typename T>
T Basic3DVector< T >::x ( ) const [inline]

Cartesian x coordinate.

Definition at line 103 of file oldBasic3DVector.h.

{ return theX;}
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const [inline]

Definition at line 102 of file newBasic3DVector.h.

{ return v.xy();}
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const [inline]

Definition at line 114 of file oldBasic3DVector.h.

template<typename T>
T Basic3DVector< T >::y ( ) const [inline]

Cartesian y coordinate.

Definition at line 95 of file newBasic3DVector.h.

Referenced by AlignmentParameterStore::acquireRelativeParameters(), LinearEquation3< T >::Array3< U >::Array3(), Basic3DVector< align::Scalar >::barePhi(), Basic3DVector< long double >::barePhi(), Basic3DVector(), Basic3DVector< long double >::cross(), Basic3DVector< align::Scalar >::cross(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), TkRotation< align::Scalar >::multiplyInverse(), PathToPlane2Order::operator()(), operator*(), TkRotation< align::Scalar >::operator*(), operator+(), Basic3DVector< long double >::operator+=(), Basic3DVector< align::Scalar >::operator+=(), Basic3DVector< align::Scalar >::operator-(), Basic3DVector< long double >::operator-(), operator-(), Basic3DVector< align::Scalar >::operator-=(), Basic3DVector< long double >::operator-=(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< align::Scalar >::operator==(), Basic3DVector< long double >::operator==(), TrackAssociatorByChi2::parametersAtClosestApproach(), Basic3DVector< align::Scalar >::perp2(), Basic3DVector< long double >::perp2(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), ThirdHitPredictionFromInvLine::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::y().

{ return v.o.theY;}
template<typename T>
T Basic3DVector< T >::y ( ) const [inline]

Cartesian y coordinate.

Definition at line 106 of file oldBasic3DVector.h.

{ return theY;}
template<typename T>
T Basic3DVector< T >::z ( ) const [inline]

Cartesian z coordinate.

Definition at line 109 of file oldBasic3DVector.h.

{ return theZ;}
template<typename T>
T Basic3DVector< T >::z ( ) const [inline]

Cartesian z coordinate.

Definition at line 98 of file newBasic3DVector.h.

Referenced by LinearEquation3< T >::Array3< U >::Array3(), Basic3DVector< long double >::bareTheta(), Basic3DVector< align::Scalar >::bareTheta(), Basic3DVector(), Basic3DVector< long double >::cross(), Basic3DVector< align::Scalar >::cross(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), reco::PFDisplacedVertexSeed::mergeWith(), TkRotation< align::Scalar >::multiplyInverse(), PathToPlane2Order::operator()(), operator*(), TkRotation< align::Scalar >::operator*(), operator+(), Basic3DVector< long double >::operator+=(), Basic3DVector< align::Scalar >::operator+=(), Basic3DVector< align::Scalar >::operator-(), Basic3DVector< long double >::operator-(), operator-(), Basic3DVector< align::Scalar >::operator-=(), Basic3DVector< long double >::operator-=(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< align::Scalar >::operator==(), Basic3DVector< long double >::operator==(), TrackAssociatorByChi2::parametersAtClosestApproach(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), VertexDistance3D::signedDistance(), Basic3DVector< long double >::theta(), Basic3DVector< align::Scalar >::theta(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::z().

{ return v.o.theZ;}

Member Data Documentation

template<typename T>
T Basic3DVector< T >::theW [private]
template<typename T>
T Basic3DVector< T >::theX [private]
template<typename T>
T Basic3DVector< T >::theY [private]
template<typename T>
T Basic3DVector< T >::theZ [private]
template<typename T>
mathSSE::Vec4<T> Basic3DVector< T >::v