#include <CSCSegAlgoST.h>
Public Types | |
typedef std::deque< bool > | BoolContainer |
typedef std::vector< const CSCRecHit2D * > | ChamberHitContainer |
Typedefs. | |
typedef std::vector < std::vector< const CSCRecHit2D * > > | Segments |
Public Member Functions | |
std::vector< CSCSegment > | buildSegments (ChamberHitContainer rechits) |
std::vector< CSCSegment > | buildSegments2 (ChamberHitContainer rechits) |
std::vector< std::vector < const CSCRecHit2D * > > | chainHits (const CSCChamber *aChamber, ChamberHitContainer &rechits) |
std::vector< std::vector < const CSCRecHit2D * > > | clusterHits (const CSCChamber *aChamber, ChamberHitContainer &rechits) |
CSCSegAlgoST (const edm::ParameterSet &ps) | |
Constructor. | |
std::vector< CSCSegment > | prune_bad_hits (const CSCChamber *aChamber, std::vector< CSCSegment > &segments) |
std::vector< CSCSegment > | run (const CSCChamber *aChamber, ChamberHitContainer rechits) |
virtual | ~CSCSegAlgoST () |
Destructor. | |
Private Member Functions | |
AlgebraicSymMatrix | calculateError (void) const |
void | ChooseSegments (void) |
void | ChooseSegments2 (int best_seg) |
void | ChooseSegments2a (std::vector< ChamberHitContainer > &best_segments, int best_seg) |
void | ChooseSegments3 (int best_seg) |
void | ChooseSegments3 (std::vector< ChamberHitContainer > &best_segments, std::vector< float > &best_weight, int best_seg) |
void | correctTheCovMatrix (CLHEP::HepMatrix &IC) |
void | correctTheCovX (void) |
CLHEP::HepMatrix | derivativeMatrix (void) const |
void | doSlopesAndChi2 (void) |
void | fillChiSquared (void) |
void | fillLocalDirection (void) |
void | findDuplicates (std::vector< CSCSegment > &segments) |
void | fitSlopes (void) |
void | flipErrors (AlgebraicSymMatrix &) const |
bool | isGoodToMerge (bool isME11a, ChamberHitContainer &newChain, ChamberHitContainer &oldChain) |
double | theWeight (double coordinate_1, double coordinate_2, double coordinate_3, float layer_1, float layer_2, float layer_3) |
Utility functions. | |
AlgebraicSymMatrix | weightMatrix (void) const |
Private Attributes | |
float | a_yweightPenaltyThreshold [5][5] |
double | BPMinImprovement |
bool | BrutePruning |
double | chi2Norm_2D_ |
double | chi2Norm_3D_ |
Chi^2 normalization for the corrected fit. | |
std::vector< ChamberHitContainer > | chosen_Psegments |
std::vector< float > | chosen_weight_A |
double | condSeed1_ |
Correct the error matrix for the condition number. | |
double | condSeed2_ |
bool | correctCov_ |
Correct the Error Matrix. | |
double | covAnyNumber_ |
Allow to use any number for covariance for all RecHits. | |
bool | covToAnyNumber_ |
The correction parameters. | |
bool | covToAnyNumberAll_ |
Allow to use any number for covariance (by hand) | |
std::vector< float > | curv_A |
std::vector< float > | curv_noL1_A |
std::vector< float > | curv_noL2_A |
std::vector< float > | curv_noL3_A |
std::vector< float > | curv_noL4_A |
std::vector< float > | curv_noL5_A |
std::vector< float > | curv_noL6_A |
double | curvePenalty |
double | curvePenaltyThreshold |
bool | debug |
double | dXclusBoxMax |
double | dYclusBoxMax |
std::vector< double > | e_Cxx |
Segments | GoodSegments |
double | hitDropLimit4Hits |
double | hitDropLimit5Hits |
double | hitDropLimit6Hits |
unsigned | maxContrIndex |
Chi^2 normalization for the initial fit. | |
int | maxRecHitsInCluster |
int | minHitsPerSegment |
const std::string | myName |
bool | onlyBestSegment |
ChamberHitContainer | PAhits_onLayer [6] |
bool | passCondNumber |
The number to fource the Covariance. | |
bool | passCondNumber_2 |
Passage the condition number calculations. | |
bool | preClustering |
bool | preClustering_useChaining |
bool | prePrun_ |
The index of the worst x RecHit in Chi^2-X method. | |
double | prePrunLimit_ |
double | protoChi2 |
double | protoChiUCorrection |
Allow to correct the error matrix. | |
LocalVector | protoDirection |
LocalPoint | protoIntercept |
double | protoNDF |
ChamberHitContainer | protoSegment |
float | protoSlope_u |
float | protoSlope_v |
bool | Pruning |
std::vector< ChamberHitContainer > | Psegments |
ChamberHitContainer | Psegments_hits |
std::vector< ChamberHitContainer > | Psegments_noL1 |
std::vector< ChamberHitContainer > | Psegments_noL2 |
std::vector< ChamberHitContainer > | Psegments_noL3 |
std::vector< ChamberHitContainer > | Psegments_noL4 |
std::vector< ChamberHitContainer > | Psegments_noL5 |
std::vector< ChamberHitContainer > | Psegments_noL6 |
std::vector< ChamberHitContainer > | Psegments_noLx |
CSCSegAlgoShowering * | showering_ |
const CSCChamber * | theChamber |
bool | useShowering |
std::vector< float > | weight_A |
std::vector< float > | weight_B |
std::vector< float > | weight_noL1_A |
std::vector< float > | weight_noL1_B |
std::vector< float > | weight_noL2_A |
std::vector< float > | weight_noL2_B |
std::vector< float > | weight_noL3_A |
std::vector< float > | weight_noL3_B |
std::vector< float > | weight_noL4_A |
std::vector< float > | weight_noL4_B |
std::vector< float > | weight_noL5_A |
std::vector< float > | weight_noL5_B |
std::vector< float > | weight_noL6_A |
std::vector< float > | weight_noL6_B |
std::vector< float > | weight_noLx_A |
double | yweightPenalty |
double | yweightPenaltyThreshold |
This algorithm is based on the Minimum Spanning Tree (ST) approach for building endcap muon track segments out of the rechit's in a CSCChamber.
A CSCSegment is a RecSegment4D, and is built from CSCRecHit2D objects, each of which is a RecHit2DLocalPos.
This builds segments consisting of at least 3 hits. It is allowed for segments to have a common (only one) rechit.
The program is under construction/testing.
Definition at line 33 of file CSCSegAlgoST.h.
typedef std::deque<bool> CSCSegAlgoST::BoolContainer |
Definition at line 42 of file CSCSegAlgoST.h.
typedef std::vector<const CSCRecHit2D*> CSCSegAlgoST::ChamberHitContainer |
Typedefs.
Definition at line 40 of file CSCSegAlgoST.h.
typedef std::vector< std::vector<const CSCRecHit2D* > > CSCSegAlgoST::Segments |
Definition at line 41 of file CSCSegAlgoST.h.
CSCSegAlgoST::CSCSegAlgoST | ( | const edm::ParameterSet & | ps | ) | [explicit] |
Constructor.
Correct the Error Matrix
Definition at line 33 of file CSCSegAlgoST.cc.
References BPMinImprovement, BrutePruning, chi2Norm_2D_, chi2Norm_3D_, condSeed1_, condSeed2_, correctCov_, covAnyNumber_, covToAnyNumber_, covToAnyNumberAll_, curvePenalty, curvePenaltyThreshold, debug, dXclusBoxMax, dYclusBoxMax, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), hitDropLimit4Hits, hitDropLimit5Hits, hitDropLimit6Hits, maxContrIndex, maxRecHitsInCluster, minHitsPerSegment, onlyBestSegment, passCondNumber, passCondNumber_2, preClustering, preClustering_useChaining, prePrun_, prePrunLimit_, protoChiUCorrection, protoNDF, Pruning, showering_, useShowering, yweightPenalty, and yweightPenaltyThreshold.
: CSCSegmentAlgorithm(ps), myName("CSCSegAlgoST") { debug = ps.getUntrackedParameter<bool>("CSCDebug"); // minLayersApart = ps.getParameter<int>("minLayersApart"); // nSigmaFromSegment = ps.getParameter<double>("nSigmaFromSegment"); minHitsPerSegment = ps.getParameter<int>("minHitsPerSegment"); // muonsPerChamberMax = ps.getParameter<int>("CSCSegmentPerChamberMax"); // chi2Max = ps.getParameter<double>("chi2Max"); dXclusBoxMax = ps.getParameter<double>("dXclusBoxMax"); dYclusBoxMax = ps.getParameter<double>("dYclusBoxMax"); preClustering = ps.getParameter<bool>("preClustering"); preClustering_useChaining = ps.getParameter<bool>("preClusteringUseChaining"); Pruning = ps.getParameter<bool>("Pruning"); BrutePruning = ps.getParameter<bool>("BrutePruning"); BPMinImprovement = ps.getParameter<double>("BPMinImprovement"); // maxRecHitsInCluster is the maximal number of hits in a precluster that is being processed // This cut is intended to remove messy events. Currently nothing is returned if there are // more that maxRecHitsInCluster hits. It could be useful to return an estimate of the // cluster position, which is available. maxRecHitsInCluster = ps.getParameter<int>("maxRecHitsInCluster"); onlyBestSegment = ps.getParameter<bool>("onlyBestSegment"); hitDropLimit4Hits = ps.getParameter<double>("hitDropLimit4Hits"); hitDropLimit5Hits = ps.getParameter<double>("hitDropLimit5Hits"); hitDropLimit6Hits = ps.getParameter<double>("hitDropLimit6Hits"); yweightPenaltyThreshold = ps.getParameter<double>("yweightPenaltyThreshold"); yweightPenalty = ps.getParameter<double>("yweightPenalty"); curvePenaltyThreshold = ps.getParameter<double>("curvePenaltyThreshold"); curvePenalty = ps.getParameter<double>("curvePenalty"); useShowering = ps.getParameter<bool>("useShowering"); showering_ = new CSCSegAlgoShowering( ps ); // std::cout<<"Constructor called..."<<std::endl; correctCov_ = ps.getParameter<bool>("CorrectTheErrors"); chi2Norm_2D_ = ps.getParameter<double>("NormChi2Cut2D"); chi2Norm_3D_ = ps.getParameter<double>("NormChi2Cut3D"); prePrun_ = ps.getParameter<bool>("prePrun"); prePrunLimit_ = ps.getParameter<double>("prePrunLimit"); // condSeed1_ = ps.getParameter<double>("SeedSmall"); condSeed2_ = ps.getParameter<double>("SeedBig"); covToAnyNumber_ = ps.getParameter<bool>("ForceCovariance"); covToAnyNumberAll_ = ps.getParameter<bool>("ForceCovarianceAll"); covAnyNumber_ = ps.getParameter<double>("Covariance"); passCondNumber=false; passCondNumber_2=false; protoChiUCorrection=1.0; maxContrIndex=0; protoNDF = 1.; }
CSCSegAlgoST::~CSCSegAlgoST | ( | ) | [virtual] |
Destructor.
Definition at line 91 of file CSCSegAlgoST.cc.
References showering_.
{ delete showering_; }
std::vector< CSCSegment > CSCSegAlgoST::buildSegments | ( | ChamberHitContainer | rechits | ) |
Build track segments in this chamber (this is where the actual segment-building algorithm hides.)
Definition at line 659 of file CSCSegAlgoST.cc.
References a_yweightPenaltyThreshold, calculateError(), CSCSegment::chi2(), chi2Norm_3D_, ChooseSegments2a(), ChooseSegments3(), chosen_Psegments, chosen_weight_A, correctCov_, curv_A, curv_noL1_A, curv_noL2_A, curv_noL3_A, curv_noL4_A, curv_noL5_A, curv_noL6_A, curvePenalty, curvePenaltyThreshold, doSlopesAndChi2(), end, fillLocalDirection(), flipErrors(), GoodSegments, hitDropLimit4Hits, hitDropLimit5Hits, hitDropLimit6Hits, i, LogDebug, maxContrIndex, maxRecHitsInCluster, minHitsPerSegment, CSCSegment::nRecHits(), onlyBestSegment, PAhits_onLayer, passCondNumber, passCondNumber_2, prePrun_, prePrunLimit_, protoChi2, protoChiUCorrection, protoDirection, protoIntercept, protoNDF, protoSegment, Psegments, Psegments_hits, Psegments_noL1, Psegments_noL2, Psegments_noL3, Psegments_noL4, Psegments_noL5, Psegments_noL6, Psegments_noLx, showering_, CSCSegAlgoShowering::showerSeg(), findQualityFiles::size, mathSSE::sqrt(), groupFilesInBlocks::temp, theChamber, theWeight(), useShowering, weight_A, weight_B, weight_noL1_A, weight_noL1_B, weight_noL2_A, weight_noL2_B, weight_noL3_A, weight_noL3_B, weight_noL4_A, weight_noL4_B, weight_noL5_A, weight_noL5_B, weight_noL6_A, weight_noL6_B, weight_noLx_A, x, detailsBasic3DVector::y, and yweightPenalty.
Referenced by run().
{ // Clear buffer for segment vector std::vector<CSCSegment> segmentInChamber; segmentInChamber.clear(); // list of final segments // CSC Ring; unsigned int thering = 999; unsigned int thestation = 999; //unsigned int thecham = 999; std::vector<int> hits_onLayerNumber(6); unsigned int UpperLimit = maxRecHitsInCluster; if (int(rechits.size()) < minHitsPerSegment) return segmentInChamber; for(int iarray = 0; iarray <6; ++iarray) { // magic number 6: number of layers in CSC chamber - not gonna change :) PAhits_onLayer[iarray].clear(); hits_onLayerNumber[iarray] = 0; } chosen_Psegments.clear(); chosen_weight_A.clear(); Psegments.clear(); Psegments_noLx.clear(); Psegments_noL1.clear(); Psegments_noL2.clear(); Psegments_noL3.clear(); Psegments_noL4.clear(); Psegments_noL5.clear(); Psegments_noL6.clear(); Psegments_hits.clear(); weight_A.clear(); weight_noLx_A.clear(); weight_noL1_A.clear(); weight_noL2_A.clear(); weight_noL3_A.clear(); weight_noL4_A.clear(); weight_noL5_A.clear(); weight_noL6_A.clear(); weight_B.clear(); weight_noL1_B.clear(); weight_noL2_B.clear(); weight_noL3_B.clear(); weight_noL4_B.clear(); weight_noL5_B.clear(); weight_noL6_B.clear(); curv_A.clear(); curv_noL1_A.clear(); curv_noL2_A.clear(); curv_noL3_A.clear(); curv_noL4_A.clear(); curv_noL5_A.clear(); curv_noL6_A.clear(); // definition of middle layer for n-hit segment int midlayer_pointer[6] = {0,0,2,3,3,4}; // int n_layers_missed_tot = 0; int n_layers_occupied_tot = 0; int n_layers_processed = 0; float min_weight_A = 99999.9; float min_weight_noLx_A = 99999.9; //float best_weight_B = -1.; //float best_weight_noLx_B = -1.; //float best_curv_A = -1.; //float best_curv_noLx_A = -1.; int best_pseg = -1; int best_noLx_pseg = -1; int best_Layer_noLx = -1; //************************************************************************; //*** Start segment building *****************************************; //************************************************************************; // Determine how many layers with hits we have // Fill all hits into the layer hit container: // Have 2 standard arrays: one giving the number of hits per layer. // The other the corresponding hits. // Loop all available hits, count hits per layer and fill the hits into array by layer for(size_t M = 0; M < rechits.size(); ++M) { // add hits to array per layer and count hits per layer: hits_onLayerNumber[ rechits[M]->cscDetId().layer()-1 ] += 1; if(hits_onLayerNumber[ rechits[M]->cscDetId().layer()-1 ] == 1 ) n_layers_occupied_tot += 1; // add hits to vector in array PAhits_onLayer[rechits[M]->cscDetId().layer()-1] .push_back(rechits[M]); } // We have now counted the hits per layer and filled pointers to the hits into an array int tothits = 0; int maxhits = 0; int nexthits = 0; int maxlayer = -1; int nextlayer = -1; for(size_t i = 0; i< hits_onLayerNumber.size(); ++i){ //std::cout<<"We have "<<hits_onLayerNumber[i]<<" hits on layer "<<i+1<<std::endl; tothits += hits_onLayerNumber[i]; if (hits_onLayerNumber[i] > maxhits) { nextlayer = maxlayer; nexthits = maxhits; maxlayer = i; maxhits = hits_onLayerNumber[i]; } else if (hits_onLayerNumber[i] > nexthits) { nextlayer = i; nexthits = hits_onLayerNumber[i]; } } if (tothits > (int)UpperLimit) { if (n_layers_occupied_tot > 4) { tothits = tothits - hits_onLayerNumber[maxlayer]; n_layers_occupied_tot = n_layers_occupied_tot - 1; PAhits_onLayer[maxlayer].clear(); hits_onLayerNumber[maxlayer] = 0; } } if (tothits > (int)UpperLimit) { if (n_layers_occupied_tot > 4) { tothits = tothits - hits_onLayerNumber[nextlayer]; n_layers_occupied_tot = n_layers_occupied_tot - 1; PAhits_onLayer[nextlayer].clear(); hits_onLayerNumber[nextlayer] = 0; } } if (tothits > (int)UpperLimit){ //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // Showering muon - returns nothing if chi2 == -1 (see comment in SegAlgoShowering) //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (useShowering) { CSCSegment segShower = showering_->showerSeg(theChamber, rechits); // Make sure have at least 3 hits... if ( segShower.nRecHits() < 3 ) return segmentInChamber; if ( segShower.chi2() == -1 ) return segmentInChamber; segmentInChamber.push_back(segShower); return segmentInChamber; } else{ LogDebug("CSCSegment|CSC") <<"Number of rechits in the cluster/chamber > "<< UpperLimit<< " ... Segment finding in the cluster/chamber canceled!"; // std::cout<<"Number of rechits in the cluster/chamber > "<< UpperLimit<< // " ... Segment finding in the cluster/chamber canceled! "<<std::endl; return segmentInChamber; } } // Find out which station, ring and chamber we are in // Used to choose station/ring dependant y-weight cuts if( rechits.size() > 0 ) { thering = rechits[0]->cscDetId().ring(); thestation = rechits[0]->cscDetId().station(); //thecham = rechits[0]->cscDetId().chamber(); } // std::cout<<"We are in Station/ring/chamber: "<<thestation <<" "<< thering<<" "<< thecham<<std::endl; // Cut-off parameter - don't reconstruct segments with less than X hits if( n_layers_occupied_tot < minHitsPerSegment ) { return segmentInChamber; } // Start building all possible hit combinations: // loop over the six chamber layers and form segment candidates from the available hits: for(int layer = 0; layer < 6; ++layer) { // ***************************************************************** // *** Set missed layer counter here (not currently implemented) *** // ***************************************************************** // if( PAhits_onLayer[layer].size() == 0 ) { // n_layers_missed_tot += 1; // } if( PAhits_onLayer[layer].size() > 0 ) { n_layers_processed += 1; } // Save the size of the protosegment before hits were added on the current layer int orig_number_of_psegs = Psegments.size(); int orig_number_of_noL1_psegs = Psegments_noL1.size(); int orig_number_of_noL2_psegs = Psegments_noL2.size(); int orig_number_of_noL3_psegs = Psegments_noL3.size(); int orig_number_of_noL4_psegs = Psegments_noL4.size(); int orig_number_of_noL5_psegs = Psegments_noL5.size(); int orig_number_of_noL6_psegs = Psegments_noL6.size(); // loop over the hits on the layer and initiate protosegments or add hits to protosegments for(int hit = 0; hit < int(PAhits_onLayer[layer].size()); ++hit) { // loop all hits on the Layer number "layer" // create protosegments from all hits on the first layer with hits if( orig_number_of_psegs == 0 ) { // would be faster to turn this around - ask for "orig_number_of_psegs != 0" Psegments_hits.push_back(PAhits_onLayer[layer][hit]); Psegments.push_back(Psegments_hits); Psegments_noL6.push_back(Psegments_hits); Psegments_noL5.push_back(Psegments_hits); Psegments_noL4.push_back(Psegments_hits); Psegments_noL3.push_back(Psegments_hits); Psegments_noL2.push_back(Psegments_hits); // Initialize weights corresponding to this segment for first hit (with 0) curv_A.push_back(0.0); curv_noL6_A.push_back(0.0); curv_noL5_A.push_back(0.0); curv_noL4_A.push_back(0.0); curv_noL3_A.push_back(0.0); curv_noL2_A.push_back(0.0); weight_A.push_back(0.0); weight_noL6_A.push_back(0.0); weight_noL5_A.push_back(0.0); weight_noL4_A.push_back(0.0); weight_noL3_A.push_back(0.0); weight_noL2_A.push_back(0.0); weight_B.push_back(0.0); weight_noL6_B.push_back(0.0); weight_noL5_B.push_back(0.0); weight_noL4_B.push_back(0.0); weight_noL3_B.push_back(0.0); weight_noL2_B.push_back(0.0); // reset array for next hit on next layer Psegments_hits .clear(); } else { if( orig_number_of_noL1_psegs == 0 ) { Psegments_hits.push_back(PAhits_onLayer[layer][hit]); Psegments_noL1.push_back(Psegments_hits); // Initialize weight corresponding to this segment for first hit (with 0) curv_noL1_A.push_back(0.0); weight_noL1_A.push_back(0.0); weight_noL1_B.push_back(0.0); // reset array for next hit on next layer Psegments_hits .clear(); } // loop over the protosegments and create a new protosegments for each hit-1 on this layer for( int pseg = 0; pseg < orig_number_of_psegs; ++pseg ) { int pseg_pos = (pseg)+((hit)*orig_number_of_psegs); int pseg_noL1_pos = (pseg)+((hit)*orig_number_of_noL1_psegs); int pseg_noL2_pos = (pseg)+((hit)*orig_number_of_noL2_psegs); int pseg_noL3_pos = (pseg)+((hit)*orig_number_of_noL3_psegs); int pseg_noL4_pos = (pseg)+((hit)*orig_number_of_noL4_psegs); int pseg_noL5_pos = (pseg)+((hit)*orig_number_of_noL5_psegs); int pseg_noL6_pos = (pseg)+((hit)*orig_number_of_noL6_psegs); // - Loop all psegs. // - If not last hit, clone existing protosegments (PAhits_onLayer[layer].size()-1) times // - then add the new hits if( ! (hit == int(PAhits_onLayer[layer].size()-1)) ) { // not the last hit - prepare (copy) new protosegments for the following hits // clone psegs (to add next hits or last hit on layer): Psegments.push_back(Psegments[ pseg_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) Psegments_noL1.push_back(Psegments_noL1[ pseg_noL1_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) Psegments_noL2.push_back(Psegments_noL2[ pseg_noL2_pos ]); if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) Psegments_noL3.push_back(Psegments_noL3[ pseg_noL3_pos ]); if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) Psegments_noL4.push_back(Psegments_noL4[ pseg_noL4_pos ]); if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) Psegments_noL5.push_back(Psegments_noL5[ pseg_noL5_pos ]); if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) Psegments_noL6.push_back(Psegments_noL6[ pseg_noL6_pos ]); // clone weight corresponding to this segment too weight_A.push_back(weight_A[ pseg_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) weight_noL1_A.push_back(weight_noL1_A[ pseg_noL1_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) weight_noL2_A.push_back(weight_noL2_A[ pseg_noL2_pos ]); if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) weight_noL3_A.push_back(weight_noL3_A[ pseg_noL3_pos ]); if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) weight_noL4_A.push_back(weight_noL4_A[ pseg_noL4_pos ]); if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) weight_noL5_A.push_back(weight_noL5_A[ pseg_noL5_pos ]); if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) weight_noL6_A.push_back(weight_noL6_A[ pseg_noL6_pos ]); // clone curvature variable corresponding to this segment too curv_A.push_back(curv_A[ pseg_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) curv_noL1_A.push_back(curv_noL1_A[ pseg_noL1_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) curv_noL2_A.push_back(curv_noL2_A[ pseg_noL2_pos ]); if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) curv_noL3_A.push_back(curv_noL3_A[ pseg_noL3_pos ]); if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) curv_noL4_A.push_back(curv_noL4_A[ pseg_noL4_pos ]); if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) curv_noL5_A.push_back(curv_noL5_A[ pseg_noL5_pos ]); if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) curv_noL6_A.push_back(curv_noL6_A[ pseg_noL6_pos ]); // clone "y"-weight corresponding to this segment too weight_B.push_back(weight_B[ pseg_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) weight_noL1_B.push_back(weight_noL1_B[ pseg_noL1_pos ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) weight_noL2_B.push_back(weight_noL2_B[ pseg_noL2_pos ]); if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) weight_noL3_B.push_back(weight_noL3_B[ pseg_noL3_pos ]); if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) weight_noL4_B.push_back(weight_noL4_B[ pseg_noL4_pos ]); if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) weight_noL5_B.push_back(weight_noL5_B[ pseg_noL5_pos ]); if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) weight_noL6_B.push_back(weight_noL6_B[ pseg_noL6_pos ]); } // add hits to original pseg: Psegments[ pseg_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) Psegments_noL1[ pseg_noL1_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) Psegments_noL2[ pseg_noL2_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) Psegments_noL3[ pseg_noL3_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) Psegments_noL4[ pseg_noL4_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) Psegments_noL5[ pseg_noL5_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) Psegments_noL6[ pseg_noL6_pos ].push_back(PAhits_onLayer[ layer ][ hit ]); // calculate/update the weight (only for >2 hits on psegment): if( Psegments[ pseg_pos ].size() > 2 ) { // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_A[ pseg_pos ] += theWeight( (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().x(), (*(Psegments[ pseg_pos ].end()-2 ))->localPosition().x(), (*(Psegments[ pseg_pos ].end()-3 ))->localPosition().x(), float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()), float((*(Psegments[ pseg_pos ].end()-2))->cscDetId().layer()), float((*(Psegments[ pseg_pos ].end()-3))->cscDetId().layer()) ); weight_B[ pseg_pos ] += theWeight( (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().y(), (*(Psegments[ pseg_pos ].end()-2 ))->localPosition().y(), (*(Psegments[ pseg_pos ].end()-3 ))->localPosition().y(), float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()), float((*(Psegments[ pseg_pos ].end()-2))->cscDetId().layer()), float((*(Psegments[ pseg_pos ].end()-3))->cscDetId().layer()) ); // if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments[ pseg_pos ].size()) == n_layers_occupied_tot) { curv_A[ pseg_pos ] += theWeight( (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().x(), (*(Psegments[ pseg_pos ].end()-midlayer_pointer[n_layers_occupied_tot-1] ))->localPosition().x(), (*(Psegments[ pseg_pos ].end()-n_layers_occupied_tot ))->localPosition().x(), float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()), float((*(Psegments[ pseg_pos ].end()-midlayer_pointer[n_layers_occupied_tot-1] ))->cscDetId().layer()), float((*(Psegments[ pseg_pos ].end()-n_layers_occupied_tot ))->cscDetId().layer()) ); if (curv_A[ pseg_pos ] > curvePenaltyThreshold) weight_A[ pseg_pos ] = weight_A[ pseg_pos ] * curvePenalty; if (weight_B[ pseg_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_A[ pseg_pos ] = weight_A[ pseg_pos ] * yweightPenalty; if (weight_A[ pseg_pos ] < min_weight_A ) { min_weight_A = weight_A[ pseg_pos ]; //best_weight_B = weight_B[ pseg_pos ]; //best_curv_A = curv_A[ pseg_pos ]; best_pseg = pseg_pos ; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } if ( n_layers_occupied_tot > 3 ) { if (pseg < orig_number_of_noL1_psegs && (n_layers_processed != 2)) { if(( Psegments_noL1[ pseg_noL1_pos ].size() > 2 ) ) { // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_noL1_A[ pseg_noL1_pos ] += theWeight( (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL1[ pseg_noL1_pos ].end()-2 ))->localPosition().x(), (*(Psegments_noL1[ pseg_noL1_pos ].end()-3 ))->localPosition().x(), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-3))->cscDetId().layer()) ); weight_noL1_B[ pseg_noL1_pos ] += theWeight( (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().y(), (*(Psegments_noL1[ pseg_noL1_pos ].end()-2 ))->localPosition().y(), (*(Psegments_noL1[ pseg_noL1_pos ].end()-3 ))->localPosition().y(), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-3))->cscDetId().layer()) ); //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments_noL1[ pseg_noL1_pos ].size()) == n_layers_occupied_tot -1 ) { curv_noL1_A[ pseg_noL1_pos ] += theWeight( (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL1[ pseg_noL1_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(), (*(Psegments_noL1[ pseg_noL1_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->cscDetId().layer()), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()), float((*(Psegments_noL1[ pseg_noL1_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer()) ); if (curv_noL1_A[ pseg_noL1_pos ] > curvePenaltyThreshold) weight_noL1_A[ pseg_noL1_pos ] = weight_noL1_A[ pseg_noL1_pos ] * curvePenalty; if (weight_noL1_B[ pseg_noL1_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_noL1_A[ pseg_noL1_pos ] = weight_noL1_A[ pseg_noL1_pos ] * yweightPenalty; if (weight_noL1_A[ pseg_noL1_pos ] < min_weight_noLx_A ) { min_weight_noLx_A = weight_noL1_A[ pseg_noL1_pos ]; //best_weight_noLx_B = weight_noL1_B[ pseg_noL1_pos ]; //best_curv_noLx_A = curv_noL1_A[ pseg_noL1_pos ]; best_noLx_pseg = pseg_noL1_pos; best_Layer_noLx = 1; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } } } if ( n_layers_occupied_tot > 3 ) { if (pseg < orig_number_of_noL2_psegs && ( n_layers_processed != 2 )) { if(( Psegments_noL2[ pseg_noL2_pos ].size() > 2 )) { // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_noL2_A[ pseg_noL2_pos ] += theWeight( (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL2[ pseg_noL2_pos ].end()-2 ))->localPosition().x(), (*(Psegments_noL2[ pseg_noL2_pos ].end()-3 ))->localPosition().x(), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-3))->cscDetId().layer()) ); weight_noL2_B[ pseg_noL2_pos ] += theWeight( (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().y(), (*(Psegments_noL2[ pseg_noL2_pos ].end()-2 ))->localPosition().y(), (*(Psegments_noL2[ pseg_noL2_pos ].end()-3 ))->localPosition().y(), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-3))->cscDetId().layer()) ); //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments_noL2[ pseg_noL2_pos ].size()) == n_layers_occupied_tot -1 ) { curv_noL2_A[ pseg_noL2_pos ] += theWeight( (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL2[ pseg_noL2_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(), (*(Psegments_noL2[ pseg_noL2_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->cscDetId().layer()), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()), float((*(Psegments_noL2[ pseg_noL2_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer()) ); if (curv_noL2_A[ pseg_noL2_pos ] > curvePenaltyThreshold) weight_noL2_A[ pseg_noL2_pos ] = weight_noL2_A[ pseg_noL2_pos ] * curvePenalty; if (weight_noL2_B[ pseg_noL2_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_noL2_A[ pseg_noL2_pos ] = weight_noL2_A[ pseg_noL2_pos ] * yweightPenalty; if (weight_noL2_A[ pseg_noL2_pos ] < min_weight_noLx_A ) { min_weight_noLx_A = weight_noL2_A[ pseg_noL2_pos ]; //best_weight_noLx_B = weight_noL2_B[ pseg_noL2_pos ]; //best_curv_noLx_A = curv_noL2_A[ pseg_noL2_pos ]; best_noLx_pseg = pseg_noL2_pos; best_Layer_noLx = 2; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } } } if ( n_layers_occupied_tot > 3 ) { if (pseg < orig_number_of_noL3_psegs && ( n_layers_processed != 3 )) { if(( Psegments_noL3[ pseg_noL3_pos ].size() > 2 )) { // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_noL3_A[ pseg_noL3_pos ] += theWeight( (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL3[ pseg_noL3_pos ].end()-2 ))->localPosition().x(), (*(Psegments_noL3[ pseg_noL3_pos ].end()-3 ))->localPosition().x(), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-3))->cscDetId().layer()) ); weight_noL3_B[ pseg_noL3_pos ] += theWeight( (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().y(), (*(Psegments_noL3[ pseg_noL3_pos ].end()-2 ))->localPosition().y(), (*(Psegments_noL3[ pseg_noL3_pos ].end()-3 ))->localPosition().y(), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-3))->cscDetId().layer()) ); //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments_noL3[ pseg_noL3_pos ].size()) == n_layers_occupied_tot -1 ) { curv_noL3_A[ pseg_noL3_pos ] += theWeight( (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL3[ pseg_noL3_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(), (*(Psegments_noL3[ pseg_noL3_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->cscDetId().layer()), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()), float((*(Psegments_noL3[ pseg_noL3_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer()) ); if (curv_noL3_A[ pseg_noL3_pos ] > curvePenaltyThreshold) weight_noL3_A[ pseg_noL3_pos ] = weight_noL3_A[ pseg_noL3_pos ] * curvePenalty; if (weight_noL3_B[ pseg_noL3_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_noL3_A[ pseg_noL3_pos ] = weight_noL3_A[ pseg_noL3_pos ] * yweightPenalty; if (weight_noL3_A[ pseg_noL3_pos ] < min_weight_noLx_A ) { min_weight_noLx_A = weight_noL3_A[ pseg_noL3_pos ]; //best_weight_noLx_B = weight_noL3_B[ pseg_noL3_pos ]; //best_curv_noLx_A = curv_noL3_A[ pseg_noL3_pos ]; best_noLx_pseg = pseg_noL3_pos; best_Layer_noLx = 3; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } } } if ( n_layers_occupied_tot > 3 ) { if (pseg < orig_number_of_noL4_psegs && ( n_layers_processed != 4 )) { if(( Psegments_noL4[ pseg_noL4_pos ].size() > 2 )) { // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_noL4_A[ pseg_noL4_pos ] += theWeight( (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL4[ pseg_noL4_pos ].end()-2 ))->localPosition().x(), (*(Psegments_noL4[ pseg_noL4_pos ].end()-3 ))->localPosition().x(), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-3))->cscDetId().layer()) ); weight_noL4_B[ pseg_noL4_pos ] += theWeight( (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().y(), (*(Psegments_noL4[ pseg_noL4_pos ].end()-2 ))->localPosition().y(), (*(Psegments_noL4[ pseg_noL4_pos ].end()-3 ))->localPosition().y(), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-3))->cscDetId().layer()) ); //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments_noL4[ pseg_noL4_pos ].size()) == n_layers_occupied_tot -1 ) { curv_noL4_A[ pseg_noL4_pos ] += theWeight( (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL4[ pseg_noL4_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(), (*(Psegments_noL4[ pseg_noL4_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->cscDetId().layer()), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()), float((*(Psegments_noL4[ pseg_noL4_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer()) ); if (curv_noL4_A[ pseg_noL4_pos ] > curvePenaltyThreshold) weight_noL4_A[ pseg_noL4_pos ] = weight_noL4_A[ pseg_noL4_pos ] * curvePenalty; if (weight_noL4_B[ pseg_noL4_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_noL4_A[ pseg_noL4_pos ] = weight_noL4_A[ pseg_noL4_pos ] * yweightPenalty; if (weight_noL4_A[ pseg_noL4_pos ] < min_weight_noLx_A ) { min_weight_noLx_A = weight_noL4_A[ pseg_noL4_pos ]; //best_weight_noLx_B = weight_noL4_B[ pseg_noL4_pos ]; //best_curv_noLx_A = curv_noL4_A[ pseg_noL4_pos ]; best_noLx_pseg = pseg_noL4_pos; best_Layer_noLx = 4; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } } } if ( n_layers_occupied_tot > 4 ) { if (pseg < orig_number_of_noL5_psegs && ( n_layers_processed != 5 )) { if(( Psegments_noL5[ pseg_noL5_pos ].size() > 2 )){ // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_noL5_A[ pseg_noL5_pos ] += theWeight( (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL5[ pseg_noL5_pos ].end()-2 ))->localPosition().x(), (*(Psegments_noL5[ pseg_noL5_pos ].end()-3 ))->localPosition().x(), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-3))->cscDetId().layer()) ); weight_noL5_B[ pseg_noL5_pos ] += theWeight( (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().y(), (*(Psegments_noL5[ pseg_noL5_pos ].end()-2 ))->localPosition().y(), (*(Psegments_noL5[ pseg_noL5_pos ].end()-3 ))->localPosition().y(), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-3))->cscDetId().layer()) ); //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments_noL5[ pseg_noL5_pos ].size()) == n_layers_occupied_tot -1 ) { curv_noL5_A[ pseg_noL5_pos ] += theWeight( (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL5[ pseg_noL5_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(), (*(Psegments_noL5[ pseg_noL5_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->cscDetId().layer()), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()), float((*(Psegments_noL5[ pseg_noL5_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer()) ); if (curv_noL5_A[ pseg_noL5_pos ] > curvePenaltyThreshold) weight_noL5_A[ pseg_noL5_pos ] = weight_noL5_A[ pseg_noL5_pos ] * curvePenalty; if (weight_noL5_B[ pseg_noL5_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_noL5_A[ pseg_noL5_pos ] = weight_noL5_A[ pseg_noL5_pos ] * yweightPenalty; if (weight_noL5_A[ pseg_noL5_pos ] < min_weight_noLx_A ) { min_weight_noLx_A = weight_noL5_A[ pseg_noL5_pos ]; //best_weight_noLx_B = weight_noL5_B[ pseg_noL5_pos ]; //best_curv_noLx_A = curv_noL5_A[ pseg_noL5_pos ]; best_noLx_pseg = pseg_noL5_pos; best_Layer_noLx = 5; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } } } if ( n_layers_occupied_tot > 5 ) { if (pseg < orig_number_of_noL6_psegs && ( n_layers_processed != 6 )) { if(( Psegments_noL6[ pseg_noL6_pos ].size() > 2 )){ // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits, // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance) weight_noL6_A[ pseg_noL6_pos ] += theWeight( (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL6[ pseg_noL6_pos ].end()-2 ))->localPosition().x(), (*(Psegments_noL6[ pseg_noL6_pos ].end()-3 ))->localPosition().x(), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-3))->cscDetId().layer()) ); weight_noL6_B[ pseg_noL6_pos ] += theWeight( (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().y(), (*(Psegments_noL6[ pseg_noL6_pos ].end()-2 ))->localPosition().y(), (*(Psegments_noL6[ pseg_noL6_pos ].end()-3 ))->localPosition().y(), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1))->cscDetId().layer()), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-2))->cscDetId().layer()), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-3))->cscDetId().layer()) ); //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight if(int(Psegments_noL6[ pseg_noL6_pos ].size()) == n_layers_occupied_tot -1 ) { curv_noL6_A[ pseg_noL6_pos ] += theWeight( (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().x(), (*(Psegments_noL6[ pseg_noL6_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(), (*(Psegments_noL6[ pseg_noL6_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->cscDetId().layer()), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()), float((*(Psegments_noL6[ pseg_noL6_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer()) ); if (curv_noL6_A[ pseg_noL6_pos ] > curvePenaltyThreshold) weight_noL6_A[ pseg_noL6_pos ] = weight_noL6_A[ pseg_noL6_pos ] * curvePenalty; if (weight_noL6_B[ pseg_noL6_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_noL6_A[ pseg_noL6_pos ] = weight_noL6_A[ pseg_noL6_pos ] * yweightPenalty; if (weight_noL6_A[ pseg_noL6_pos ] < min_weight_noLx_A ) { min_weight_noLx_A = weight_noL6_A[ pseg_noL6_pos ]; //best_weight_noLx_B = weight_noL6_B[ pseg_noL6_pos ]; //best_curv_noLx_A = curv_noL6_A[ pseg_noL6_pos ]; best_noLx_pseg = pseg_noL6_pos; best_Layer_noLx = 6; } } // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from. // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted. } } } } } } } //************************************************************************; //*** End segment building *******************************************; //************************************************************************; // Important part! Here segment(s) are actually chosen. All the good segments // could be chosen or some (best) ones only (in order to save time). // Check if there is a segment with n-1 hits that has a signifcantly better // weight than the best n hit segment // IBL 070828: implicit assumption here is that there will always only be one segment per // cluster - if there are >1 we will need to find out which segment the alternative n-1 hit // protosegment belongs to! //float chosen_weight = min_weight_A; //float chosen_ywgt = best_weight_B; //float chosen_curv = best_curv_A; //int chosen_nlayers = n_layers_occupied_tot; int chosen_pseg = best_pseg; if (best_pseg<0) { return segmentInChamber; } chosen_Psegments = (Psegments); chosen_weight_A = (weight_A); float hit_drop_limit = -999999.999; // define different weight improvement requirements depending on how many layers are in the segment candidate switch ( n_layers_processed ) { case 1 : // do nothing; break; case 2 : // do nothing; break; case 3 : // do nothing; break; case 4 : hit_drop_limit = hitDropLimit6Hits * (1./2.) * hitDropLimit4Hits; if ((best_Layer_noLx < 1) || (best_Layer_noLx > 4)) { // std::cout<<"CSCSegAlgoST: For four layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl; } if ((best_Layer_noLx == 2) || (best_Layer_noLx == 3)) hit_drop_limit = hit_drop_limit * (1./2.); break; case 5 : hit_drop_limit = hitDropLimit6Hits * (2./3.) * hitDropLimit5Hits; if ((best_Layer_noLx < 1) || (best_Layer_noLx > 5)) { // std::cout<<"CSCSegAlgoST: For five layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl; } if ((best_Layer_noLx == 2) || (best_Layer_noLx == 4)) hit_drop_limit = hit_drop_limit * (1./2.); if (best_Layer_noLx == 3) hit_drop_limit = hit_drop_limit * (1./3.); break; case 6 : hit_drop_limit = hitDropLimit6Hits * (3./4.); if ((best_Layer_noLx < 1) || (best_Layer_noLx > 6)) { // std::cout<<"CSCSegAlgoST: For six layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl; } if ((best_Layer_noLx == 2) || (best_Layer_noLx == 5)) hit_drop_limit = hit_drop_limit * (1./2.); if ((best_Layer_noLx == 3) || (best_Layer_noLx == 4)) hit_drop_limit = hit_drop_limit * (1./3.); break; default : // Fallback - should never occur. LogDebug("CSCSegment|CSC") <<"CSCSegAlgoST: Unexpected number of layers with hits - please inform developers."; // std::cout<<"CSCSegAlgoST: Unexpected number of layers with hits - please inform developers."<<std::endl; hit_drop_limit = 0.1; } // choose the NoLx collection (the one that contains the best N-1 candidate) switch ( best_Layer_noLx ) { case 1 : Psegments_noLx.clear(); Psegments_noLx = Psegments_noL1; weight_noLx_A.clear(); weight_noLx_A = weight_noL1_A; break; case 2 : Psegments_noLx.clear(); Psegments_noLx = Psegments_noL2; weight_noLx_A.clear(); weight_noLx_A = weight_noL2_A; break; case 3 : Psegments_noLx.clear(); Psegments_noLx = Psegments_noL3; weight_noLx_A.clear(); weight_noLx_A = weight_noL3_A; break; case 4 : Psegments_noLx.clear(); Psegments_noLx = Psegments_noL4; weight_noLx_A.clear(); weight_noLx_A = weight_noL4_A; break; case 5 : Psegments_noLx.clear(); Psegments_noLx = Psegments_noL5; weight_noLx_A.clear(); weight_noLx_A = weight_noL5_A; break; case 6 : Psegments_noLx.clear(); Psegments_noLx = Psegments_noL6; weight_noLx_A.clear(); weight_noLx_A = weight_noL6_A; break; default : // Fallback - should occur only for preclusters with only 3 layers with hits. Psegments_noLx.clear(); weight_noLx_A.clear(); } if( min_weight_A > 0. ) { if ( min_weight_noLx_A/min_weight_A < hit_drop_limit ) { //chosen_weight = min_weight_noLx_A; //chosen_ywgt = best_weight_noLx_B; //chosen_curv = best_curv_noLx_A; //chosen_nlayers = n_layers_occupied_tot-1; chosen_pseg = best_noLx_pseg; chosen_Psegments.clear(); chosen_weight_A.clear(); chosen_Psegments = (Psegments_noLx); chosen_weight_A = (weight_noLx_A); } } if(onlyBestSegment) { ChooseSegments2a( chosen_Psegments, chosen_pseg ); } else { ChooseSegments3( chosen_Psegments, chosen_weight_A, chosen_pseg ); } for(unsigned int iSegment=0; iSegment<GoodSegments.size();++iSegment){ protoSegment = GoodSegments[iSegment]; passCondNumber=false; passCondNumber_2 = false; protoChiUCorrection=1.0; doSlopesAndChi2(); // Attempt to handle numerical instability of the fit; // Any segment with protoChi2/protoNDF>chi2Norm_3D_ // considered as that one potentially suffering from // numerical instability in fit. if(correctCov_){ // Call the fit with prefitting option; // First fit a straight line to X-Z coordinates // and calculate chi^2 (chiUZ in correctTheCovX(void)) for X-Z fit; // Scale up errors in X if chiUZ too big (default 20); // Refit XY-Z with the scaled up X errors if(protoChi2/protoNDF>chi2Norm_3D_){ passCondNumber = true; doSlopesAndChi2(); } if(protoChiUCorrection<1.00005){ LogDebug("CSCSegment|segmWierd") << "Wierd segment, ErrXX scaled, refit " <<std::endl; if(protoChi2/protoNDF>chi2Norm_3D_){ // Call the fit with direct adjustment of condition number; // If the attempt to improve fit by scaling up X error fails // call the procedure to make the condition number of M compatible with // the precision of X and Y measurements; // Achieved by decreasing abs value of the Covariance LogDebug("CSCSegment|segmWierd") << "Wierd segment, ErrXY changed to match cond. number, refit " << std::endl; passCondNumber_2=true; doSlopesAndChi2(); } } // Call the pre-pruning procedure; // If the attempt to improve fit by scaling up X error is successfull, // while scale factor for X errors is too big. // Prune the recHit inducing the biggest contribution into X-Z chi^2 // and refit; if(prePrun_ && (sqrt(protoChiUCorrection)>prePrunLimit_) && (protoSegment.size()>3)){ LogDebug("CSCSegment|segmWierd") << "Scale factor protoChiUCorrection too big, pre-Prune, refit " << std::endl; protoSegment.erase(protoSegment.begin()+(maxContrIndex), protoSegment.begin()+(maxContrIndex+1)); doSlopesAndChi2(); } } fillLocalDirection(); // calculate error matrix AlgebraicSymMatrix protoErrors = calculateError(); // but reorder components to match what's required by TrackingRecHit interface // i.e. slopes first, then positions flipErrors( protoErrors ); // CSCSegment temp(protoSegment, protoIntercept, protoDirection, protoErrors, protoChi2); segmentInChamber.push_back(temp); } return segmentInChamber; }
std::vector<CSCSegment> CSCSegAlgoST::buildSegments2 | ( | ChamberHitContainer | rechits | ) |
Build track segments in this chamber (this is where the actual segment-building algorithm hides.)
AlgebraicSymMatrix CSCSegAlgoST::calculateError | ( | void | ) | const [private] |
Definition at line 1936 of file CSCSegAlgoST.cc.
References funct::A, derivativeMatrix(), query::result, weightMatrix(), and create_public_pileup_plots::weights.
Referenced by buildSegments(), and prune_bad_hits().
{ AlgebraicSymMatrix weights = weightMatrix(); AlgebraicMatrix A = derivativeMatrix(); // (AT W A)^-1 // from http://www.phys.ufl.edu/~avery/fitting.html, part I int ierr; AlgebraicSymMatrix result = weights.similarityT(A); result.invert(ierr); // blithely assuming the inverting never fails... return result; }
std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoST::chainHits | ( | const CSCChamber * | aChamber, |
ChamberHitContainer & | rechits | ||
) |
Definition at line 507 of file CSCSegAlgoST.cc.
References begin, CSCChamberSpecs::chamberTypeName(), end, i, isGoodToMerge(), CSCChamber::specs(), and groupFilesInBlocks::temp.
Referenced by run().
{ std::vector<ChamberHitContainer> rechits_chains; // this is a collection of groups of rechits std::vector<const CSCRecHit2D*> temp; std::vector< ChamberHitContainer > seeds; std::vector <bool> usedCluster; // split rechits into subvectors and return vector of vectors: // Loop over rechits // Create one seed per hit //std::cout<<" rechits.size() = "<<rechits.size()<<std::endl; for(unsigned int i = 0; i < rechits.size(); ++i) { temp.clear(); temp.push_back(rechits[i]); seeds.push_back(temp); usedCluster.push_back(false); } bool isME11a = false; if ("ME1/a" == aChamber->specs()->chamberTypeName()){ isME11a = true; } // merge chains that are too close ("touch" each other) for(size_t NNN = 0; NNN < seeds.size(); ++NNN) { for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) { if(usedCluster[MMM] || usedCluster[NNN]){ continue; } // all is in the way we define "good"; // try not to "cluster" the hits but to "chain" them; // it does the clustering but also does a better job // for inclined tracks (not clustering them togheter; // crossed tracks would be still clustered together) // 22.12.09: In fact it is not much more different // than the "clustering", we just introduce another // variable in the game - Z. And it make sense // to re-introduce Y (or actually wire group mumber) // in a similar way as for the strip number - see // the code below. bool goodToMerge = isGoodToMerge(isME11a, seeds[NNN], seeds[MMM]); if(goodToMerge){ // merge chains! // merge by adding seed NNN to seed MMM and erasing seed NNN // add seed NNN to MMM (lower to larger number) seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end()); // mark seed NNN as used usedCluster[NNN] = true; // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to // next seed (NNN+1) break; } } } // hand over the final seeds to the output // would be more elegant if we could do the above step with // erasing the merged ones, rather than the for(size_t NNN = 0; NNN < seeds.size(); ++NNN) { if(usedCluster[NNN]) continue; //skip seeds that have been marked as used up in merging rechits_chains.push_back(seeds[NNN]); } //*************************************************************** return rechits_chains; }
void CSCSegAlgoST::ChooseSegments | ( | void | ) | [private] |
void CSCSegAlgoST::ChooseSegments2 | ( | int | best_seg | ) | [private] |
Definition at line 1662 of file CSCSegAlgoST.cc.
References GoodSegments, LogDebug, Psegments, findQualityFiles::size, and weight_A.
{ // std::vector <int> CommonHits(6); // nice concept :) std::vector <unsigned int> BadCandidate; int SumCommonHits =0; GoodSegments.clear(); BadCandidate.clear(); for(unsigned int iCand=0;iCand<Psegments.size();++iCand) { // skip here if segment was marked bad for(unsigned int iiCand=iCand+1;iiCand<Psegments.size();++iiCand){ // skip here too if segment was marked bad SumCommonHits =0; if( Psegments[iCand].size() != Psegments[iiCand].size() ) { LogDebug("CSCSegment|CSC") <<"CSCSegmentST::ChooseSegments2: ALARM!! THIS should not happen!!"; // std::cout<<"CSCSegmentST::ChooseSegments2: ALARM!! THIS should not happen!!"<<std::endl; } else { for( int ihits = 0; ihits < int(Psegments[iCand].size()); ++ihits ) { // iCand and iiCand NEED to have same nr of hits! (alsways have by construction) if( Psegments[iCand][ihits] == Psegments[iiCand][ihits]) { ++SumCommonHits; } } } if(SumCommonHits>1) { if( weight_A[iCand]>weight_A[iiCand] ) { // use weight_A here BadCandidate.push_back(iCand); // rather mark segment bad by an array which is in sync with protosegments!! e.g. set weight = weight*1000 or have an addidional array or set it to weight *= -1 } else{ BadCandidate.push_back(iiCand); // rather mark segment bad by an array which is in sync with protosegments!! e.g. set weight = weight*1000 or have an addidional array or set it to weight *= -1 } } } } bool discard; for(unsigned int isegm=0;isegm<Psegments.size();++isegm) { // For best results another iteration/comparison over Psegments //should be applied here... It would make the program much slower. discard = false; for(unsigned int ibad=0;ibad<BadCandidate.size();++ibad) { // can save this loop if we used an array in sync with Psegments!!!! if(isegm == BadCandidate[ibad]) { discard = true; } } if(!discard) { GoodSegments.push_back( Psegments[isegm] ); } } }
void CSCSegAlgoST::ChooseSegments2a | ( | std::vector< ChamberHitContainer > & | best_segments, |
int | best_seg | ||
) | [private] |
Definition at line 1604 of file CSCSegAlgoST.cc.
References GoodSegments.
Referenced by buildSegments().
{ // just return best segment GoodSegments.clear(); GoodSegments.push_back( chosen_segments[chosen_seg] ); }
void CSCSegAlgoST::ChooseSegments3 | ( | int | best_seg | ) | [private] |
Referenced by buildSegments().
void CSCSegAlgoST::ChooseSegments3 | ( | std::vector< ChamberHitContainer > & | best_segments, |
std::vector< float > & | best_weight, | ||
int | best_seg | ||
) | [private] |
Definition at line 1610 of file CSCSegAlgoST.cc.
References GoodSegments, and findQualityFiles::size.
{ int SumCommonHits = 0; GoodSegments.clear(); int nr_remaining_candidates; unsigned int nr_of_segment_candidates; nr_remaining_candidates = nr_of_segment_candidates = chosen_segments.size(); // always select and return best protosegment: GoodSegments.push_back( chosen_segments[ chosen_seg ] ); float chosen_weight_temp = 999999.; int chosen_seg_temp = -1; // try to find further segment candidates: while( nr_remaining_candidates > 0 ) { for(unsigned int iCand=0; iCand < nr_of_segment_candidates; ++iCand) { //only compare current best to psegs that have not been marked bad: if( chosen_weight[iCand] < 0. ) continue; SumCommonHits = 0; for( int ihits = 0; ihits < int(chosen_segments[iCand].size()); ++ihits ) { // iCand and iiCand NEED to have same nr of hits! (always have by construction) if( chosen_segments[iCand][ihits] == chosen_segments[chosen_seg][ihits]) { ++SumCommonHits; } } //mark a pseg bad: if(SumCommonHits>1) { // needs to be a card; should be investigated first chosen_weight[iCand] = -1.; nr_remaining_candidates -= 1; } else { // save the protosegment with the smallest weight if( chosen_weight[ iCand ] < chosen_weight_temp ) { chosen_weight_temp = chosen_weight[ iCand ]; chosen_seg_temp = iCand ; } } } if( chosen_seg_temp > -1 ) GoodSegments.push_back( chosen_segments[ chosen_seg_temp ] ); chosen_seg = chosen_seg_temp; // re-initialze temporary best parameters chosen_weight_temp = 999999; chosen_seg_temp = -1; } }
std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoST::clusterHits | ( | const CSCChamber * | aChamber, |
ChamberHitContainer & | rechits | ||
) |
Build groups of rechits that are separated in x and y to save time on the segment finding
Definition at line 391 of file CSCSegAlgoST.cc.
References begin, dXclusBoxMax, dYclusBoxMax, end, i, LogDebug, findQualityFiles::size, groupFilesInBlocks::temp, theChamber, x, and detailsBasic3DVector::y.
Referenced by run().
{ theChamber = aChamber; std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits // const float dXclus_box_cut = 4.; // seems to work reasonably 070116 // const float dYclus_box_cut = 8.; // seems to work reasonably 070116 //float dXclus = 0.0; //float dYclus = 0.0; float dXclus_box = 0.0; float dYclus_box = 0.0; std::vector<const CSCRecHit2D*> temp; std::vector< ChamberHitContainer > seeds; std::vector<float> running_meanX; std::vector<float> running_meanY; std::vector<float> seed_minX; std::vector<float> seed_maxX; std::vector<float> seed_minY; std::vector<float> seed_maxY; //std::cout<<"*************************************************************"<<std::endl; //std::cout<<"Called clusterHits in Chamber "<< theChamber->specs()->chamberTypeName()<<std::endl; //std::cout<<"*************************************************************"<<std::endl; // split rechits into subvectors and return vector of vectors: // Loop over rechits // Create one seed per hit for(unsigned int i = 0; i < rechits.size(); ++i) { temp.clear(); temp.push_back(rechits[i]); seeds.push_back(temp); // First added hit in seed defines the mean to which the next hit is compared // for this seed. running_meanX.push_back( rechits[i]->localPosition().x() ); running_meanY.push_back( rechits[i]->localPosition().y() ); // set min/max X and Y for box containing the hits in the precluster: seed_minX.push_back( rechits[i]->localPosition().x() ); seed_maxX.push_back( rechits[i]->localPosition().x() ); seed_minY.push_back( rechits[i]->localPosition().y() ); seed_maxY.push_back( rechits[i]->localPosition().y() ); } // merge clusters that are too close // measure distance between final "running mean" for(size_t NNN = 0; NNN < seeds.size(); ++NNN) { for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) { if(running_meanX[MMM] == 999999. || running_meanX[NNN] == 999999. ) { LogDebug("CSCSegment|CSC") << "CSCSegmentST::clusterHits: Warning: Skipping used seeds, this should happen - inform developers!"; // std::cout<<"We should never see this line now!!!"<<std::endl; continue; //skip seeds that have been used } // calculate cut criteria for simple running mean distance cut: //dXclus = fabs(running_meanX[NNN] - running_meanX[MMM]); //dYclus = fabs(running_meanY[NNN] - running_meanY[MMM]); // calculate minmal distance between precluster boxes containing the hits: if ( running_meanX[NNN] > running_meanX[MMM] ) dXclus_box = seed_minX[NNN] - seed_maxX[MMM]; else dXclus_box = seed_minX[MMM] - seed_maxX[NNN]; if ( running_meanY[NNN] > running_meanY[MMM] ) dYclus_box = seed_minY[NNN] - seed_maxY[MMM]; else dYclus_box = seed_minY[MMM] - seed_maxY[NNN]; if( dXclus_box < dXclusBoxMax && dYclus_box < dYclusBoxMax ) { // merge clusters! // merge by adding seed NNN to seed MMM and erasing seed NNN // calculate running mean for the merged seed: running_meanX[MMM] = (running_meanX[NNN]*seeds[NNN].size() + running_meanX[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size()); running_meanY[MMM] = (running_meanY[NNN]*seeds[NNN].size() + running_meanY[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size()); // update min/max X and Y for box containing the hits in the merged cluster: if ( seed_minX[NNN] <= seed_minX[MMM] ) seed_minX[MMM] = seed_minX[NNN]; if ( seed_maxX[NNN] > seed_maxX[MMM] ) seed_maxX[MMM] = seed_maxX[NNN]; if ( seed_minY[NNN] <= seed_minY[MMM] ) seed_minY[MMM] = seed_minY[NNN]; if ( seed_maxY[NNN] > seed_maxY[MMM] ) seed_maxY[MMM] = seed_maxY[NNN]; // add seed NNN to MMM (lower to larger number) seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end()); // mark seed NNN as used (at the moment just set running mean to 999999.) running_meanX[NNN] = 999999.; running_meanY[NNN] = 999999.; // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to // next seed (NNN+1) break; } } } // hand over the final seeds to the output // would be more elegant if we could do the above step with // erasing the merged ones, rather than the for(size_t NNN = 0; NNN < seeds.size(); ++NNN) { if(running_meanX[NNN] == 999999.) continue; //skip seeds that have been marked as used up in merging rechits_clusters.push_back(seeds[NNN]); } //*************************************************************** return rechits_clusters; }
void CSCSegAlgoST::correctTheCovMatrix | ( | CLHEP::HepMatrix & | IC | ) | [private] |
Definition at line 2053 of file CSCSegAlgoST.cc.
References condSeed1_, condSeed2_, covAnyNumber_, covToAnyNumber_, covToAnyNumberAll_, and mathSSE::sqrt().
Referenced by fillChiSquared(), and fitSlopes().
{ //double condNumberCorr1=0.0; double condNumberCorr2=0.0; double detCov=0.0; double diag1=0.0; double diag2=0.0; double IC_12_corr=0.0; double IC_11_corr=0.0; if(!covToAnyNumberAll_){ //condNumberCorr1=condSeed1_*IC(2,2); condNumberCorr2=condSeed2_*IC(2,2); diag1=IC(1,1)*IC(2,2); diag2=IC(1,2)*IC(1,2); detCov=fabs(diag1-diag2); if((diag1<condNumberCorr2)&&(diag2<condNumberCorr2)){ if(covToAnyNumber_) IC(1,2)=covAnyNumber_; else{ IC_11_corr=condSeed1_+fabs(IC(1,2))/IC(2,2); IC(1,1)=IC_11_corr; } } if(((detCov<condNumberCorr2)&&(diag1>condNumberCorr2))|| ((diag2>condNumberCorr2)&&(detCov<condNumberCorr2) )){ if(covToAnyNumber_) IC(1,2)=covAnyNumber_; else{ IC_12_corr=sqrt(fabs(diag1-condNumberCorr2)); if(IC(1,2)<0) IC(1,2)=(-1)*IC_12_corr; else IC(1,2)=IC_12_corr; } } } else{ IC(1,2)=covAnyNumber_; } }
void CSCSegAlgoST::correctTheCovX | ( | void | ) | [private] |
Vectors of coordinates
Prepare the sums for the standard linear fit
Make a primitive one dimentional fit in U-Z plane U=U0+UZ*Z fit parameters
Calculate the fit line trace Calculate one dimentional chi^2 and normilize the errors if needed
Max contribution in case of big correction factor
Definition at line 1978 of file CSCSegAlgoST.cc.
References chi2Norm_2D_, CSCRecHit2D::cscDetId(), e_Cxx, i, CSCDetId::layer(), CSCChamber::layer(), CSCRecHit2D::localPosition(), CSCRecHit2D::localPositionError(), maxContrIndex, funct::pow(), prePrunLimit_, protoChiUCorrection, protoSegment, mathSSE::sqrt(), theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), v, PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), PV3DBase< T, PVType, FrameType >::y(), PV3DBase< T, PVType, FrameType >::z(), and z.
Referenced by fitSlopes().
{ std::vector<double> uu, vv, zz; //std::vector<double> e_Cxx; e_Cxx.clear(); double sum_U_err=0.0; double sum_Z_U_err=0.0; double sum_Z2_U_err=0.0; double sum_U_U_err=0.0; double sum_UZ_U_err=0.0; std::vector<double> chiUZind; std::vector<double>::iterator chiContribution; double chiUZ=0.0; ChamberHitContainer::const_iterator ih = protoSegment.begin(); for (ih = protoSegment.begin(); ih != protoSegment.end(); ++ih) { const CSCRecHit2D& hit = (**ih); e_Cxx.push_back(hit.localPositionError().xx()); // const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer()); GlobalPoint gp = layer->toGlobal(hit.localPosition()); LocalPoint lp = theChamber->toLocal(gp); // ptc: Local position of hit w.r.t. chamber double u = lp.x(); double v = lp.y(); double z = lp.z(); uu.push_back(u); vv.push_back(v); zz.push_back(z); sum_U_err += 1./e_Cxx.back(); sum_Z_U_err += z/e_Cxx.back(); sum_Z2_U_err += (z*z)/e_Cxx.back(); sum_U_U_err += u/e_Cxx.back(); sum_UZ_U_err += (u*z)/e_Cxx.back(); } double denom=sum_U_err*sum_Z2_U_err-pow(sum_Z_U_err,2); double U0=(sum_Z2_U_err*sum_U_U_err-sum_Z_U_err*sum_UZ_U_err)/denom; double UZ=(sum_U_err*sum_UZ_U_err-sum_Z_U_err*sum_U_U_err)/denom; for(unsigned i=0; i<uu.size(); ++i){ double uMean = U0+UZ*zz[i]; chiUZind.push_back((pow((uMean-uu[i]),2))/e_Cxx[i]); chiUZ += (pow((uMean-uu[i]),2))/e_Cxx[i]; } chiUZ = chiUZ/(uu.size()-2); if(chiUZ>=chi2Norm_2D_){ protoChiUCorrection = chiUZ/chi2Norm_2D_; for(unsigned i=0; i<uu.size(); ++i) e_Cxx[i]=e_Cxx[i]*protoChiUCorrection; } if(sqrt(protoChiUCorrection)>prePrunLimit_){ chiContribution=max_element(chiUZind.begin(),chiUZind.end()); maxContrIndex = chiContribution - chiUZind.begin(); /* for(unsigned i=0; i<chiUZind.size();++i){ if(*chiContribution==chiUZind[i]){ maxContrIndex=i; } } */ } // //return e_Cxx; }
CLHEP::HepMatrix CSCSegAlgoST::derivativeMatrix | ( | void | ) | const [private] |
Definition at line 1908 of file CSCSegAlgoST.cc.
References CSCRecHit2D::cscDetId(), CSCDetId::layer(), CSCChamber::layer(), CSCRecHit2D::localPosition(), makeMuonMisalignmentScenario::matrix, protoSegment, theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), PV3DBase< T, PVType, FrameType >::z(), and z.
Referenced by calculateError().
{ ChamberHitContainer::const_iterator it; int nhits = protoSegment.size(); CLHEP::HepMatrix matrix(2*nhits, 4); int row = 0; for(it = protoSegment.begin(); it != protoSegment.end(); ++it) { const CSCRecHit2D& hit = (**it); const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer()); GlobalPoint gp = layer->toGlobal(hit.localPosition()); LocalPoint lp = theChamber->toLocal(gp); float z = lp.z(); ++row; matrix(row, 1) = 1.; matrix(row, 3) = z; ++row; matrix(row, 2) = 1.; matrix(row, 4) = z; } return matrix; }
void CSCSegAlgoST::doSlopesAndChi2 | ( | void | ) | [private] |
Definition at line 1716 of file CSCSegAlgoST.cc.
References fillChiSquared(), and fitSlopes().
Referenced by buildSegments(), and prune_bad_hits().
{ fitSlopes(); fillChiSquared(); }
void CSCSegAlgoST::fillChiSquared | ( | void | ) | [private] |
Correct the cov matrix
Definition at line 1806 of file CSCSegAlgoST.cc.
References correctTheCovMatrix(), CSCRecHit2D::cscDetId(), e_Cxx, CSCDetId::layer(), CSCChamber::layer(), CSCRecHit2D::localPosition(), CSCRecHit2D::localPositionError(), LogDebug, passCondNumber, passCondNumber_2, protoChi2, protoIntercept, protoNDF, protoSegment, protoSlope_u, protoSlope_v, theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), v, PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), LocalError::xy(), PV3DBase< T, PVType, FrameType >::y(), LocalError::yy(), PV3DBase< T, PVType, FrameType >::z(), and z.
Referenced by doSlopesAndChi2().
{ double chsq = 0.; ChamberHitContainer::const_iterator ih; for (ih = protoSegment.begin(); ih != protoSegment.end(); ++ih) { const CSCRecHit2D& hit = (**ih); const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer()); GlobalPoint gp = layer->toGlobal(hit.localPosition()); LocalPoint lp = theChamber->toLocal(gp); double u = lp.x(); double v = lp.y(); double z = lp.z(); double du = protoIntercept.x() + protoSlope_u * z - u; double dv = protoIntercept.y() + protoSlope_v * z - v; CLHEP::HepMatrix IC(2,2); if(passCondNumber&& !passCondNumber_2){ IC(1,1) = e_Cxx.at(ih-protoSegment.begin()); } else{ IC(1,1) = hit.localPositionError().xx(); } // IC(1,1) = hit.localPositionError().xx(); IC(1,2) = hit.localPositionError().xy(); IC(2,2) = hit.localPositionError().yy(); IC(2,1) = IC(1,2); if(passCondNumber_2){ correctTheCovMatrix(IC); } // Invert covariance matrix int ierr = 0; IC.invert(ierr); if (ierr != 0) { LogDebug("CSCSegment|CSC") << "CSCSegment::fillChiSquared: failed to invert covariance matrix=\n" << IC; // std::cout << "CSCSegment::fillChiSquared: failed to invert covariance matrix=\n" << IC << "\n"; } chsq += du*du*IC(1,1) + 2.*du*dv*IC(1,2) + dv*dv*IC(2,2); } protoChi2 = chsq; protoNDF = 2.*protoSegment.size() - 4; }
void CSCSegAlgoST::fillLocalDirection | ( | void | ) | [private] |
Definition at line 1859 of file CSCSegAlgoST.cc.
References protoDirection, protoIntercept, protoSlope_u, protoSlope_v, mathSSE::sqrt(), theChamber, GeomDet::toGlobal(), csvLumiCalc::unit, and z.
Referenced by buildSegments(), and prune_bad_hits().
{ // Always enforce direction of segment to point from IP outwards // (Incorrect for particles not coming from IP, of course.) double dxdz = protoSlope_u; double dydz = protoSlope_v; double dz = 1./sqrt(1. + dxdz*dxdz + dydz*dydz); double dx = dz*dxdz; double dy = dz*dydz; LocalVector localDir(dx,dy,dz); // localDir may need sign flip to ensure it points outward from IP // ptc: Examine its direction and origin in global z: to point outward // the localDir should always have same sign as global z... double globalZpos = ( theChamber->toGlobal( protoIntercept ) ).z(); double globalZdir = ( theChamber->toGlobal( localDir ) ).z(); double directionSign = globalZpos * globalZdir; protoDirection = (directionSign * localDir).unit(); }
void CSCSegAlgoST::findDuplicates | ( | std::vector< CSCSegment > & | segments | ) | [private] |
Definition at line 2095 of file CSCSegAlgoST.cc.
Referenced by run().
{ // this is intended for ME1/1a only - we have ghost segments because of the strips ganging // this function finds them (first the rechits by sharesInput() ) // if a segment shares all the rechits with another segment it is a duplicate (even if // it has less rechits) for(std::vector<CSCSegment>::iterator it=segments.begin(); it != segments.end(); ++it) { std::vector<CSCSegment*> duplicateSegments; for(std::vector<CSCSegment>::iterator it2=segments.begin(); it2 != segments.end(); ++it2) { // bool allShared = true; if(it!=it2){ allShared = it->sharesRecHits(*it2); } else{ allShared = false; } // if(allShared){ duplicateSegments.push_back(&(*it2)); } } it->setDuplicateSegments(duplicateSegments); } }
void CSCSegAlgoST::fitSlopes | ( | void | ) | [private] |
Vector of the error matrix (only xx)
Correct the cov matrix
Definition at line 1725 of file CSCSegAlgoST.cc.
References correctTheCovMatrix(), correctTheCovX(), CSCRecHit2D::cscDetId(), e_Cxx, CSCDetId::layer(), CSCChamber::layer(), CSCRecHit2D::localPosition(), CSCRecHit2D::localPositionError(), LogDebug, AlCaHLTBitMon_ParallelJobs::p, passCondNumber, passCondNumber_2, protoIntercept, protoSegment, protoSlope_u, protoSlope_v, theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), v, PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), LocalError::xy(), PV3DBase< T, PVType, FrameType >::y(), LocalError::yy(), PV3DBase< T, PVType, FrameType >::z(), and z.
Referenced by doSlopesAndChi2().
{ e_Cxx.clear(); if(passCondNumber && !passCondNumber_2){ correctTheCovX(); if(e_Cxx.size()!=protoSegment.size()){ LogDebug("CSCSegment|segmWierd") << "e_Cxx.size()!=protoSegment.size() IT IS A SERIOUS PROBLEM!!! " <<std::endl; } } CLHEP::HepMatrix M(4,4,0); CLHEP::HepVector B(4,0); ChamberHitContainer::const_iterator ih = protoSegment.begin(); for (ih = protoSegment.begin(); ih != protoSegment.end(); ++ih) { const CSCRecHit2D& hit = (**ih); const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer()); GlobalPoint gp = layer->toGlobal(hit.localPosition()); LocalPoint lp = theChamber->toLocal(gp); // ptc: Local position of hit w.r.t. chamber double u = lp.x(); double v = lp.y(); double z = lp.z(); // ptc: Covariance matrix of local errors CLHEP::HepMatrix IC(2,2); if(passCondNumber&& !passCondNumber_2){ IC(1,1) = e_Cxx.at(ih-protoSegment.begin()); } else{ IC(1,1) = hit.localPositionError().xx(); } // IC(1,1) = hit.localPositionError().xx(); IC(1,2) = hit.localPositionError().xy(); IC(2,2) = hit.localPositionError().yy(); IC(2,1) = IC(1,2); // since Cov is symmetric if(passCondNumber_2){ correctTheCovMatrix(IC); } // ptc: Invert covariance matrix (and trap if it fails!) int ierr = 0; IC.invert(ierr); // inverts in place if (ierr != 0) { LogDebug("CSCSegment|CSC") << "CSCSegment::fitSlopes: failed to invert covariance matrix=\n" << IC; // std::cout<< "CSCSegment::fitSlopes: failed to invert covariance matrix=\n" << IC << "\n"<<std::endl; } M(1,1) += IC(1,1); M(1,2) += IC(1,2); M(1,3) += IC(1,1) * z; M(1,4) += IC(1,2) * z; B(1) += u * IC(1,1) + v * IC(1,2); M(2,1) += IC(2,1); M(2,2) += IC(2,2); M(2,3) += IC(2,1) * z; M(2,4) += IC(2,2) * z; B(2) += u * IC(2,1) + v * IC(2,2); M(3,1) += IC(1,1) * z; M(3,2) += IC(1,2) * z; M(3,3) += IC(1,1) * z * z; M(3,4) += IC(1,2) * z * z; B(3) += ( u * IC(1,1) + v * IC(1,2) ) * z; M(4,1) += IC(2,1) * z; M(4,2) += IC(2,2) * z; M(4,3) += IC(2,1) * z * z; M(4,4) += IC(2,2) * z * z; B(4) += ( u * IC(2,1) + v * IC(2,2) ) * z; } CLHEP::HepVector p = solve(M, B); // Update member variables // Note that origin has local z = 0 protoIntercept = LocalPoint(p(1), p(2), 0.); protoSlope_u = p(3); protoSlope_v = p(4); }
void CSCSegAlgoST::flipErrors | ( | AlgebraicSymMatrix & | a | ) | const [private] |
Definition at line 1952 of file CSCSegAlgoST.cc.
References a.
Referenced by buildSegments(), and prune_bad_hits().
{ // The CSCSegment needs the error matrix re-arranged to match // parameters in order (uz, vz, u0, v0) where uz, vz = slopes, u0, v0 = intercepts AlgebraicSymMatrix hold( a ); // errors on slopes into upper left a(1,1) = hold(3,3); a(1,2) = hold(3,4); a(2,1) = hold(4,3); a(2,2) = hold(4,4); // errors on positions into lower right a(3,3) = hold(1,1); a(3,4) = hold(1,2); a(4,3) = hold(2,1); a(4,4) = hold(2,2); // must also interchange off-diagonal elements of off-diagonal 2x2 submatrices a(4,1) = hold(2,3); a(3,2) = hold(1,4); a(2,3) = hold(4,1); // = hold(1,4) a(1,4) = hold(3,2); // = hold(2,3) }
bool CSCSegAlgoST::isGoodToMerge | ( | bool | isME11a, |
ChamberHitContainer & | newChain, | ||
ChamberHitContainer & | oldChain | ||
) | [private] |
Definition at line 581 of file CSCSegAlgoST.cc.
Referenced by chainHits().
{ for(size_t iRH_new = 0;iRH_new<newChain.size();++iRH_new){ int layer_new = newChain[iRH_new]->cscDetId().layer()-1; int middleStrip_new = newChain[iRH_new]->nStrips()/2; int centralStrip_new = newChain[iRH_new]->channels(middleStrip_new); int centralWire_new = newChain[iRH_new]->hitWire(); bool layerRequirementOK = false; bool stripRequirementOK = false; bool wireRequirementOK = false; bool goodToMerge = false; for(size_t iRH_old = 0;iRH_old<oldChain.size();++iRH_old){ int layer_old = oldChain[iRH_old]->cscDetId().layer()-1; int middleStrip_old = oldChain[iRH_old]->nStrips()/2; int centralStrip_old = oldChain[iRH_old]->channels(middleStrip_old); int centralWire_old = oldChain[iRH_old]->hitWire(); // to be chained, two hits need to be in neighbouring layers... // or better allow few missing layers (upto 3 to avoid inefficiencies); // however we'll not make an angle correction because it // worsen the situation in some of the "regular" cases // (not making the correction means that the conditions for // forming a cluster are different if we have missing layers - // this could affect events at the boundaries ) if(layer_new==layer_old+1 || layer_new==layer_old-1 || layer_new==layer_old+2 || layer_new==layer_old-2 || layer_new==layer_old+3 || layer_new==layer_old-3 || layer_new==layer_old+4 || layer_new==layer_old-4 ){ layerRequirementOK = true; } int allStrips = 48; //to be chained, two hits need to be "close" in strip number (can do it in phi // but it doesn't really matter); let "close" means upto 2 strips (3?) - // this is more compared to what CLCT readout patterns allow if(centralStrip_new==centralStrip_old || centralStrip_new==centralStrip_old+1 || centralStrip_new==centralStrip_old-1 || centralStrip_new==centralStrip_old+2 || centralStrip_new==centralStrip_old-2){ stripRequirementOK = true; } // same for wires (and ALCT patterns) if(centralWire_new==centralWire_old || centralWire_new==centralWire_old+1 || centralWire_new==centralWire_old-1 || centralWire_new==centralWire_old+2 || centralWire_new==centralWire_old-2){ wireRequirementOK = true; } if(isME11a){ if(centralStrip_new==centralStrip_old+1-allStrips || centralStrip_new==centralStrip_old-1-allStrips || centralStrip_new==centralStrip_old+2-allStrips || centralStrip_new==centralStrip_old-2-allStrips || centralStrip_new==centralStrip_old+1+allStrips || centralStrip_new==centralStrip_old-1+allStrips || centralStrip_new==centralStrip_old+2+allStrips || centralStrip_new==centralStrip_old-2+allStrips){ stripRequirementOK = true; } } if(layerRequirementOK && stripRequirementOK && wireRequirementOK){ goodToMerge = true; return goodToMerge; } } } return false; }
std::vector< CSCSegment > CSCSegAlgoST::prune_bad_hits | ( | const CSCChamber * | aChamber, |
std::vector< CSCSegment > & | segments | ||
) |
Remove bad hits from found segments based not only on chi2, but also on charge and further "low level" chamber information.
Definition at line 180 of file CSCSegAlgoST.cc.
References begin, BPMinImprovement, BrutePruning, calculateError(), CSCSegment::chi2(), chi2Norm_3D_, ChiSquaredProbability(), correctCov_, doSlopesAndChi2(), alignCSCRings::e, fillLocalDirection(), flipErrors(), CSCChamber::layer(), m, minHitsPerSegment, CSCSegment::nRecHits(), passCondNumber, passCondNumber_2, protoChi2, protoChiUCorrection, protoDirection, protoIntercept, protoNDF, protoSegment, groupFilesInBlocks::temp, theChamber, GeomDet::toGlobal(), PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), and PV3DBase< T, PVType, FrameType >::z().
Referenced by run().
{ // std::cout<<"*************************************************************"<<std::endl; // std::cout<<"Called prune_bad_hits in Chamber "<< theChamber->specs()->chamberTypeName()<<std::endl; // std::cout<<"*************************************************************"<<std::endl; std::vector<CSCSegment> segments_temp; std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits const float chi2ndfProbMin = 1.0e-4; bool use_brute_force = BrutePruning; int hit_nr = 0; int hit_nr_worst = -1; //int hit_nr_2ndworst = -1; for(std::vector<CSCSegment>::iterator it=segments.begin(); it != segments.end(); ++it) { // do nothing for nhit <= minHitPerSegment if( (*it).nRecHits() <= minHitsPerSegment ) continue; if( !use_brute_force ) {// find worst hit float chisq = (*it).chi2(); int nhits = (*it).nRecHits(); LocalPoint localPos = (*it).localPosition(); LocalVector segDir = (*it).localDirection(); const CSCChamber* cscchamber = theChamber; float globZ ; GlobalPoint globalPosition = cscchamber->toGlobal(localPos); globZ = globalPosition.z(); if( ChiSquaredProbability((double)chisq,(double)(2*nhits-4)) < chi2ndfProbMin ) { // find (rough) "residuals" (NOT excluding the hit from the fit - speed!) of hits on segment std::vector<CSCRecHit2D> theseRecHits = (*it).specificRecHits(); std::vector<CSCRecHit2D>::const_iterator iRH_worst; //float xdist_local = -99999.; float xdist_local_worst_sig = -99999.; float xdist_local_2ndworst_sig = -99999.; float xdist_local_sig = -99999.; hit_nr = 0; hit_nr_worst = -1; //hit_nr_2ndworst = -1; for ( std::vector<CSCRecHit2D>::const_iterator iRH = theseRecHits.begin(); iRH != theseRecHits.end(); ++iRH) { //mark "worst" hit: //float z_at_target ; //float radius ; float loc_x_at_target ; //float loc_y_at_target ; //float loc_z_at_target ; //z_at_target = 0.; loc_x_at_target = 0.; //loc_y_at_target = 0.; //loc_z_at_target = 0.; //radius = 0.; // set the z target in CMS global coordinates: const CSCLayer* csclayerRH = theChamber->layer((*iRH).cscDetId().layer()); LocalPoint localPositionRH = (*iRH).localPosition(); GlobalPoint globalPositionRH = csclayerRH->toGlobal(localPositionRH); LocalError rerrlocal = (*iRH).localPositionError(); float xxerr = rerrlocal.xx(); float target_z = globalPositionRH.z(); // target z position in cm (z pos of the hit) if(target_z > 0.) { loc_x_at_target = localPos.x() + (segDir.x()/fabs(segDir.z())*( target_z - globZ )); //loc_y_at_target = localPos.y() + (segDir.y()/fabs(segDir.z())*( target_z - globZ )); //loc_z_at_target = target_z; } else { loc_x_at_target = localPos.x() + ((-1)*segDir.x()/fabs(segDir.z())*( target_z - globZ )); //loc_y_at_target = localPos.y() + ((-1)*segDir.y()/fabs(segDir.z())*( target_z - globZ )); //loc_z_at_target = target_z; } // have to transform the segments coordinates back to the local frame... how?!!!!!!!!!!!! //xdist_local = fabs(localPositionRH.x() - loc_x_at_target); xdist_local_sig = fabs((localPositionRH.x() -loc_x_at_target)/(xxerr)); if( xdist_local_sig > xdist_local_worst_sig ) { xdist_local_2ndworst_sig = xdist_local_worst_sig; xdist_local_worst_sig = xdist_local_sig; iRH_worst = iRH; //hit_nr_2ndworst = hit_nr_worst; hit_nr_worst = hit_nr; } else if(xdist_local_sig > xdist_local_2ndworst_sig) { xdist_local_2ndworst_sig = xdist_local_sig; //hit_nr_2ndworst = hit_nr; } ++hit_nr; } // reset worst hit number if certain criteria apply. // Criteria: 2nd worst hit must be at least a factor of // 1.5 better than the worst in terms of sigma: if ( xdist_local_worst_sig / xdist_local_2ndworst_sig < 1.5 ) { hit_nr_worst = -1; //hit_nr_2ndworst = -1; } } } // if worst hit was found, refit without worst hit and select if considerably better than original fit. // Can also use brute force: refit all n-1 hit segments and choose one over the n hit if considerably "better" std::vector< CSCRecHit2D > buffer; std::vector< std::vector< CSCRecHit2D > > reduced_segments; std::vector< CSCRecHit2D > theseRecHits = (*it).specificRecHits(); float best_red_seg_prob = 0.0; // usefor chi2 1 diff float best_red_seg_prob = 99999.; buffer.clear(); if( ChiSquaredProbability((double)(*it).chi2(),(double)((2*(*it).nRecHits())-4)) < chi2ndfProbMin ) { buffer = theseRecHits; // Dirty switch: here one can select to refit all possible subsets or just the one without the // tagged worst hit: if( use_brute_force ) { // Brute force method: loop over all possible segments: for(size_t bi = 0; bi < buffer.size(); ++bi) { reduced_segments.push_back(buffer); reduced_segments[bi].erase(reduced_segments[bi].begin()+(bi),reduced_segments[bi].begin()+(bi+1)); } } else { // More elegant but still biased: erase only worst hit // Comment: There is not a very strong correlation of the worst hit with the one that one should remove... if( hit_nr_worst >= 0 && hit_nr_worst <= int(buffer.size()) ) { // fill segment in buffer, delete worst hit buffer.erase(buffer.begin()+(hit_nr_worst),buffer.begin()+(hit_nr_worst+1)); reduced_segments.push_back(buffer); } else { // only fill segment in array, do not delete anything reduced_segments.push_back(buffer); } } } // Loop over the subsegments and fit (only one segment if "use_brute_force" is false): for(size_t iSegment=0; iSegment<reduced_segments.size(); ++iSegment) { // loop over hits on given segment and push pointers to hits into protosegment protoSegment.clear(); for(size_t m = 0; m<reduced_segments[iSegment].size(); ++m ) { protoSegment.push_back(&reduced_segments[iSegment][m]); } passCondNumber=false; passCondNumber_2 = false; protoChiUCorrection=1.0; doSlopesAndChi2(); // Attempt to handle numerical instability of the fit; // The same as in the build method; // Preprune is not applied; if(correctCov_){ if(protoChi2/protoNDF>chi2Norm_3D_){ passCondNumber = true; doSlopesAndChi2(); } if((protoChiUCorrection<1.00005)&&(protoChi2/protoNDF>chi2Norm_3D_)){ passCondNumber_2=true; doSlopesAndChi2(); } } fillLocalDirection(); // calculate error matrix AlgebraicSymMatrix protoErrors = calculateError(); // but reorder components to match what's required by TrackingRecHit interface // i.e. slopes first, then positions flipErrors( protoErrors ); // CSCSegment temp(protoSegment, protoIntercept, protoDirection, protoErrors, protoChi2); // replace n hit segment with n-1 hit segment, if segment probability is BPMinImprovement better: if( ( ChiSquaredProbability((double)(*it).chi2(),(double)((2*(*it).nRecHits())-4)) < (1./BPMinImprovement)*(ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4))) ) // was (1.e-3) 081202 && ( (ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4))) > best_red_seg_prob ) && ( (ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4))) > 1e-10 ) ) { best_red_seg_prob = ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4)); // The alternative n-1 segment is much cleaner. If this segment // has >= minHitsPerSegment hits exchange current n hit segment (*it) // with better n-1 hit segment: if( temp.nRecHits() >= minHitsPerSegment ) { (*it) = temp; } } } } return segments; }
std::vector< CSCSegment > CSCSegAlgoST::run | ( | const CSCChamber * | aChamber, |
ChamberHitContainer | rechits | ||
) |
Build segments for all desired groups of hits
Definition at line 96 of file CSCSegAlgoST.cc.
References a, a_yweightPenaltyThreshold, b, buildSegments(), chainHits(), CSCChamberSpecs::chamberTypeName(), clusterHits(), findDuplicates(), preClustering, preClustering_useChaining, prune_bad_hits(), Pruning, CSCChamber::specs(), theChamber, and yweightPenaltyThreshold.
{ // Store chamber in temp memory theChamber = aChamber; // pre-cluster rechits and loop over all sub clusters seperately std::vector<CSCSegment> segments_temp; std::vector<CSCSegment> segments; std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits // Define yweight penalty depending on chamber. We fixed the relative ratios, but // they can be scaled by parameters: for(int a = 0; a<5; ++a) { for(int b = 0; b<5; ++b) { a_yweightPenaltyThreshold[a][b] = 0.0; } } a_yweightPenaltyThreshold[1][1] = yweightPenaltyThreshold * 10.20; a_yweightPenaltyThreshold[1][2] = yweightPenaltyThreshold * 14.00; a_yweightPenaltyThreshold[1][3] = yweightPenaltyThreshold * 20.40; a_yweightPenaltyThreshold[1][4] = yweightPenaltyThreshold * 10.20; a_yweightPenaltyThreshold[2][1] = yweightPenaltyThreshold * 7.60; a_yweightPenaltyThreshold[2][2] = yweightPenaltyThreshold * 20.40; a_yweightPenaltyThreshold[3][1] = yweightPenaltyThreshold * 7.60; a_yweightPenaltyThreshold[3][2] = yweightPenaltyThreshold * 20.40; a_yweightPenaltyThreshold[4][1] = yweightPenaltyThreshold * 6.75; if(preClustering) { // run a pre-clusterer on the given rechits to split obviously separated segment seeds: if(preClustering_useChaining){ // it uses X,Y,Z information; there are no configurable parameters used; // the X, Y, Z "cuts" are just (much) wider than the LCT readout ones // (which are actually not step functions); this new code could accomodate // the clusterHits one below but we leave it for security and backward // comparison reasons rechits_clusters = chainHits( theChamber, rechits ); } else{ // it uses X,Y information + configurable parameters rechits_clusters = clusterHits( theChamber, rechits ); } // loop over the found clusters: for(std::vector<ChamberHitContainer>::iterator sub_rechits = rechits_clusters.begin(); sub_rechits != rechits_clusters.end(); ++sub_rechits ) { // clear the buffer for the subset of segments: segments_temp.clear(); // build the subset of segments: segments_temp = buildSegments( (*sub_rechits) ); // add the found subset of segments to the collection of all segments in this chamber: segments.insert( segments.end(), segments_temp.begin(), segments_temp.end() ); } // this is the place to prune: if( Pruning ) { segments_temp.clear(); // segments_temp needed?!?! segments_temp = prune_bad_hits( theChamber, segments ); segments.clear(); // segments_temp needed?!?! segments.swap(segments_temp); // segments_temp needed?!?! } if ("ME1/a" == aChamber->specs()->chamberTypeName()){ findDuplicates(segments); } return segments; } else { segments = buildSegments(rechits); if( Pruning ) { segments_temp.clear(); // segments_temp needed?!?! segments_temp = prune_bad_hits( theChamber, segments ); segments.clear(); // segments_temp needed?!?! segments.swap(segments_temp); // segments_temp needed?!?! } if ("ME1/a" == aChamber->specs()->chamberTypeName()){ findDuplicates(segments); } return segments; //return buildSegments(rechits); } }
double CSCSegAlgoST::theWeight | ( | double | coordinate_1, |
double | coordinate_2, | ||
double | coordinate_3, | ||
float | layer_1, | ||
float | layer_2, | ||
float | layer_3 | ||
) | [private] |
Utility functions.
Definition at line 646 of file CSCSegAlgoST.cc.
Referenced by buildSegments().
{ double sub_weight = 0; sub_weight = fabs( ( (coordinate_2 - coordinate_3) / (layer_2 - layer_3) ) - ( (coordinate_1 - coordinate_2) / (layer_1 - layer_2) ) ); return sub_weight; }
AlgebraicSymMatrix CSCSegAlgoST::weightMatrix | ( | void | ) | const [private] |
Definition at line 1882 of file CSCSegAlgoST.cc.
References CSCRecHit2D::localPositionError(), makeMuonMisalignmentScenario::matrix, protoChiUCorrection, protoSegment, LocalError::xx(), LocalError::xy(), and LocalError::yy().
Referenced by calculateError().
{ std::vector<const CSCRecHit2D*>::const_iterator it; int nhits = protoSegment.size(); AlgebraicSymMatrix matrix(2*nhits, 0); int row = 0; for (it = protoSegment.begin(); it != protoSegment.end(); ++it) { const CSCRecHit2D& hit = (**it); ++row; matrix(row, row) = protoChiUCorrection*hit.localPositionError().xx(); matrix(row, row+1) = hit.localPositionError().xy(); ++row; matrix(row, row-1) = hit.localPositionError().xy(); matrix(row, row) = hit.localPositionError().yy(); } int ierr; matrix.invert(ierr); return matrix; }
float CSCSegAlgoST::a_yweightPenaltyThreshold[5][5] [private] |
Definition at line 188 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and run().
double CSCSegAlgoST::BPMinImprovement [private] |
Definition at line 180 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST(), and prune_bad_hits().
bool CSCSegAlgoST::BrutePruning [private] |
Definition at line 179 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST(), and prune_bad_hits().
double CSCSegAlgoST::chi2Norm_2D_ [private] |
Definition at line 201 of file CSCSegAlgoST.h.
Referenced by correctTheCovX(), and CSCSegAlgoST().
double CSCSegAlgoST::chi2Norm_3D_ [private] |
Chi^2 normalization for the corrected fit.
Definition at line 202 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().
std::vector< ChamberHitContainer > CSCSegAlgoST::chosen_Psegments [private] |
Definition at line 131 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::chosen_weight_A [private] |
Definition at line 140 of file CSCSegAlgoST.h.
Referenced by buildSegments().
double CSCSegAlgoST::condSeed1_ [private] |
Correct the error matrix for the condition number.
The upper limit of protoChiUCorrection to apply prePrun
Definition at line 209 of file CSCSegAlgoST.h.
Referenced by correctTheCovMatrix(), and CSCSegAlgoST().
double CSCSegAlgoST::condSeed2_ [private] |
Definition at line 209 of file CSCSegAlgoST.h.
Referenced by correctTheCovMatrix(), and CSCSegAlgoST().
bool CSCSegAlgoST::correctCov_ [private] |
Correct the Error Matrix.
Definition at line 198 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().
double CSCSegAlgoST::covAnyNumber_ [private] |
Allow to use any number for covariance for all RecHits.
Definition at line 212 of file CSCSegAlgoST.h.
Referenced by correctTheCovMatrix(), and CSCSegAlgoST().
bool CSCSegAlgoST::covToAnyNumber_ [private] |
The correction parameters.
Definition at line 210 of file CSCSegAlgoST.h.
Referenced by correctTheCovMatrix(), and CSCSegAlgoST().
bool CSCSegAlgoST::covToAnyNumberAll_ [private] |
Allow to use any number for covariance (by hand)
Definition at line 211 of file CSCSegAlgoST.h.
Referenced by correctTheCovMatrix(), and CSCSegAlgoST().
std::vector< float > CSCSegAlgoST::curv_A [private] |
Definition at line 141 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::curv_noL1_A [private] |
Definition at line 142 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::curv_noL2_A [private] |
Definition at line 143 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::curv_noL3_A [private] |
Definition at line 144 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::curv_noL4_A [private] |
Definition at line 145 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::curv_noL5_A [private] |
Definition at line 146 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::curv_noL6_A [private] |
Definition at line 147 of file CSCSegAlgoST.h.
Referenced by buildSegments().
double CSCSegAlgoST::curvePenalty [private] |
Definition at line 194 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
double CSCSegAlgoST::curvePenaltyThreshold [private] |
Definition at line 193 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
bool CSCSegAlgoST::debug [private] |
Definition at line 167 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST().
double CSCSegAlgoST::dXclusBoxMax [private] |
Definition at line 173 of file CSCSegAlgoST.h.
Referenced by clusterHits(), and CSCSegAlgoST().
double CSCSegAlgoST::dYclusBoxMax [private] |
Definition at line 174 of file CSCSegAlgoST.h.
Referenced by clusterHits(), and CSCSegAlgoST().
std::vector<double> CSCSegAlgoST::e_Cxx [private] |
Definition at line 200 of file CSCSegAlgoST.h.
Referenced by correctTheCovX(), fillChiSquared(), and fitSlopes().
Segments CSCSegAlgoST::GoodSegments [private] |
Definition at line 118 of file CSCSegAlgoST.h.
Referenced by buildSegments(), ChooseSegments2(), ChooseSegments2a(), and ChooseSegments3().
double CSCSegAlgoST::hitDropLimit4Hits [private] |
Definition at line 184 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
double CSCSegAlgoST::hitDropLimit5Hits [private] |
Definition at line 185 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
double CSCSegAlgoST::hitDropLimit6Hits [private] |
Definition at line 186 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
unsigned CSCSegAlgoST::maxContrIndex [private] |
Chi^2 normalization for the initial fit.
Definition at line 203 of file CSCSegAlgoST.h.
Referenced by buildSegments(), correctTheCovX(), and CSCSegAlgoST().
int CSCSegAlgoST::maxRecHitsInCluster [private] |
Definition at line 175 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
int CSCSegAlgoST::minHitsPerSegment [private] |
Definition at line 170 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().
const std::string CSCSegAlgoST::myName [private] |
Definition at line 116 of file CSCSegAlgoST.h.
bool CSCSegAlgoST::onlyBestSegment [private] |
Definition at line 181 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
ChamberHitContainer CSCSegAlgoST::PAhits_onLayer[6] [private] |
Definition at line 120 of file CSCSegAlgoST.h.
Referenced by buildSegments().
bool CSCSegAlgoST::passCondNumber [private] |
The number to fource the Covariance.
Definition at line 213 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), fillChiSquared(), fitSlopes(), and prune_bad_hits().
bool CSCSegAlgoST::passCondNumber_2 [private] |
Passage the condition number calculations.
Definition at line 214 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), fillChiSquared(), fitSlopes(), and prune_bad_hits().
bool CSCSegAlgoST::preClustering [private] |
Definition at line 176 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST(), and run().
bool CSCSegAlgoST::preClustering_useChaining [private] |
Definition at line 177 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST(), and run().
bool CSCSegAlgoST::prePrun_ [private] |
The index of the worst x RecHit in Chi^2-X method.
Definition at line 204 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
double CSCSegAlgoST::prePrunLimit_ [private] |
Allow to prun a (rechit in a) segment in segment buld method once it passed through Chi^2-X and protoChiUCorrection is big
Definition at line 207 of file CSCSegAlgoST.h.
Referenced by buildSegments(), correctTheCovX(), and CSCSegAlgoST().
double CSCSegAlgoST::protoChi2 [private] |
Definition at line 162 of file CSCSegAlgoST.h.
Referenced by buildSegments(), fillChiSquared(), and prune_bad_hits().
double CSCSegAlgoST::protoChiUCorrection [private] |
Allow to correct the error matrix.
Definition at line 199 of file CSCSegAlgoST.h.
Referenced by buildSegments(), correctTheCovX(), CSCSegAlgoST(), prune_bad_hits(), and weightMatrix().
LocalVector CSCSegAlgoST::protoDirection [private] |
Definition at line 164 of file CSCSegAlgoST.h.
Referenced by buildSegments(), fillLocalDirection(), and prune_bad_hits().
LocalPoint CSCSegAlgoST::protoIntercept [private] |
Definition at line 161 of file CSCSegAlgoST.h.
Referenced by buildSegments(), fillChiSquared(), fillLocalDirection(), fitSlopes(), and prune_bad_hits().
double CSCSegAlgoST::protoNDF [private] |
Definition at line 163 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), fillChiSquared(), and prune_bad_hits().
Definition at line 158 of file CSCSegAlgoST.h.
Referenced by buildSegments(), correctTheCovX(), derivativeMatrix(), fillChiSquared(), fitSlopes(), prune_bad_hits(), and weightMatrix().
float CSCSegAlgoST::protoSlope_u [private] |
Definition at line 159 of file CSCSegAlgoST.h.
Referenced by fillChiSquared(), fillLocalDirection(), and fitSlopes().
float CSCSegAlgoST::protoSlope_v [private] |
Definition at line 160 of file CSCSegAlgoST.h.
Referenced by fillChiSquared(), fillLocalDirection(), and fitSlopes().
bool CSCSegAlgoST::Pruning [private] |
Definition at line 178 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST(), and run().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments [private] |
Definition at line 123 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and ChooseSegments2().
Definition at line 121 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL1 [private] |
Definition at line 125 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL2 [private] |
Definition at line 126 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL3 [private] |
Definition at line 127 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL4 [private] |
Definition at line 128 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL5 [private] |
Definition at line 129 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL6 [private] |
Definition at line 130 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noLx [private] |
Definition at line 124 of file CSCSegAlgoST.h.
Referenced by buildSegments().
CSCSegAlgoShowering* CSCSegAlgoST::showering_ [private] |
Definition at line 195 of file CSCSegAlgoST.h.
Referenced by buildSegments(), CSCSegAlgoST(), and ~CSCSegAlgoST().
const CSCChamber* CSCSegAlgoST::theChamber [private] |
Definition at line 117 of file CSCSegAlgoST.h.
Referenced by buildSegments(), clusterHits(), correctTheCovX(), derivativeMatrix(), fillChiSquared(), fillLocalDirection(), fitSlopes(), prune_bad_hits(), and run().
bool CSCSegAlgoST::useShowering [private] |
Definition at line 182 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
std::vector< float > CSCSegAlgoST::weight_A [private] |
Definition at line 132 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and ChooseSegments2().
std::vector< float > CSCSegAlgoST::weight_B [private] |
Definition at line 148 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL1_A [private] |
Definition at line 134 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL1_B [private] |
Definition at line 149 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL2_A [private] |
Definition at line 135 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL2_B [private] |
Definition at line 150 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL3_A [private] |
Definition at line 136 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL3_B [private] |
Definition at line 151 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL4_A [private] |
Definition at line 137 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL4_B [private] |
Definition at line 152 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL5_A [private] |
Definition at line 138 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL5_B [private] |
Definition at line 153 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL6_A [private] |
Definition at line 139 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noL6_B [private] |
Definition at line 154 of file CSCSegAlgoST.h.
Referenced by buildSegments().
std::vector< float > CSCSegAlgoST::weight_noLx_A [private] |
Definition at line 133 of file CSCSegAlgoST.h.
Referenced by buildSegments().
double CSCSegAlgoST::yweightPenalty [private] |
Definition at line 191 of file CSCSegAlgoST.h.
Referenced by buildSegments(), and CSCSegAlgoST().
double CSCSegAlgoST::yweightPenaltyThreshold [private] |
Definition at line 190 of file CSCSegAlgoST.h.
Referenced by CSCSegAlgoST(), and run().