CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
oldBasic3DVector.h
Go to the documentation of this file.
1 #ifndef GeometryVector_oldBasic3DVector_h
2 #define GeometryVector_oldBasic3DVector_h
3 #if defined(__CINT__) && !defined(__REFLEX__)
4 #define __REFLEX__
5 #endif
11 #ifndef __REFLEX__
13 #endif
14 #include <iosfwd>
15 #include <cmath>
16 
17 namespace detailsBasic3DVector {
18  inline float __attribute__((always_inline)) __attribute__ ((pure))
19  eta(float x, float y, float z) { float t(z/std::sqrt(x*x+y*y)); return ::asinhf(t);}
20  inline double __attribute__((always_inline)) __attribute__ ((pure))
21  eta(double x, double y, double z) { double t(z/std::sqrt(x*x+y*y)); return ::asinh(t);}
22  inline long double __attribute__((always_inline)) __attribute__ ((pure))
23  eta(long double x, long double y, long double z) { long double t(z/std::sqrt(x*x+y*y)); return ::asinhl(t);}
24 }
25 
26 
27 template < typename T>
28 class Basic3DVector {
29 public:
30 
31  typedef T ScalarType;
34  typedef Spherical Polar; // synonym
35 
40  Basic3DVector() : theX(0), theY(0), theZ(0), theW(0) {}
41 
44  theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
45 
47  template <class U>
49  theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
50 
53  theX(p.x()), theY(p.y()), theZ(0), theW(0) {}
54 
63  template <class OtherPoint>
64  explicit Basic3DVector( const OtherPoint& p) :
65  theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
66 
67 
68 #ifndef __REFLEX__
69  // constructor from Vec4
70  template<typename U>
72  theX(iv.arr[0]), theY(iv.arr[1]), theZ(iv.arr[2]), theW(0) {}
73 #endif
74 
76  Basic3DVector( const T& x, const T& y, const T& z) :
77  theX(x), theY(y), theZ(z), theW(0) {}
78 
83  template <typename U>
85  const Geom::Phi<U>& phi, const T& r) {
86  Polar p( theta.value(), phi.value(), r);
87  theX = p.x(); theY = p.y(); theZ = p.z();
88  }
89 
91  T x() const { return theX;}
92 
94  T y() const { return theY;}
95 
97  T z() const { return theZ;}
98 
100 
101 
102  // equality
103  bool operator==(const Basic3DVector& rh) const {
104  return x()==rh.x() && y()==rh.y() && z()==rh.z();
105  }
106 
108  T mag2() const { return x()*x() + y()*y()+z()*z();}
109 
111  T mag() const { return std::sqrt( mag2());}
112 
114  T perp2() const { return x()*x() + y()*y();}
115 
117  T perp() const { return std::sqrt( perp2());}
118 
120  T transverse() const { return perp();}
121 
126  T barePhi() const {return std::atan2(y(),x());}
127  Geom::Phi<T> phi() const {return Geom::Phi<T>(barePhi());}
128 
133  T bareTheta() const {return std::atan2(perp(),z());}
134  Geom::Theta<T> theta() const {return Geom::Theta<T>(std::atan2(perp(),z()));}
135 
140  // T eta() const { return -log( tan( theta()/2.));}
141  T eta() const { return detailsBasic3DVector::eta(x(),y(),z());} // correct
142 
146  Basic3DVector unit() const {
147  T my_mag = mag2();
148  if (my_mag==0) return *this;
149  my_mag = T(1)/std::sqrt(my_mag);
150  return *this * my_mag;
151  }
152 
155  template <class U>
157  theX += p.x();
158  theY += p.y();
159  theZ += p.z();
160  return *this;
161  }
162 
165  template <class U>
167  theX -= p.x();
168  theY -= p.y();
169  theZ -= p.z();
170  return *this;
171  }
172 
174  Basic3DVector operator-() const { return Basic3DVector(-x(),-y(),-z());}
175 
178  theX *= t;
179  theY *= t;
180  theZ *= t;
181  return *this;
182  }
183 
186  t = T(1)/t;
187  theX *= t;
188  theY *= t;
189  theZ *= t;
190  return *this;
191  }
192 
194  T dot( const Basic3DVector& v) const {
195  return x()*v.x() + y()*v.y() + z()*v.z();
196  }
197 
203  template <class U>
205  return x()*v.x() + y()*v.y() + z()*v.z();
206  }
207 
209  Basic3DVector cross( const Basic3DVector& v) const {
210  return Basic3DVector( y()*v.z() - v.y()*z(),
211  z()*v.x() - v.z()*x(),
212  x()*v.y() - v.x()*y());
213  }
214 
215 
221  template <class U>
223  cross( const Basic3DVector<U>& v) const {
224  return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(),
225  z()*v.x() - v.z()*x(),
226  x()*v.y() - v.x()*y());
227  }
229 private:
234 }
235 #ifndef __CINT__
236 __attribute__ ((aligned (16)))
237 #endif
238 ;
239 
240 
241 namespace geometryDetails {
242  std::ostream & print3D(std::ostream& s, double x, double y, double z);
243 }
244 
246 template <class T>
247 inline std::ostream & operator<<( std::ostream& s, const Basic3DVector<T>& v) {
248  return geometryDetails::print3D(s, v.x(),v.y(), v.z());
249 }
250 
253 template <class T, class U>
257  return RT(a.x()+b.x(), a.y()+b.y(), a.z()+b.z());
258 }
259 
260 template <class T, class U>
264  return RT(a.x()-b.x(), a.y()-b.y(), a.z()-b.z());
265 }
266 
268 template <class T>
269 inline T operator*( const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
270  return v1.dot(v2);
271 }
272 
274 template <class T, class U>
276  const Basic3DVector<U>& v2) {
277  return v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z();
278 }
279 
283 template <class T>
285  return Basic3DVector<T>(v.x()*t, v.y()*t, v.z()*t);
286 }
287 
289 template <class T>
291  return Basic3DVector<T>(v.x()*t, v.y()*t, v.z()*t);
292 }
293 
294 template <class T, typename S>
296  return static_cast<T>(t)*v;
297 }
298 
299 template <class T, typename S>
301  return static_cast<T>(t)*v;
302 }
303 
304 
308 template <class T, typename S>
310  T t = T(1)/s;
311  return v*t;
312 }
313 
314 
318 
320 #endif // GeometryVector_Basic3DVector_h
321 
322 
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross(const Basic3DVector< U > &v) const
Basic2DVector< T > xy() const
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T mag() const
The vector magnitude. Equivalent to sqrt(vec.mag2())
PreciseFloatType< T, U >::Type dot(const Basic3DVector< U > &v) const
MatrixMeschach operator+(const MatrixMeschach &mat1, const MatrixMeschach &mat2)
T perp2() const
Squared magnitude of transverse component.
Geom::Theta< T > theta() const
T barePhi() const
Basic3DVector unit() const
MatrixMeschach operator-(const MatrixMeschach &mat1, const MatrixMeschach &mat2)
bool operator==(const Basic3DVector &rh) const
Basic3DVector(const Basic3DVector &p)
Copy constructor from same type. Should not be needed but for gcc bug 12685.
Geom::Phi< T > phi() const
T eta() const
double double double z
Basic3DVector< long double > operator/(const Basic3DVector< long double > &v, S s)
Basic3DVector(mathSSE::Vec4< U > const &iv)
Basic3DVector< float > Basic3DVectorF
Basic3DVector & operator/=(T t)
Scaling by a scalar value (division)
Basic3DVector(const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
float float float z float t(z/std::sqrt(x *x+y *y))
T z() const
Cartesian z coordinate.
T sqrt(T t)
Definition: SSEVec.h:28
Basic3DVector & operator*=(T t)
Scaling by a scalar value (multiplication)
Basic3DVector & operator+=(const Basic3DVector< U > &p)
mathSSE::Vec4< T > v
T perp() const
Magnitude of transverse component.
Basic3DVector< double > Basic3DVectorD
Basic3DVector & operator-=(const Basic3DVector< U > &p)
Basic3DVector< long double > Basic3DVectorLD
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38
Basic3DVector(const Basic3DVector< U > &p)
Copy constructor and implicit conversion from Basic3DVector of different precision.
Basic3DVector(const Basic2DVector< T > &p)
constructor from 2D vector (X and Y from 2D vector, z set to zero)
Geom::Spherical2Cartesian< T > Spherical
Basic3DVector(const T &x, const T &y, const T &z)
construct from cartesian coordinates
double b
Definition: hdecay.h:120
Geom::Cylindrical2Cartesian< T > Cylindrical
T dot(const Basic3DVector &v) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.
float __attribute__((always_inline)) __attribute__((pure)) eta(float x
double a
Definition: hdecay.h:121
T transverse() const
Another name for perp()
T bareTheta() const
Basic3DVector cross(const Basic3DVector &v) const
Vector product, or &quot;cross&quot; product, with a vector of same type.
MatrixMeschach operator*(const MatrixMeschach &mat1, const MatrixMeschach &mat2)
string s
Definition: asciidump.py:422
Definition: DDAxes.h:10
std::ostream & print3D(std::ostream &s, double x, double y, double z)
Definition: print.cc:5
Basic3DVector operator-() const
Unary minus, returns a vector with components (-x(),-y(),-z())
long double T
Basic3DVector(const OtherPoint &p)
Definition: Phi.h:20
class Geom::Polar2Cartesian __attribute__
mathSSE::Vec4< T > v
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
T dot(const Basic3DVector &rh) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.