CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Types | Public Member Functions | Public Attributes | Private Attributes
Basic3DVector< T > Class Template Reference

#include <newBasic3DVector.h>

Public Types

typedef
Geom::Cylindrical2Cartesian< T
Cylindrical
 
typedef
Geom::Cylindrical2Cartesian< T
Cylindrical
 
typedef Spherical Polar
 
typedef Spherical Polar
 
typedef T ScalarType
 
typedef T ScalarType
 
typedef
Geom::Spherical2Cartesian< T
Spherical
 
typedef
Geom::Spherical2Cartesian< T
Spherical
 

Public Member Functions

T barePhi () const
 
T barePhi () const
 
T bareTheta () const
 
T bareTheta () const
 
 Basic3DVector ()
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
 Basic3DVector ()
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
template<class U >
 Basic3DVector (mathSSE::Vec4< U > const &iv)
 
template<typename U >
 Basic3DVector (mathSSE::Vec4< U > const &iv)
 
 Basic3DVector (const T &x, const T &y, const T &z)
 construct from cartesian coordinates More...
 
 Basic3DVector (const T &x, const T &y, const T &z)
 construct from cartesian coordinates More...
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
Basic3DVector cross (const Basic3DVector &lh) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
cross (const Basic3DVector< U > &lh) const
 
Basic3DVector cross (const Basic3DVector &v) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
cross (const Basic3DVector< U > &v) const
 
T dot (const Basic3DVector &rh) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &lh) const
 
T dot (const Basic3DVector &v) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &v) const
 
T eta () const
 
T eta () const
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
bool operator== (const Basic3DVector &rh) const
 
bool operator== (const Basic3DVector &rh) const
 
T perp () const
 Magnitude of transverse component. More...
 
T perp () const
 Magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
Geom::Phi< Tphi () const
 
Geom::Phi< Tphi () const
 
Geom::Theta< Ttheta () const
 
Geom::Theta< Ttheta () const
 
T transverse () const
 Another name for perp() More...
 
T transverse () const
 Another name for perp() More...
 
Basic3DVector unit () const
 
Basic3DVector unit () const
 
T x () const
 Cartesian x coordinate. More...
 
T x () const
 Cartesian x coordinate. More...
 
Basic2DVector< Txy () const
 
Basic2DVector< Txy () const
 
T y () const
 Cartesian y coordinate. More...
 
T y () const
 Cartesian y coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 

Public Attributes

mathSSE::Vec4< Tv
 

Private Attributes

T theW
 
T theX
 
T theY
 
T theZ
 

Detailed Description

template<typename T>
class Basic3DVector< T >

Definition at line 24 of file newBasic3DVector.h.

Member Typedef Documentation

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 28 of file newBasic3DVector.h.

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 32 of file oldBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 30 of file newBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 34 of file oldBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 27 of file newBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 31 of file oldBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 29 of file newBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 33 of file oldBasic3DVector.h.

Constructor & Destructor Documentation

template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 36 of file newBasic3DVector.h.

Referenced by Basic3DVector(), Basic3DVector< long double >::cross(), Basic3DVector< long double >::operator-(), and Basic3DVector< align::Scalar >::operator-().

36 {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 39 of file newBasic3DVector.h.

39  :
40  v(p.v) {}
mathSSE::Vec4< T > v
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 44 of file newBasic3DVector.h.

44  :
45  v(p.v) {}
mathSSE::Vec4< T > v
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 49 of file newBasic3DVector.h.

49  :
50  v(p.x(),p.y(),0) {}
mathSSE::Vec4< T > v
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 62 of file newBasic3DVector.h.

62  :
63  v(p.x(),p.y(),p.z()) {}
mathSSE::Vec4< T > v
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( mathSSE::Vec4< U > const &  iv)
inline

Definition at line 68 of file newBasic3DVector.h.

68 : v(iv){}
mathSSE::Vec4< T > v
template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z 
)
inline

construct from cartesian coordinates

Definition at line 71 of file newBasic3DVector.h.

71  :
72  v(x,y,z){}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
mathSSE::Vec4< T > v
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 79 of file newBasic3DVector.h.

80  {
81  Polar p( theta.value(), phi.value(), r);
82  v.o.theX = p.x(); v.o.theY = p.y(); v.o.theZ = p.z();
83  }
mathSSE::Vec4< T > v
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38
template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 40 of file oldBasic3DVector.h.

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 43 of file oldBasic3DVector.h.

43  :
44  theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 48 of file oldBasic3DVector.h.

48  :
49  theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 52 of file oldBasic3DVector.h.

52  :
53  theX(p.x()), theY(p.y()), theZ(0), theW(0) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 64 of file oldBasic3DVector.h.

template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( mathSSE::Vec4< U > const &  iv)
inline

Definition at line 71 of file oldBasic3DVector.h.

71  :
72  theX(iv.arr[0]), theY(iv.arr[1]), theZ(iv.arr[2]), theW(0) {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z 
)
inline

construct from cartesian coordinates

Definition at line 76 of file oldBasic3DVector.h.

76  :
77  theX(x), theY(y), theZ(z), theW(0) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 84 of file oldBasic3DVector.h.

85  {
86  Polar p( theta.value(), phi.value(), r);
87  theX = p.x(); theY = p.y(); theZ = p.z();
88  }
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38

Member Function Documentation

template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 120 of file newBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::barePhi(), Basic3DVector< long double >::phi(), and Basic3DVector< align::Scalar >::phi().

120 {return std::atan2(y(),x());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 126 of file oldBasic3DVector.h.

126 {return std::atan2(y(),x());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 127 of file newBasic3DVector.h.

Referenced by PV3DBase< long double, PointTag, GlobalTag >::bareTheta().

127 {return std::atan2(perp(),z());}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 133 of file oldBasic3DVector.h.

133 {return std::atan2(perp(),z());}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  lh) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 196 of file newBasic3DVector.h.

Referenced by Basic3DVector(), Vector3DBase< Scalar, GlobalTag >::cross(), PFDisplacedVertexFinder::getTransvDiff(), and CartesianLorentzForce::operator()().

196  {
197  return ::cross(v,lh.v);
198  }
mathSSE::Vec4< T > v
Basic3DVector cross(const Basic3DVector &v) const
Vector product, or &quot;cross&quot; product, with a vector of same type.
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  lh) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 208 of file newBasic3DVector.h.

208  {
211  }
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or &quot;cross&quot; product, with a vector of same type.
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  v) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 209 of file oldBasic3DVector.h.

209  {
210  return Basic3DVector( y()*v.z() - v.y()*z(),
211  z()*v.x() - v.z()*x(),
212  x()*v.y() - v.x()*y());
213  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  v) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 223 of file oldBasic3DVector.h.

223  {
224  return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(),
225  z()*v.x() - v.z()*x(),
226  x()*v.y() - v.x()*y());
227  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  rh) const
inline
template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  lh) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 190 of file newBasic3DVector.h.

190  {
193  }
T dot(const Basic3DVector &rh) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.
template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  v) const
inline

Scalar product, or "dot" product, with a vector of same type.

Definition at line 194 of file oldBasic3DVector.h.

194  {
195  return x()*v.x() + y()*v.y() + z()*v.z();
196  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  v) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 204 of file oldBasic3DVector.h.

204  {
205  return x()*v.x() + y()*v.y() + z()*v.z();
206  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 135 of file newBasic3DVector.h.

Referenced by DeDxDiscriminatorLearner::algoBeginJob(), DeDxDiscriminatorLearnerFromCalibTree::algoBeginJob(), SiStripGainFromData::algoBeginJob(), SiStripGainFromCalibTree::algoBeginJob(), DeDxDiscriminatorProducer::beginRun(), CosmicMuonTrajectoryBuilder::build(), and PV3DBase< long double, PointTag, GlobalTag >::eta().

135 { return detailsBasic3DVector::eta(x(),y(),z());} // correct
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T eta() const
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 141 of file oldBasic3DVector.h.

141 { return detailsBasic3DVector::eta(x(),y(),z());} // correct
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T eta() const
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::mag ( ) const
inline
template<typename T>
T Basic3DVector< T >::mag ( ) const
inline

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 111 of file oldBasic3DVector.h.

111 { return std::sqrt( mag2());}
T sqrt(T t)
Definition: SSEVec.h:28
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 102 of file newBasic3DVector.h.

Referenced by PFDisplacedVertexFinder::getLongDiff(), Basic3DVector< long double >::mag(), Basic3DVector< align::Scalar >::mag(), PV3DBase< long double, PointTag, GlobalTag >::mag2(), HelixExtrapolatorToLine2Order::pathLength(), TkRotation< align::Scalar >::rotateAxes(), Basic3DVector< align::Scalar >::unit(), and xy().

102 { return ::dot(v,v);}
mathSSE::Vec4< T > v
T dot(const Basic3DVector &v) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.
template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 108 of file oldBasic3DVector.h.

108 { return x()*x() + y()*y()+z()*z();}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 167 of file newBasic3DVector.h.

167  {
168  v = t*v;
169  return *this;
170  }
mathSSE::Vec4< T > v
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 177 of file oldBasic3DVector.h.

177  {
178  theX *= t;
179  theY *= t;
180  theZ *= t;
181  return *this;
182  }
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 150 of file newBasic3DVector.h.

150  {
151  v = v + p.v;
152  return *this;
153  }
mathSSE::Vec4< T > v
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 156 of file oldBasic3DVector.h.

156  {
157  theX += p.x();
158  theY += p.y();
159  theZ += p.z();
160  return *this;
161  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 164 of file newBasic3DVector.h.

164 { return Basic3DVector(-v);}
mathSSE::Vec4< T > v
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 174 of file oldBasic3DVector.h.

174 { return Basic3DVector(-x(),-y(),-z());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 158 of file newBasic3DVector.h.

158  {
159  v = v - p.v;
160  return *this;
161  }
mathSSE::Vec4< T > v
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 166 of file oldBasic3DVector.h.

166  {
167  theX -= p.x();
168  theY -= p.y();
169  theZ -= p.z();
170  return *this;
171  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 173 of file newBasic3DVector.h.

173  {
174  t = T(1)/t;
175  v = t*v;
176  return *this;
177  }
mathSSE::Vec4< T > v
long double T
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 185 of file oldBasic3DVector.h.

185  {
186  t = T(1)/t;
187  theX *= t;
188  theY *= t;
189  theZ *= t;
190  return *this;
191  }
long double T
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 97 of file newBasic3DVector.h.

97  {
98  return v==rh.v;
99  }
mathSSE::Vec4< T > v
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 103 of file oldBasic3DVector.h.

103  {
104  return x()==rh.x() && y()==rh.y() && z()==rh.z();
105  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::perp ( ) const
inline
template<typename T>
T Basic3DVector< T >::perp ( ) const
inline

Magnitude of transverse component.

Definition at line 117 of file oldBasic3DVector.h.

117 { return std::sqrt( perp2());}
T perp2() const
Squared magnitude of transverse component.
T sqrt(T t)
Definition: SSEVec.h:28
template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 108 of file newBasic3DVector.h.

Referenced by Basic3DVector< long double >::perp(), Basic3DVector< align::Scalar >::perp(), and PV3DBase< long double, PointTag, GlobalTag >::perp2().

108 { return x()*x() + y()*y();}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 114 of file oldBasic3DVector.h.

114 { return x()*x() + y()*y();}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline

Definition at line 127 of file oldBasic3DVector.h.

127 {return Geom::Phi<T>(barePhi());}
T barePhi() const
Definition: Phi.h:20
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 128 of file newBasic3DVector.h.

Referenced by AlCaHOCalibProducer::produce(), PV3DBase< long double, PointTag, GlobalTag >::theta(), and TkRotation< align::Scalar >::TkRotation().

128 {return Geom::Theta<T>(std::atan2(perp(),z()));}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 134 of file oldBasic3DVector.h.

134 {return Geom::Theta<T>(std::atan2(perp(),z()));}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline
template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 120 of file oldBasic3DVector.h.

120 { return perp();}
T perp() const
Magnitude of transverse component.
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 140 of file newBasic3DVector.h.

Referenced by CartesianLorentzForce::operator()(), PathToPlane2Order::operator()(), and HelixBarrelPlaneCrossingByCircle::position().

140  {
141  T my_mag = mag2();
142  if (my_mag==0) return *this;
143  my_mag = T(1)/std::sqrt(my_mag);
144  return *this * my_mag;
145  }
T sqrt(T t)
Definition: SSEVec.h:28
long double T
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 146 of file oldBasic3DVector.h.

146  {
147  T my_mag = mag2();
148  if (my_mag==0) return *this;
149  my_mag = T(1)/std::sqrt(my_mag);
150  return *this * my_mag;
151  }
T sqrt(T t)
Definition: SSEVec.h:28
long double T
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
T Basic3DVector< T >::x ( ) const
inline

Cartesian x coordinate.

Definition at line 86 of file newBasic3DVector.h.

Referenced by svgfig.Curve.Sample::__repr__(), svgfig.Ellipse::__repr__(), SiStripGainFromCalibTree::algoBeginJob(), LinearEquation3< T >::Array3< U >::Array3(), python.Vispa.Gui.WidgetContainer.WidgetContainer::autosize(), Basic3DVector< long double >::barePhi(), Basic3DVector< align::Scalar >::barePhi(), Basic3DVector(), python.Vispa.Gui.VispaWidget.VispaWidget::boundingRect(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< long double >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvParabola::MappedPoint< double >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), CurvilinearState::momentum(), TkRotation< align::Scalar >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), PathToPlane2Order::operator()(), TkRotation< align::Scalar >::operator*(), operator*(), operator+(), Basic3DVector< align::Scalar >::operator+=(), operator+=(), Basic3DVector< long double >::operator-(), operator-(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< long double >::operator==(), Basic3DVector< align::Scalar >::operator==(), TrackAssociatorByChi2::parametersAtClosestApproach(), HelixArbitraryPlaneCrossing::pathLength(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), Basic3DVector< long double >::perp2(), Basic3DVector< align::Scalar >::perp2(), geometryXMLparser.Alignable::pos(), HelixArbitraryPlaneCrossing::position(), HelixBarrelPlaneCrossingByCircle::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixExtrapolatorToLine2Order::positionInDouble(), python.Vispa.Gui.ConnectableWidget.ConnectableWidget::positionizeMenuWidget(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), transverse(), ThirdHitPredictionFromInvLine::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), ThirdHitPredictionFromInvParabola::MappedPoint< double >::unmap(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::x().

86 { return v.o.theX;}
mathSSE::Vec4< T > v
template<typename T>
T Basic3DVector< T >::x ( ) const
inline
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline

Definition at line 94 of file newBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::covariance().

94 { return v.xy();}
mathSSE::Vec4< T > v
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline
template<typename T>
T Basic3DVector< T >::y ( ) const
inline

Cartesian y coordinate.

Definition at line 89 of file newBasic3DVector.h.

Referenced by svgfig.Ellipse::__repr__(), SiStripGainFromCalibTree::algoBeginJob(), LinearEquation3< T >::Array3< U >::Array3(), python.Vispa.Gui.WidgetContainer.WidgetContainer::autosize(), Basic3DVector< long double >::barePhi(), Basic3DVector< align::Scalar >::barePhi(), Basic3DVector(), python.Vispa.Gui.VispaWidget.VispaWidget::boundingRect(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< long double >::cross(), Basic3DVector< align::Scalar >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), ThirdHitPredictionFromInvParabola::MappedPoint< double >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), CurvilinearState::momentum(), TkRotation< align::Scalar >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), PathToPlane2Order::operator()(), TkRotation< align::Scalar >::operator*(), operator*(), operator+(), Basic3DVector< align::Scalar >::operator+=(), operator+=(), Basic3DVector< long double >::operator-(), operator-(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< long double >::operator==(), Basic3DVector< align::Scalar >::operator==(), TrackAssociatorByChi2::parametersAtClosestApproach(), HelixArbitraryPlaneCrossing::pathLength(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), Basic3DVector< long double >::perp2(), Basic3DVector< align::Scalar >::perp2(), geometryXMLparser.Alignable::pos(), HelixArbitraryPlaneCrossing::position(), HelixBarrelPlaneCrossingByCircle::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixExtrapolatorToLine2Order::positionInDouble(), python.Vispa.Gui.ConnectableWidget.ConnectableWidget::positionizeMenuWidget(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), transverse(), ThirdHitPredictionFromInvLine::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), ThirdHitPredictionFromInvParabola::MappedPoint< double >::unmap(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::y().

89 { return v.o.theY;}
mathSSE::Vec4< T > v
template<typename T>
T Basic3DVector< T >::y ( ) const
inline
template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 92 of file newBasic3DVector.h.

Referenced by SiStripGainFromCalibTree::algoBeginJob(), LinearEquation3< T >::Array3< U >::Array3(), Basic3DVector< long double >::bareTheta(), Basic3DVector< align::Scalar >::bareTheta(), Basic3DVector(), CurvilinearState::charge(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< long double >::cross(), Basic3DVector< align::Scalar >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< align::Scalar >::dot(), Basic3DVector< long double >::eta(), Basic3DVector< align::Scalar >::eta(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), Basic3DVector< align::Scalar >::mag2(), reco::PFDisplacedVertexSeed::mergeWith(), CurvilinearState::momentum(), TkRotation< align::Scalar >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), RK4PreciseStep::operator()(), PathToPlane2Order::operator()(), TkRotation< align::Scalar >::operator*(), operator*(), operator+(), Basic3DVector< align::Scalar >::operator+=(), operator+=(), Basic3DVector< long double >::operator-(), operator-(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< long double >::operator==(), Basic3DVector< align::Scalar >::operator==(), TrackAssociatorByChi2::parametersAtClosestApproach(), HelixArbitraryPlaneCrossing::pathLength(), HelixForwardPlaneCrossing::pathLength(), geometryXMLparser.Alignable::pos(), HelixArbitraryPlaneCrossing::position(), HelixBarrelPlaneCrossingByCircle::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixExtrapolatorToLine2Order::positionInDouble(), RKPropagatorInS::propagateParametersOnCylinder(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotateAxes(), VertexDistance3D::signedDistance(), Basic3DVector< long double >::theta(), Basic3DVector< align::Scalar >::theta(), transverse(), reco::PFDisplacedVertexSeed::updateSeedPoint(), and PV3DBase< long double, PointTag, GlobalTag >::z().

92 { return v.o.theZ;}
mathSSE::Vec4< T > v
template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 97 of file oldBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::pos().

97 { return theZ;}

Member Data Documentation

template<typename T>
T Basic3DVector< T >::theW
private

Definition at line 233 of file oldBasic3DVector.h.

template<typename T>
T Basic3DVector< T >::theX
private
template<typename T>
T Basic3DVector< T >::theY
private
template<typename T>
T Basic3DVector< T >::theZ
private
template<typename T>
mathSSE::Vec4<T> Basic3DVector< T >::v