CMS 3D CMS Logo

Public Member Functions

RectangularCartesianMFGrid Class Reference

#include <RectangularCartesianMFGrid.h>

Inheritance diagram for RectangularCartesianMFGrid:
MFGrid3D MFGrid MagneticFieldProvider< float >

List of all members.

Public Member Functions

virtual void dump () const
virtual LocalPoint fromGridFrame (double a, double b, double c) const
 find grid coordinates for point. For debugging and validation only.
 RectangularCartesianMFGrid (binary_ifstream &istr, const GloballyPositioned< float > &vol)
virtual void toGridFrame (const LocalPoint &p, double &a, double &b, double &c) const
 find grid coordinates for point. For debugging and validation only.
virtual LocalVector uncheckedValueInTesla (const LocalPoint &p) const
 Interpolated field value at given point; does not check for exceptions.

Detailed Description

Definition at line 8 of file RectangularCartesianMFGrid.h.


Constructor & Destructor Documentation

RectangularCartesianMFGrid::RectangularCartesianMFGrid ( binary_ifstream istr,
const GloballyPositioned< float > &  vol 
)

Definition at line 9 of file RectangularCartesianMFGrid.cc.

References gather_cfg::cout, MFGrid::frame(), MFGrid3D::grid_, submitDQMOfflineCAF::nLines, and GloballyPositioned< T >::toLocal().

  : MFGrid3D(vol)
{

  // The parameters read from the data files are given in global coordinates.
  // In version 85l, local frame has the same orientation of global frame for the reference
  // volume, i.e. the r.f. transformation is only a translation.
  // There is therefore no need to convert the field values to local coordinates.
  // Check this assumption: 
  GlobalVector localXDir(frame().toGlobal(LocalVector(1,0,0)));
  GlobalVector localYDir(frame().toGlobal(LocalVector(0,1,0)));

  if (localXDir.dot(GlobalVector(1,0,0)) > 0.999999 &&
      localYDir.dot(GlobalVector(0,1,0)) > 0.999999) {
    // "null" rotation - requires no conversion...
  } else {
    cout << "ERROR: RectangularCartesianMFGrid: unexpected orientation: x: " 
         << localXDir << " y: " << localYDir << endl;
  }

  int n1, n2, n3;
  inFile >> n1 >> n2 >> n3;
  double xref, yref, zref;
  inFile >> xref >> yref >> zref;
  double stepx, stepy, stepz;
  inFile >> stepx    >> stepy    >> stepz;

  vector<BVector> fieldValues;
  float Bx, By, Bz;
  int nLines = n1*n2*n3;
  fieldValues.reserve(nLines);
  for (int iLine=0; iLine<nLines; ++iLine){
    inFile >> Bx >> By >> Bz;
    fieldValues.push_back(BVector(Bx,By,Bz));
  }
  // check completeness
  string lastEntry;
  inFile >> lastEntry;
  if (lastEntry != "complete"){
    cout << "ERROR during file reading: file is not complete" << endl;
  }

  GlobalPoint grefp( xref, yref, zref);
  LocalPoint lrefp = frame().toLocal( grefp);

  Grid1D gridX( lrefp.x(), lrefp.x() + stepx*(n1-1), n1);
  Grid1D gridY( lrefp.y(), lrefp.y() + stepy*(n2-1), n2);
  Grid1D gridZ( lrefp.z(), lrefp.z() + stepz*(n3-1), n3);
  grid_ = GridType( gridX, gridY, gridZ, fieldValues);
  
  // Activate/deactivate timers
//   static SimpleConfigurable<bool> timerOn(false,"MFGrid:timing");
//   (*TimingReport::current()).switchOn("MagneticFieldProvider::valueInTesla(RectangularCartesianMFGrid)",timerOn);

}

Member Function Documentation

void RectangularCartesianMFGrid::dump ( void  ) const [virtual]

Reimplemented from MFGrid.

Definition at line 66 of file RectangularCartesianMFGrid.cc.

References gather_cfg::cout, Grid3D::data(), MFGrid3D::grid_, Grid3D::grida(), Grid3D::gridb(), Grid3D::gridc(), Grid1D::lower(), Grid1D::nodes(), and Grid1D::step().

{
  cout << endl << "Dump of RectangularCartesianMFGrid" << endl;
//   cout << "Number of points from file   " 
//        << n1 << " " << n2 << " " << n3 << endl;
  cout << "Number of points from Grid1D " 
       << grid_.grida().nodes() << " " << grid_.gridb().nodes() << " " << grid_.gridc().nodes() << endl;

//   cout << "Reference Point from file   " 
//        << xref << " " << yref << " " << zref << endl;
  cout << "Reference Point from Grid1D " 
       << grid_.grida().lower() << " " << grid_.gridb().lower() << " " << grid_.gridc().lower() << endl;

//   cout << "Basic Distance from file   " 
//        <<  stepx << " " << stepy << " " << stepz << endl;
  cout << "Basic Distance from Grid1D "
       << grid_.grida().step() << " " << grid_.gridb().step() << " " << grid_.gridc().step() << endl;


  cout << "Dumping " << grid_.data().size() << " field values " << endl;
  // grid_.dump();
}
MFGrid::LocalPoint RectangularCartesianMFGrid::fromGridFrame ( double  a,
double  b,
double  c 
) const [virtual]

find grid coordinates for point. For debugging and validation only.

Implements MFGrid.

Definition at line 108 of file RectangularCartesianMFGrid.cc.

{
  return LocalPoint( a, b, c);
}
void RectangularCartesianMFGrid::toGridFrame ( const LocalPoint p,
double &  a,
double &  b,
double &  c 
) const [virtual]

find grid coordinates for point. For debugging and validation only.

Implements MFGrid.

Definition at line 100 of file RectangularCartesianMFGrid.cc.

{
  a = p.x();
  b = p.y();
  c = p.z();
}
MFGrid::LocalVector RectangularCartesianMFGrid::uncheckedValueInTesla ( const LocalPoint p) const [virtual]

Interpolated field value at given point; does not check for exceptions.

Implements MFGrid3D.

Definition at line 90 of file RectangularCartesianMFGrid.cc.

References MFGrid3D::grid_, LinearGridInterpolator3D::interpolate(), and relativeConstraints::value.

{
//   static TimingReport::Item & timer= (*TimingReport::current())["MagneticFieldProvider::valueInTesla(RectangularCartesianMFGrid)"];
//   TimeMe t(timer,false);

  LinearGridInterpolator3D interpol( grid_);
  GridType::ReturnType value = interpol.interpolate( p.x(), p.y(), p.z());
  return LocalVector(value);
}