#include <EventFilter/GctRawToDigi/src/GctFormatTranslateV35.h>
Public Member Functions | |
virtual bool | convertBlock (const unsigned char *d, const GctBlockHeader &hdr) |
Get digis from the block - will return true if it succeeds, false otherwise. | |
GctFormatTranslateV35 (bool hltMode=false, bool unpackSharedRegions=false) | |
Constructor. | |
virtual GctBlockHeader | generateBlockHeader (const unsigned char *data) const |
Generate a block header from four 8-bit values. | |
virtual | ~GctFormatTranslateV35 () |
Destructor. | |
Protected Member Functions | |
virtual const BlockLengthMap & | blockLengthMap () const |
get the static block ID to block-length map. | |
virtual BlockLengthMap & | blockLengthMap () |
get the static block ID to block-length map. | |
virtual const BlockNameMap & | blockNameMap () const |
get the static block ID to blockname map. | |
virtual BlockNameMap & | blockNameMap () |
get the static block ID to block-name map. | |
virtual uint32_t | generateRawHeader (const uint32_t blockId, const uint32_t nSamples, const uint32_t bxId, const uint32_t eventId) const |
Returns a raw 32-bit header word generated from the blockId, number of time samples, bunch-crossing and event IDs. | |
virtual const BlockIdToEmCandIsoBoundMap & | internEmIsoBounds () const |
get the static intern EM cand isolated boundary map. | |
virtual BlockIdToEmCandIsoBoundMap & | internEmIsoBounds () |
get the static intern EM cand isolated boundary map. | |
virtual const BlkToRctCrateMap & | rctEmCrateMap () const |
get static the block ID to RCT crate map for electrons. | |
virtual BlkToRctCrateMap & | rctEmCrateMap () |
get the static block ID to RCT crate map for electrons. | |
virtual const BlkToRctCrateMap & | rctJetCrateMap () const |
get the static block ID to RCT crate map for jets | |
virtual BlkToRctCrateMap & | rctJetCrateMap () |
get the static block ID to RCT crate map for jets | |
Private Types | |
typedef std::map< unsigned int, PtrToUnpackFn > | BlockIdToUnpackFnMap |
Typedef for a block ID to unpack function map. | |
typedef void(GctFormatTranslateV35::* | PtrToUnpackFn )(const unsigned char *, const GctBlockHeader &) |
Function pointer typdef to a block unpack function. | |
Private Member Functions | |
void | blockToFibres (const unsigned char *d, const GctBlockHeader &hdr) |
unpack Fibres | |
void | blockToFibresAndToRctEmCand (const unsigned char *d, const GctBlockHeader &hdr) |
unpack Fibres and RCT EM Candidates | |
void | blockToGctEmCandsAndEnergySums (const unsigned char *d, const GctBlockHeader &hdr) |
unpack GCT EM Candidates and energy sums. | |
void | blockToGctInternEmCand (const unsigned char *d, const GctBlockHeader &hdr) |
unpack GCT internal EM Candidates | |
void | blockToGctJetCandsAndCounts (const unsigned char *d, const GctBlockHeader &hdr) |
Unpack GCT Jet Candidates and jet counts. | |
void | blockToGctJetClusterMinimal (const unsigned char *d, const GctBlockHeader &hdr) |
unpack GCT internal input to wheel jet sort | |
void | blockToGctJetPreCluster (const unsigned char *d, const GctBlockHeader &hdr) |
unpack GCT internal shared jet finder info | |
void | blockToGctTrigObjects (const unsigned char *d, const GctBlockHeader &hdr) |
unpack GCT internal wheel and conc jets | |
void | blockToRctCaloRegions (const unsigned char *d, const GctBlockHeader &hdr) |
Unpack RCT Calo Regions. | |
void | blockToRctEmCand (const unsigned char *d, const GctBlockHeader &hdr) |
unpack RCT EM Candidates | |
Static Private Attributes | |
static BlockLengthMap | m_blockLength = GctFormatTranslateV35::BlockLengthMap() |
Map to translate block number to fundamental size of a block (i.e. for 1 time-sample). | |
static BlockNameMap | m_blockName = GctFormatTranslateV35::BlockNameMap() |
Map to hold a description for each block number. | |
static BlockIdToUnpackFnMap | m_blockUnpackFn = GctFormatTranslateV35::BlockIdToUnpackFnMap() |
Block ID to unpack function map. | |
static BlockIdToEmCandIsoBoundMap | m_internEmIsoBounds = GctFormatTranslateV35::BlockIdToEmCandIsoBoundMap() |
static BlkToRctCrateMap | m_rctEmCrate = GctFormatTranslateV35::BlkToRctCrateMap() |
Map to relate capture block ID to the RCT crate the data originated from (for electrons). | |
static BlkToRctCrateMap | m_rctJetCrate = GctFormatTranslateV35::BlkToRctCrateMap() |
Map to relate capture block ID to the RCT crate the data originated from (for jets). |
Definition at line 19 of file GctFormatTranslateV35.h.
typedef std::map<unsigned int, PtrToUnpackFn> GctFormatTranslateV35::BlockIdToUnpackFnMap [private] |
Typedef for a block ID to unpack function map.
Definition at line 82 of file GctFormatTranslateV35.h.
typedef void(GctFormatTranslateV35::* GctFormatTranslateV35::PtrToUnpackFn)(const unsigned char *, const GctBlockHeader &) [private] |
Function pointer typdef to a block unpack function.
GctFormatTranslateV35::GctFormatTranslateV35 | ( | bool | hltMode = false , |
|
bool | unpackSharedRegions = false | |||
) | [explicit] |
Constructor.
hltMode | - set true to unpack only BX zero and GCT output data (i.e. to run as quick as possible). | |
unpackSharedRegions | - this is a commissioning option to unpack the shared RCT calo regions. |
Definition at line 27 of file GctFormatTranslateV35.cc.
References GctFormatTranslateBase::blockDoNothing(), blockToFibres(), blockToFibresAndToRctEmCand(), blockToGctEmCandsAndEnergySums(), blockToGctInternEmCand(), blockToGctJetCandsAndCounts(), blockToGctJetClusterMinimal(), blockToGctJetPreCluster(), blockToGctTrigObjects(), blockToRctCaloRegions(), m_blockLength, m_blockName, m_blockUnpackFn, m_internEmIsoBounds, m_rctEmCrate, and m_rctJetCrate.
00027 : 00028 GctFormatTranslateBase(hltMode, unpackSharedRegions) 00029 { 00030 static bool initClass = true; 00031 00032 if(initClass) 00033 { 00034 initClass = false; 00035 00036 /*** Setup BlockID to BlockLength Map ***/ 00037 // Miscellaneous Blocks 00038 m_blockLength.insert(make_pair(0x000,0)); // NULL 00039 // ConcJet FPGA 00040 m_blockLength.insert(make_pair(0x580,12)); // ConcJet: Input TrigPathA (Jet Cands) 00041 m_blockLength.insert(make_pair(0x581,2)); // ConcJet: Input TrigPathB (HF Rings) 00042 m_blockLength.insert(make_pair(0x583,8)); // ConcJet: Jet Cands and Counts Output to GT 00043 m_blockLength.insert(make_pair(0x587,4)); // ConcJet: BX & Orbit Info 00044 // ConcElec FPGA 00045 m_blockLength.insert(make_pair(0x680,16)); // ConcElec: Input TrigPathA (EM Cands) 00046 m_blockLength.insert(make_pair(0x681,6)); // ConcElec: Input TrigPathB (Et Sums) 00047 m_blockLength.insert(make_pair(0x682,2)); // ConcElec: Input TrigPathC (Ht Sums) 00048 m_blockLength.insert(make_pair(0x683,6)); // ConcElec: EM Cands and Energy Sums Output to GT 00049 m_blockLength.insert(make_pair(0x686,2)); // ConcElec: Test (GT Serdes Loopback) 00050 m_blockLength.insert(make_pair(0x687,4)); // ConcElec: BX & Orbit Info 00051 // Electron Leaf FPGAs 00052 m_blockLength.insert(make_pair(0x800,20)); // Leaf0ElecPosEtaU1: Sort Input 00053 m_blockLength.insert(make_pair(0x803,4)); // Leaf0ElecPosEtaU1: Sort Output 00054 m_blockLength.insert(make_pair(0x804,15)); // Leaf0ElecPosEtaU1: Raw Input 00055 m_blockLength.insert(make_pair(0x880,16)); // Leaf0ElecPosEtaU2: Sort Input 00056 m_blockLength.insert(make_pair(0x883,4)); // Leaf0ElecPosEtaU2: Sort Output 00057 m_blockLength.insert(make_pair(0x884,12)); // Leaf0ElecPosEtaU2: Raw Input 00058 m_blockLength.insert(make_pair(0xc00,20)); // Leaf0ElecNegEtaU1: Sort Input 00059 m_blockLength.insert(make_pair(0xc03,4)); // Leaf0ElecNegEtaU1: Sort Output 00060 m_blockLength.insert(make_pair(0xc04,15)); // Leaf0ElecNegEtaU1: Raw Input 00061 m_blockLength.insert(make_pair(0xc80,16)); // Leaf0ElecNegEtaU2: Sort Input 00062 m_blockLength.insert(make_pair(0xc83,4)); // Leaf0ElecNegEtaU2: Sort Output 00063 m_blockLength.insert(make_pair(0xc84,12)); // Leaf0ElecNegEtaU2: Raw Input 00064 // Wheel Pos-eta Jet FPGA 00065 m_blockLength.insert(make_pair(0x300,27)); // WheelPosEtaJet: Input TrigPathA (Jet Sort) 00066 m_blockLength.insert(make_pair(0x303,6)); // WheelPosEtaJet: Output TrigPathA (Jet Sort) 00067 m_blockLength.insert(make_pair(0x306,32)); // WheelPosEtaJet: Test (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00068 m_blockLength.insert(make_pair(0x307,4)); // WheelPosEtaJet: Info (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00069 // Wheel Pos-eta Energy FPGA 00070 m_blockLength.insert(make_pair(0x380,21)); // WheelPosEtaEnergy: Input TrigPathA (Et) 00071 m_blockLength.insert(make_pair(0x381,3)); // WheelPosEtaEnergy: Input TrigPathB (Ht) 00072 m_blockLength.insert(make_pair(0x383,7)); // WheelPosEtaEnergy: Output TrigPathA (Et) 00073 m_blockLength.insert(make_pair(0x385,2)); // WheelPosEtaEnergy: Output TrigPathB (Ht) 00074 m_blockLength.insert(make_pair(0x386,32)); // WheelPosEtaEnergy: Test 00075 m_blockLength.insert(make_pair(0x387,6)); // WheelPosEtaEnergy: BX & Orbit Info (Potential data incompatibility between V24/V25 where block length=4, and V27.1 where block length=6) 00076 // Wheel Neg-eta Jet FPGA 00077 m_blockLength.insert(make_pair(0x700,27)); // WheelNegEtaJet: Input TrigPathA (Jet Sort) 00078 m_blockLength.insert(make_pair(0x703,6)); // WheelNegEtaJet: Output TrigPathA (Jet Sort) 00079 m_blockLength.insert(make_pair(0x706,32)); // WheelNegEtaJet: Test (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00080 m_blockLength.insert(make_pair(0x707,4)); // WheelNegEtaJet: Info (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00081 // Wheel Neg-eta Energy FPGA 00082 m_blockLength.insert(make_pair(0x780,21)); // WheelNegEtaEnergy: Input TrigPathA (Et) 00083 m_blockLength.insert(make_pair(0x781,3)); // WheelNegEtaEnergy: Input TrigPathB (Ht) 00084 m_blockLength.insert(make_pair(0x783,7)); // WheelNegEtaEnergy: Output TrigPathA (Et) 00085 m_blockLength.insert(make_pair(0x785,2)); // WheelNegEtaEnergy: Output TrigPathB (Ht) 00086 m_blockLength.insert(make_pair(0x786,32)); // WheelNegEtaEnergy: Test 00087 m_blockLength.insert(make_pair(0x787,6)); // WheelNegEtaEnergy: BX & Orbit Info (Potential data incompatibility between V24/V25 where block length=4, and V27.1 where block length=6) 00088 // Jet Leaf FPGAs - Positive Eta 00089 m_blockLength.insert(make_pair(0x900,12)); // Leaf1JetPosEtaU1: JF2 Input 00090 m_blockLength.insert(make_pair(0x901,3)); // Leaf1JetPosEtaU1: JF2 Shared Received 00091 m_blockLength.insert(make_pair(0x902,3)); // Leaf1JetPosEtaU1: JF2 Shared Sent 00092 m_blockLength.insert(make_pair(0x903,10)); // Leaf1JetPosEtaU1: JF2 Output 00093 m_blockLength.insert(make_pair(0x904,8)); // Leaf1JetPosEtaU1: JF2 Raw Input 00094 m_blockLength.insert(make_pair(0x908,12)); // Leaf1JetPosEtaU1: JF3 Input 00095 m_blockLength.insert(make_pair(0x909,3)); // Leaf1JetPosEtaU1: JF3 Shared Received 00096 m_blockLength.insert(make_pair(0x90a,3)); // Leaf1JetPosEtaU1: JF3 Shared Sent 00097 m_blockLength.insert(make_pair(0x90b,10)); // Leaf1JetPosEtaU1: JF3 Output 00098 m_blockLength.insert(make_pair(0x90c,8)); // Leaf1JetPosEtaU1: JF3 Raw Input 00099 m_blockLength.insert(make_pair(0x980,3)); // Leaf1JetPosEtaU2: Eta0 Input 00100 m_blockLength.insert(make_pair(0x984,6)); // Leaf1JetPosEtaU2: Eta0 Raw Input 00101 m_blockLength.insert(make_pair(0x988,12)); // Leaf1JetPosEtaU2: JF1 Input 00102 m_blockLength.insert(make_pair(0x989,3)); // Leaf1JetPosEtaU2: JF1 Shared Received 00103 m_blockLength.insert(make_pair(0x98a,3)); // Leaf1JetPosEtaU2: JF1 Shared Sent 00104 m_blockLength.insert(make_pair(0x98b,10)); // Leaf1JetPosEtaU2: JF1 Output 00105 m_blockLength.insert(make_pair(0x98c,8)); // Leaf1JetPosEtaU2: JF1 Raw Input 00106 m_blockLength.insert(make_pair(0xa00,12)); // Leaf2JetPosEtaU1: JF2 Input 00107 m_blockLength.insert(make_pair(0xa01,3)); // Leaf2JetPosEtaU1: JF2 Shared Received 00108 m_blockLength.insert(make_pair(0xa02,3)); // Leaf2JetPosEtaU1: JF2 Shared Sent 00109 m_blockLength.insert(make_pair(0xa03,10)); // Leaf2JetPosEtaU1: JF2 Output 00110 m_blockLength.insert(make_pair(0xa04,8)); // Leaf2JetPosEtaU1: JF2 Raw Input 00111 m_blockLength.insert(make_pair(0xa08,12)); // Leaf2JetPosEtaU1: JF3 Input 00112 m_blockLength.insert(make_pair(0xa09,3)); // Leaf2JetPosEtaU1: JF3 Shared Received 00113 m_blockLength.insert(make_pair(0xa0a,3)); // Leaf2JetPosEtaU1: JF3 Shared Sent 00114 m_blockLength.insert(make_pair(0xa0b,10)); // Leaf2JetPosEtaU1: JF3 Output 00115 m_blockLength.insert(make_pair(0xa0c,8)); // Leaf2JetPosEtaU1: JF3 Raw Input 00116 m_blockLength.insert(make_pair(0xa80,3)); // Leaf2JetPosEtaU2: Eta0 Input 00117 m_blockLength.insert(make_pair(0xa84,6)); // Leaf2JetPosEtaU2: Eta0 Raw Input 00118 m_blockLength.insert(make_pair(0xa88,12)); // Leaf2JetPosEtaU2: JF1 Input 00119 m_blockLength.insert(make_pair(0xa89,3)); // Leaf2JetPosEtaU2: JF1 Shared Received 00120 m_blockLength.insert(make_pair(0xa8a,3)); // Leaf2JetPosEtaU2: JF1 Shared Sent 00121 m_blockLength.insert(make_pair(0xa8b,10)); // Leaf2JetPosEtaU2: JF1 Output 00122 m_blockLength.insert(make_pair(0xa8c,8)); // Leaf2JetPosEtaU2: JF1 Raw Input 00123 m_blockLength.insert(make_pair(0xb00,12)); // Leaf3JetPosEtaU1: JF2 Input 00124 m_blockLength.insert(make_pair(0xb01,3)); // Leaf3JetPosEtaU1: JF2 Shared Received 00125 m_blockLength.insert(make_pair(0xb02,3)); // Leaf3JetPosEtaU1: JF2 Shared Sent 00126 m_blockLength.insert(make_pair(0xb03,10)); // Leaf3JetPosEtaU1: JF2 Output 00127 m_blockLength.insert(make_pair(0xb04,8)); // Leaf3JetPosEtaU1: JF2 Raw Input 00128 m_blockLength.insert(make_pair(0xb08,12)); // Leaf3JetPosEtaU1: JF3 Input 00129 m_blockLength.insert(make_pair(0xb09,3)); // Leaf3JetPosEtaU1: JF3 Shared Received 00130 m_blockLength.insert(make_pair(0xb0a,3)); // Leaf3JetPosEtaU1: JF3 Shared Sent 00131 m_blockLength.insert(make_pair(0xb0b,10)); // Leaf3JetPosEtaU1: JF3 Output 00132 m_blockLength.insert(make_pair(0xb0c,8)); // Leaf3JetPosEtaU1: JF3 Raw Input 00133 m_blockLength.insert(make_pair(0xb80,3)); // Leaf3JetPosEtaU2: Eta0 Input 00134 m_blockLength.insert(make_pair(0xb84,6)); // Leaf3JetPosEtaU2: Eta0 Raw Input 00135 m_blockLength.insert(make_pair(0xb88,12)); // Leaf3JetPosEtaU2: JF1 Input 00136 m_blockLength.insert(make_pair(0xb89,3)); // Leaf3JetPosEtaU2: JF1 Shared Received 00137 m_blockLength.insert(make_pair(0xb8a,3)); // Leaf3JetPosEtaU2: JF1 Shared Sent 00138 m_blockLength.insert(make_pair(0xb8b,10)); // Leaf3JetPosEtaU2: JF1 Output 00139 m_blockLength.insert(make_pair(0xb8c,8)); // Leaf3JetPosEtaU2: JF1 Raw Input 00140 // Jet Leaf FPGAs - Negative Eta 00141 m_blockLength.insert(make_pair(0xd00,12)); // Leaf1JetNegEtaU1: JF2 Input 00142 m_blockLength.insert(make_pair(0xd01,3)); // Leaf1JetNegEtaU1: JF2 Shared Received 00143 m_blockLength.insert(make_pair(0xd02,3)); // Leaf1JetNegEtaU1: JF2 Shared Sent 00144 m_blockLength.insert(make_pair(0xd03,10)); // Leaf1JetNegEtaU1: JF2 Output 00145 m_blockLength.insert(make_pair(0xd04,8)); // Leaf1JetNegEtaU1: JF2 Raw Input 00146 m_blockLength.insert(make_pair(0xd08,12)); // Leaf1JetNegEtaU1: JF3 Input 00147 m_blockLength.insert(make_pair(0xd09,3)); // Leaf1JetNegEtaU1: JF3 Shared Received 00148 m_blockLength.insert(make_pair(0xd0a,3)); // Leaf1JetNegEtaU1: JF3 Shared Sent 00149 m_blockLength.insert(make_pair(0xd0b,10)); // Leaf1JetNegEtaU1: JF3 Output 00150 m_blockLength.insert(make_pair(0xd0c,8)); // Leaf1JetNegEtaU1: JF3 Raw Input 00151 m_blockLength.insert(make_pair(0xd80,3)); // Leaf1JetNegEtaU2: Eta0 Input 00152 m_blockLength.insert(make_pair(0xd84,6)); // Leaf1JetNegEtaU2: Eta0 Raw Input 00153 m_blockLength.insert(make_pair(0xd88,12)); // Leaf1JetNegEtaU2: JF1 Input 00154 m_blockLength.insert(make_pair(0xd89,3)); // Leaf1JetNegEtaU2: JF1 Shared Received 00155 m_blockLength.insert(make_pair(0xd8a,3)); // Leaf1JetNegEtaU2: JF1 Shared Sent 00156 m_blockLength.insert(make_pair(0xd8b,10)); // Leaf1JetNegEtaU2: JF1 Output 00157 m_blockLength.insert(make_pair(0xd8c,8)); // Leaf1JetNegEtaU2: JF1 Raw Input 00158 m_blockLength.insert(make_pair(0xe00,12)); // Leaf2JetNegEtaU1: JF2 Input 00159 m_blockLength.insert(make_pair(0xe01,3)); // Leaf2JetNegEtaU1: JF2 Shared Received 00160 m_blockLength.insert(make_pair(0xe02,3)); // Leaf2JetNegEtaU1: JF2 Shared Sent 00161 m_blockLength.insert(make_pair(0xe03,10)); // Leaf2JetNegEtaU1: JF2 Output 00162 m_blockLength.insert(make_pair(0xe04,8)); // Leaf2JetNegEtaU1: JF2 Raw Input 00163 m_blockLength.insert(make_pair(0xe08,12)); // Leaf2JetNegEtaU1: JF3 Input 00164 m_blockLength.insert(make_pair(0xe09,3)); // Leaf2JetNegEtaU1: JF3 Shared Received 00165 m_blockLength.insert(make_pair(0xe0a,3)); // Leaf2JetNegEtaU1: JF3 Shared Sent 00166 m_blockLength.insert(make_pair(0xe0b,10)); // Leaf2JetNegEtaU1: JF3 Output 00167 m_blockLength.insert(make_pair(0xe0c,8)); // Leaf2JetNegEtaU1: JF3 Raw Input 00168 m_blockLength.insert(make_pair(0xe80,3)); // Leaf2JetNegEtaU2: Eta0 Input 00169 m_blockLength.insert(make_pair(0xe84,6)); // Leaf2JetNegEtaU2: Eta0 Raw Input 00170 m_blockLength.insert(make_pair(0xe88,12)); // Leaf2JetNegEtaU2: JF1 Input 00171 m_blockLength.insert(make_pair(0xe89,3)); // Leaf2JetNegEtaU2: JF1 Shared Received 00172 m_blockLength.insert(make_pair(0xe8a,3)); // Leaf2JetNegEtaU2: JF1 Shared Sent 00173 m_blockLength.insert(make_pair(0xe8b,10)); // Leaf2JetNegEtaU2: JF1 Output 00174 m_blockLength.insert(make_pair(0xe8c,8)); // Leaf2JetNegEtaU2: JF1 Raw Input 00175 m_blockLength.insert(make_pair(0xf00,12)); // Leaf3JetNegEtaU1: JF2 Input 00176 m_blockLength.insert(make_pair(0xf01,3)); // Leaf3JetNegEtaU1: JF2 Shared Received 00177 m_blockLength.insert(make_pair(0xf02,3)); // Leaf3JetNegEtaU1: JF2 Shared Sent 00178 m_blockLength.insert(make_pair(0xf03,10)); // Leaf3JetNegEtaU1: JF2 Output 00179 m_blockLength.insert(make_pair(0xf04,8)); // Leaf3JetNegEtaU1: JF2 Raw Input 00180 m_blockLength.insert(make_pair(0xf08,12)); // Leaf3JetNegEtaU1: JF3 Input 00181 m_blockLength.insert(make_pair(0xf09,3)); // Leaf3JetNegEtaU1: JF3 Shared Received 00182 m_blockLength.insert(make_pair(0xf0a,3)); // Leaf3JetNegEtaU1: JF3 Shared Sent 00183 m_blockLength.insert(make_pair(0xf0b,10)); // Leaf3JetNegEtaU1: JF3 Output 00184 m_blockLength.insert(make_pair(0xf0c,8)); // Leaf3JetNegEtaU1: JF3 Raw Input 00185 m_blockLength.insert(make_pair(0xf80,3)); // Leaf3JetNegEtaU2: Eta0 Input 00186 m_blockLength.insert(make_pair(0xf84,6)); // Leaf3JetNegEtaU2: Eta0 Raw Input 00187 m_blockLength.insert(make_pair(0xf88,12)); // Leaf3JetNegEtaU2: JF1 Input 00188 m_blockLength.insert(make_pair(0xf89,3)); // Leaf3JetNegEtaU2: JF1 Shared Received 00189 m_blockLength.insert(make_pair(0xf8a,3)); // Leaf3JetNegEtaU2: JF1 Shared Sent 00190 m_blockLength.insert(make_pair(0xf8b,10)); // Leaf3JetNegEtaU2: JF1 Output 00191 m_blockLength.insert(make_pair(0xf8c,8)); // Leaf3JetNegEtaU2: JF1 Raw Input 00192 00193 00194 /*** Setup BlockID to BlockName Map ***/ 00195 // Miscellaneous Blocks 00196 m_blockName.insert(make_pair(0x000,"NULL")); 00197 // ConcJet FPGA 00198 m_blockName.insert(make_pair(0x580,"ConcJet: Input TrigPathA (Jet Cands)")); 00199 m_blockName.insert(make_pair(0x581,"ConcJet: Input TrigPathB (HF Rings)")); 00200 m_blockName.insert(make_pair(0x583,"ConcJet: Jet Cands and Counts Output to GT")); 00201 m_blockName.insert(make_pair(0x587,"ConcJet: BX & Orbit Info")); 00202 // ConcElec FPGA 00203 m_blockName.insert(make_pair(0x680,"ConcElec: Input TrigPathA (EM Cands)")); 00204 m_blockName.insert(make_pair(0x681,"ConcElec: Input TrigPathB (Et Sums)")); 00205 m_blockName.insert(make_pair(0x682,"ConcElec: Input TrigPathC (Ht Sums)")); 00206 m_blockName.insert(make_pair(0x683,"ConcElec: EM Cands and Energy Sums Output to GT")); 00207 m_blockName.insert(make_pair(0x686,"ConcElec: Test (GT Serdes Loopback)")); 00208 m_blockName.insert(make_pair(0x687,"ConcElec: BX & Orbit Info")); 00209 // Electron Leaf FPGAs 00210 m_blockName.insert(make_pair(0x800,"Leaf0ElecPosEtaU1: Sort Input")); 00211 m_blockName.insert(make_pair(0x803,"Leaf0ElecPosEtaU1: Sort Output")); 00212 m_blockName.insert(make_pair(0x804,"Leaf0ElecPosEtaU1: Raw Input")); 00213 m_blockName.insert(make_pair(0x880,"Leaf0ElecPosEtaU2: Sort Input")); 00214 m_blockName.insert(make_pair(0x883,"Leaf0ElecPosEtaU2: Sort Output")); 00215 m_blockName.insert(make_pair(0x884,"Leaf0ElecPosEtaU2: Raw Input")); 00216 m_blockName.insert(make_pair(0xc00,"Leaf0ElecNegEtaU1: Sort Input")); 00217 m_blockName.insert(make_pair(0xc03,"Leaf0ElecNegEtaU1: Sort Output")); 00218 m_blockName.insert(make_pair(0xc04,"Leaf0ElecNegEtaU1: Raw Input")); 00219 m_blockName.insert(make_pair(0xc80,"Leaf0ElecNegEtaU2: Sort Input")); 00220 m_blockName.insert(make_pair(0xc83,"Leaf0ElecNegEtaU2: Sort Output")); 00221 m_blockName.insert(make_pair(0xc84,"Leaf0ElecNegEtaU2: Raw Input")); 00222 // Wheel Pos-eta Jet FPGA 00223 m_blockName.insert(make_pair(0x300,"WheelPosEtaJet: Input TrigPathA (Jet Sort)")); 00224 m_blockName.insert(make_pair(0x303,"WheelPosEtaJet: Output TrigPathA (Jet Sort)")); 00225 m_blockName.insert(make_pair(0x306,"WheelPosEtaJet: Test (deprecated)")); // (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00226 m_blockName.insert(make_pair(0x307,"WheelPosEtaJet: Info (deprecated)")); // (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00227 // Wheel Pos-eta Energy FPGA 00228 m_blockName.insert(make_pair(0x380,"WheelPosEtaEnergy: Input TrigPathA (Et)")); 00229 m_blockName.insert(make_pair(0x381,"WheelPosEtaEnergy: Input TrigPathB (Ht)")); 00230 m_blockName.insert(make_pair(0x383,"WheelPosEtaEnergy: Output TrigPathA (Et)")); 00231 m_blockName.insert(make_pair(0x385,"WheelPosEtaEnergy: Output TrigPathB (Ht)")); 00232 m_blockName.insert(make_pair(0x386,"WheelPosEtaEnergy: Test")); 00233 m_blockName.insert(make_pair(0x387,"WheelPosEtaEnergy: BX & Orbit Info")); 00234 // Wheel Neg-eta Jet FPGA 00235 m_blockName.insert(make_pair(0x700,"WheelNegEtaJet: Input TrigPathA (Jet Sort)")); 00236 m_blockName.insert(make_pair(0x703,"WheelNegEtaJet: Output TrigPathA (Jet Sort)")); 00237 m_blockName.insert(make_pair(0x706,"WheelNegEtaJet: Test (deprecated)")); // (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00238 m_blockName.insert(make_pair(0x707,"WheelNegEtaJet: Info (deprecated)")); // (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00239 // Wheel Neg-eta Energy FPGA 00240 m_blockName.insert(make_pair(0x780,"WheelNegEtaEnergy: Input TrigPathA (Et)")); 00241 m_blockName.insert(make_pair(0x781,"WheelNegEtaEnergy: Input TrigPathB (Ht)")); 00242 m_blockName.insert(make_pair(0x783,"WheelNegEtaEnergy: Output TrigPathA (Et)")); 00243 m_blockName.insert(make_pair(0x785,"WheelNegEtaEnergy: Output TrigPathB (Ht)")); 00244 m_blockName.insert(make_pair(0x786,"WheelNegEtaEnergy: Test")); 00245 m_blockName.insert(make_pair(0x787,"WheelNegEtaEnergy: BX & Orbit Info")); 00246 // Jet Leaf FPGAs - Positive Eta 00247 m_blockName.insert(make_pair(0x900,"Leaf1JetPosEtaU1: JF2 Input")); 00248 m_blockName.insert(make_pair(0x901,"Leaf1JetPosEtaU1: JF2 Shared Received")); 00249 m_blockName.insert(make_pair(0x902,"Leaf1JetPosEtaU1: JF2 Shared Sent")); 00250 m_blockName.insert(make_pair(0x903,"Leaf1JetPosEtaU1: JF2 Output")); 00251 m_blockName.insert(make_pair(0x904,"Leaf1JetPosEtaU1: JF2 Raw Input")); 00252 m_blockName.insert(make_pair(0x908,"Leaf1JetPosEtaU1: JF3 Input")); 00253 m_blockName.insert(make_pair(0x909,"Leaf1JetPosEtaU1: JF3 Shared Received")); 00254 m_blockName.insert(make_pair(0x90a,"Leaf1JetPosEtaU1: JF3 Shared Sent")); 00255 m_blockName.insert(make_pair(0x90b,"Leaf1JetPosEtaU1: JF3 Output")); 00256 m_blockName.insert(make_pair(0x90c,"Leaf1JetPosEtaU1: JF3 Raw Input")); 00257 m_blockName.insert(make_pair(0x980,"Leaf1JetPosEtaU2: Eta0 Input")); // Next Leaf Start 00258 m_blockName.insert(make_pair(0x984,"Leaf1JetPosEtaU2: Eta0 Raw Input")); 00259 m_blockName.insert(make_pair(0x988,"Leaf1JetPosEtaU2: JF1 Input")); 00260 m_blockName.insert(make_pair(0x989,"Leaf1JetPosEtaU2: JF1 Shared Received")); 00261 m_blockName.insert(make_pair(0x98a,"Leaf1JetPosEtaU2: JF1 Shared Sent")); 00262 m_blockName.insert(make_pair(0x98b,"Leaf1JetPosEtaU2: JF1 Output")); 00263 m_blockName.insert(make_pair(0x98c,"Leaf1JetPosEtaU2: JF1 Raw Input")); 00264 m_blockName.insert(make_pair(0xa00,"Leaf2JetPosEtaU1: JF2 Input")); // Next Leaf Start 00265 m_blockName.insert(make_pair(0xa01,"Leaf2JetPosEtaU1: JF2 Shared Received")); 00266 m_blockName.insert(make_pair(0xa02,"Leaf2JetPosEtaU1: JF2 Shared Sent")); 00267 m_blockName.insert(make_pair(0xa03,"Leaf2JetPosEtaU1: JF2 Output")); 00268 m_blockName.insert(make_pair(0xa04,"Leaf2JetPosEtaU1: JF2 Raw Input")); 00269 m_blockName.insert(make_pair(0xa08,"Leaf2JetPosEtaU1: JF3 Input")); 00270 m_blockName.insert(make_pair(0xa09,"Leaf2JetPosEtaU1: JF3 Shared Received")); 00271 m_blockName.insert(make_pair(0xa0a,"Leaf2JetPosEtaU1: JF3 Shared Sent")); 00272 m_blockName.insert(make_pair(0xa0b,"Leaf2JetPosEtaU1: JF3 Output")); 00273 m_blockName.insert(make_pair(0xa0c,"Leaf2JetPosEtaU1: JF3 Raw Input")); 00274 m_blockName.insert(make_pair(0xa80,"Leaf2JetPosEtaU2: Eta0 Input")); // Next Leaf Start 00275 m_blockName.insert(make_pair(0xa84,"Leaf2JetPosEtaU2: Eta0 Raw Input")); 00276 m_blockName.insert(make_pair(0xa88,"Leaf2JetPosEtaU2: JF1 Input")); 00277 m_blockName.insert(make_pair(0xa89,"Leaf2JetPosEtaU2: JF1 Shared Received")); 00278 m_blockName.insert(make_pair(0xa8a,"Leaf2JetPosEtaU2: JF1 Shared Sent")); 00279 m_blockName.insert(make_pair(0xa8b,"Leaf2JetPosEtaU2: JF1 Output")); 00280 m_blockName.insert(make_pair(0xa8c,"Leaf2JetPosEtaU2: JF1 Raw Input")); 00281 m_blockName.insert(make_pair(0xb00,"Leaf3JetPosEtaU1: JF2 Input")); // Next Leaf Start 00282 m_blockName.insert(make_pair(0xb01,"Leaf3JetPosEtaU1: JF2 Shared Received")); 00283 m_blockName.insert(make_pair(0xb02,"Leaf3JetPosEtaU1: JF2 Shared Sent")); 00284 m_blockName.insert(make_pair(0xb03,"Leaf3JetPosEtaU1: JF2 Output")); 00285 m_blockName.insert(make_pair(0xb04,"Leaf3JetPosEtaU1: JF2 Raw Input")); 00286 m_blockName.insert(make_pair(0xb08,"Leaf3JetPosEtaU1: JF3 Input")); 00287 m_blockName.insert(make_pair(0xb09,"Leaf3JetPosEtaU1: JF3 Shared Received")); 00288 m_blockName.insert(make_pair(0xb0a,"Leaf3JetPosEtaU1: JF3 Shared Sent")); 00289 m_blockName.insert(make_pair(0xb0b,"Leaf3JetPosEtaU1: JF3 Output")); 00290 m_blockName.insert(make_pair(0xb0c,"Leaf3JetPosEtaU1: JF3 Raw Input")); 00291 m_blockName.insert(make_pair(0xb80,"Leaf3JetPosEtaU2: Eta0 Input")); // Next Leaf Start 00292 m_blockName.insert(make_pair(0xb84,"Leaf3JetPosEtaU2: Eta0 Raw Input")); 00293 m_blockName.insert(make_pair(0xb88,"Leaf3JetPosEtaU2: JF1 Input")); 00294 m_blockName.insert(make_pair(0xb89,"Leaf3JetPosEtaU2: JF1 Shared Received")); 00295 m_blockName.insert(make_pair(0xb8a,"Leaf3JetPosEtaU2: JF1 Shared Sent")); 00296 m_blockName.insert(make_pair(0xb8b,"Leaf3JetPosEtaU2: JF1 Output")); 00297 m_blockName.insert(make_pair(0xb8c,"Leaf3JetPosEtaU2: JF1 Raw Input")); 00298 // Jet Leaf FPGAs - Negative Eta 00299 m_blockName.insert(make_pair(0xd00,"Leaf1JetNegEtaU1: JF2 Input")); // START OF NEG ETA JET LEAVES 00300 m_blockName.insert(make_pair(0xd01,"Leaf1JetNegEtaU1: JF2 Shared Received")); 00301 m_blockName.insert(make_pair(0xd02,"Leaf1JetNegEtaU1: JF2 Shared Sent")); 00302 m_blockName.insert(make_pair(0xd03,"Leaf1JetNegEtaU1: JF2 Output")); 00303 m_blockName.insert(make_pair(0xd04,"Leaf1JetNegEtaU1: JF2 Raw Input")); 00304 m_blockName.insert(make_pair(0xd08,"Leaf1JetNegEtaU1: JF3 Input")); 00305 m_blockName.insert(make_pair(0xd09,"Leaf1JetNegEtaU1: JF3 Shared Received")); 00306 m_blockName.insert(make_pair(0xd0a,"Leaf1JetNegEtaU1: JF3 Shared Sent")); 00307 m_blockName.insert(make_pair(0xd0b,"Leaf1JetNegEtaU1: JF3 Output")); 00308 m_blockName.insert(make_pair(0xd0c,"Leaf1JetNegEtaU1: JF3 Raw Input")); 00309 m_blockName.insert(make_pair(0xd80,"Leaf1JetNegEtaU2: Eta0 Input")); // Next Leaf Start 00310 m_blockName.insert(make_pair(0xd84,"Leaf1JetNegEtaU2: Eta0 Raw Input")); 00311 m_blockName.insert(make_pair(0xd88,"Leaf1JetNegEtaU2: JF1 Input")); 00312 m_blockName.insert(make_pair(0xd89,"Leaf1JetNegEtaU2: JF1 Shared Received")); 00313 m_blockName.insert(make_pair(0xd8a,"Leaf1JetNegEtaU2: JF1 Shared Sent")); 00314 m_blockName.insert(make_pair(0xd8b,"Leaf1JetNegEtaU2: JF1 Output")); 00315 m_blockName.insert(make_pair(0xd8c,"Leaf1JetNegEtaU2: JF1 Raw Input")); 00316 m_blockName.insert(make_pair(0xe00,"Leaf2JetNegEtaU1: JF2 Input")); // Next Leaf Start 00317 m_blockName.insert(make_pair(0xe01,"Leaf2JetNegEtaU1: JF2 Shared Received")); 00318 m_blockName.insert(make_pair(0xe02,"Leaf2JetNegEtaU1: JF2 Shared Sent")); 00319 m_blockName.insert(make_pair(0xe03,"Leaf2JetNegEtaU1: JF2 Output")); 00320 m_blockName.insert(make_pair(0xe04,"Leaf2JetNegEtaU1: JF2 Raw Input")); 00321 m_blockName.insert(make_pair(0xe08,"Leaf2JetNegEtaU1: JF3 Input")); 00322 m_blockName.insert(make_pair(0xe09,"Leaf2JetNegEtaU1: JF3 Shared Received")); 00323 m_blockName.insert(make_pair(0xe0a,"Leaf2JetNegEtaU1: JF3 Shared Sent")); 00324 m_blockName.insert(make_pair(0xe0b,"Leaf2JetNegEtaU1: JF3 Output")); 00325 m_blockName.insert(make_pair(0xe0c,"Leaf2JetNegEtaU1: JF3 Raw Input")); 00326 m_blockName.insert(make_pair(0xe80,"Leaf2JetNegEtaU2: Eta0 Input")); // Next Leaf Start 00327 m_blockName.insert(make_pair(0xe84,"Leaf2JetNegEtaU2: Eta0 Raw Input")); 00328 m_blockName.insert(make_pair(0xe88,"Leaf2JetNegEtaU2: JF1 Input")); 00329 m_blockName.insert(make_pair(0xe89,"Leaf2JetNegEtaU2: JF1 Shared Received")); 00330 m_blockName.insert(make_pair(0xe8a,"Leaf2JetNegEtaU2: JF1 Shared Sent")); 00331 m_blockName.insert(make_pair(0xe8b,"Leaf2JetNegEtaU2: JF1 Output")); 00332 m_blockName.insert(make_pair(0xe8c,"Leaf2JetNegEtaU2: JF1 Raw Input")); 00333 m_blockName.insert(make_pair(0xf00,"Leaf3JetNegEtaU1: JF2 Input")); // Next Leaf Start 00334 m_blockName.insert(make_pair(0xf01,"Leaf3JetNegEtaU1: JF2 Shared Received")); 00335 m_blockName.insert(make_pair(0xf02,"Leaf3JetNegEtaU1: JF2 Shared Sent")); 00336 m_blockName.insert(make_pair(0xf03,"Leaf3JetNegEtaU1: JF2 Output")); 00337 m_blockName.insert(make_pair(0xf04,"Leaf3JetNegEtaU1: JF2 Raw Input")); 00338 m_blockName.insert(make_pair(0xf08,"Leaf3JetNegEtaU1: JF3 Input")); 00339 m_blockName.insert(make_pair(0xf09,"Leaf3JetNegEtaU1: JF3 Shared Received")); 00340 m_blockName.insert(make_pair(0xf0a,"Leaf3JetNegEtaU1: JF3 Shared Sent")); 00341 m_blockName.insert(make_pair(0xf0b,"Leaf3JetNegEtaU1: JF3 Output")); 00342 m_blockName.insert(make_pair(0xf0c,"Leaf3JetNegEtaU1: JF3 Raw Input")); 00343 m_blockName.insert(make_pair(0xf80,"Leaf3JetNegEtaU2: Eta0 Input")); // Next Leaf Start 00344 m_blockName.insert(make_pair(0xf84,"Leaf3JetNegEtaU2: Eta0 Raw Input")); 00345 m_blockName.insert(make_pair(0xf88,"Leaf3JetNegEtaU2: JF1 Input")); 00346 m_blockName.insert(make_pair(0xf89,"Leaf3JetNegEtaU2: JF1 Shared Received")); 00347 m_blockName.insert(make_pair(0xf8a,"Leaf3JetNegEtaU2: JF1 Shared Sent")); 00348 m_blockName.insert(make_pair(0xf8b,"Leaf3JetNegEtaU2: JF1 Output")); 00349 m_blockName.insert(make_pair(0xf8c,"Leaf3JetNegEtaU2: JF1 Raw Input")); 00350 00351 00352 /*** Setup BlockID to Unpack-Function Map ***/ 00353 // Miscellaneous Blocks 00354 m_blockUnpackFn[0x000] = &GctFormatTranslateV35::blockDoNothing; // NULL 00355 // ConcJet FPGA 00356 m_blockUnpackFn[0x580] = &GctFormatTranslateV35::blockToGctTrigObjects; // ConcJet: Input TrigPathA (Jet Cands) 00357 m_blockUnpackFn[0x581] = &GctFormatTranslateV35::blockDoNothing; // ConcJet: Input TrigPathB (HF Rings) 00358 m_blockUnpackFn[0x583] = &GctFormatTranslateV35::blockToGctJetCandsAndCounts; // ConcJet: Jet Cands and Counts Output to GT 00359 m_blockUnpackFn[0x587] = &GctFormatTranslateV35::blockDoNothing; // ConcJet: BX & Orbit Info 00360 // ConcElec FPGA 00361 m_blockUnpackFn[0x680] = &GctFormatTranslateV35::blockToGctInternEmCand; // ConcElec: Input TrigPathA (EM Cands) 00362 m_blockUnpackFn[0x681] = &GctFormatTranslateV35::blockDoNothing; // ConcElec: Input TrigPathB (Et Sums) 00363 m_blockUnpackFn[0x682] = &GctFormatTranslateV35::blockDoNothing; // ConcElec: Input TrigPathC (Ht Sums) 00364 m_blockUnpackFn[0x683] = &GctFormatTranslateV35::blockToGctEmCandsAndEnergySums; // ConcElec: EM Cands and Energy Sums Output to GT 00365 m_blockUnpackFn[0x686] = &GctFormatTranslateV35::blockDoNothing; // ConcElec: Test (GT Serdes Loopback) 00366 m_blockUnpackFn[0x687] = &GctFormatTranslateV35::blockDoNothing; // ConcElec: BX & Orbit Info 00367 // Electron Leaf FPGAs 00368 m_blockUnpackFn[0x800] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecPosEtaU1: Sort Input 00369 m_blockUnpackFn[0x803] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecPosEtaU1: Sort Output 00370 m_blockUnpackFn[0x804] = &GctFormatTranslateV35::blockToFibresAndToRctEmCand; // Leaf0ElecPosEtaU1: Raw Input 00371 m_blockUnpackFn[0x880] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecPosEtaU2: Sort Input 00372 m_blockUnpackFn[0x883] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecPosEtaU2: Sort Output 00373 m_blockUnpackFn[0x884] = &GctFormatTranslateV35::blockToFibresAndToRctEmCand; // Leaf0ElecPosEtaU2: Raw Input 00374 m_blockUnpackFn[0xc00] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecNegEtaU1: Sort Input 00375 m_blockUnpackFn[0xc03] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecNegEtaU1: Sort Output 00376 m_blockUnpackFn[0xc04] = &GctFormatTranslateV35::blockToFibresAndToRctEmCand; // Leaf0ElecNegEtaU1: Raw Input 00377 m_blockUnpackFn[0xc80] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecNegEtaU2: Sort Input 00378 m_blockUnpackFn[0xc83] = &GctFormatTranslateV35::blockToGctInternEmCand; // Leaf0ElecNegEtaU2: Sort Output 00379 m_blockUnpackFn[0xc84] = &GctFormatTranslateV35::blockToFibresAndToRctEmCand; // Leaf0ElecNegEtaU2: Raw Input 00380 // Wheel Pos-eta Jet FPGA 00381 m_blockUnpackFn[0x300] = &GctFormatTranslateV35::blockToGctJetClusterMinimal; // WheelPosEtaJet: Input TrigPathA (Jet Sort) 00382 m_blockUnpackFn[0x303] = &GctFormatTranslateV35::blockToGctTrigObjects; // WheelPosEtaJet: Output TrigPathA (Jet Sort) 00383 m_blockUnpackFn[0x306] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaJet: Test (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00384 m_blockUnpackFn[0x307] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaJet: Info (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00385 // Wheel Pos-eta Energy FPGA 00386 m_blockUnpackFn[0x380] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaEnergy: Input TrigPathA (Et) 00387 m_blockUnpackFn[0x381] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaEnergy: Input TrigPathB (Ht) 00388 m_blockUnpackFn[0x383] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaEnergy: Output TrigPathA (Et) 00389 m_blockUnpackFn[0x385] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaEnergy: Output TrigPathB (Ht) 00390 m_blockUnpackFn[0x386] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaEnergy: Test 00391 m_blockUnpackFn[0x387] = &GctFormatTranslateV35::blockDoNothing; // WheelPosEtaEnergy: BX & Orbit Info (Potential data incompatibility between V24/V25 where block length=4, and V27.1 where block length=6) 00392 // Wheel Neg-eta Jet FPGA 00393 m_blockUnpackFn[0x700] = &GctFormatTranslateV35::blockToGctJetClusterMinimal; // WheelNegEtaJet: Input TrigPathA (Jet Sort) 00394 m_blockUnpackFn[0x703] = &GctFormatTranslateV35::blockToGctTrigObjects; // WheelNegEtaJet: Output TrigPathA (Jet Sort) 00395 m_blockUnpackFn[0x706] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaJet: Test (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00396 m_blockUnpackFn[0x707] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaJet: Info (deprecated) (Doesn't exist in V27.1 format, but does in V24 & V25, so keep for CRUZET2 data compatibility reasons) 00397 // Wheel Neg-eta Energy FPGA 00398 m_blockUnpackFn[0x780] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaEnergy: Input TrigPathA (Et) 00399 m_blockUnpackFn[0x781] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaEnergy: Input TrigPathB (Ht) 00400 m_blockUnpackFn[0x783] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaEnergy: Output TrigPathA (Et) 00401 m_blockUnpackFn[0x785] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaEnergy: Output TrigPathB (Ht) 00402 m_blockUnpackFn[0x786] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaEnergy: Test 00403 m_blockUnpackFn[0x787] = &GctFormatTranslateV35::blockDoNothing; // WheelNegEtaEnergy: BX & Orbit Info (Potential data incompatibility between V24/V25 where block length=4, and V27.1 where block length=6) 00404 // Jet Leaf FPGAs - Positive Eta 00405 m_blockUnpackFn[0x900] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf1JetPosEtaU1: JF2 Input 00406 m_blockUnpackFn[0x901] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetPosEtaU1: JF2 Shared Received 00407 m_blockUnpackFn[0x902] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetPosEtaU1: JF2 Shared Sent 00408 m_blockUnpackFn[0x903] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetPosEtaU1: JF2 Output 00409 m_blockUnpackFn[0x904] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetPosEtaU1: JF2 Raw Input 00410 m_blockUnpackFn[0x908] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf1JetPosEtaU1: JF3 Input 00411 m_blockUnpackFn[0x909] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetPosEtaU1: JF3 Shared Received 00412 m_blockUnpackFn[0x90a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetPosEtaU1: JF3 Shared Sent 00413 m_blockUnpackFn[0x90b] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetPosEtaU1: JF3 Output 00414 m_blockUnpackFn[0x90c] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetPosEtaU1: JF3 Raw Input 00415 m_blockUnpackFn[0x980] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetPosEtaU2: Eta0 Input 00416 m_blockUnpackFn[0x984] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetPosEtaU2: Eta0 Raw Input 00417 m_blockUnpackFn[0x988] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf1JetPosEtaU2: JF1 Input 00418 m_blockUnpackFn[0x989] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetPosEtaU2: JF1 Shared Received 00419 m_blockUnpackFn[0x98a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetPosEtaU2: JF1 Shared Sent 00420 m_blockUnpackFn[0x98b] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetPosEtaU2: JF1 Output 00421 m_blockUnpackFn[0x98c] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetPosEtaU2: JF1 Raw Input 00422 m_blockUnpackFn[0xa00] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf2JetPosEtaU1: JF2 Input 00423 m_blockUnpackFn[0xa01] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetPosEtaU1: JF2 Shared Received 00424 m_blockUnpackFn[0xa02] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetPosEtaU1: JF2 Shared Sent 00425 m_blockUnpackFn[0xa03] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetPosEtaU1: JF2 Output 00426 m_blockUnpackFn[0xa04] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetPosEtaU1: JF2 Raw Input 00427 m_blockUnpackFn[0xa08] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf2JetPosEtaU1: JF3 Input 00428 m_blockUnpackFn[0xa09] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetPosEtaU1: JF3 Shared Received 00429 m_blockUnpackFn[0xa0a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetPosEtaU1: JF3 Shared Sent 00430 m_blockUnpackFn[0xa0b] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetPosEtaU1: JF3 Output 00431 m_blockUnpackFn[0xa0c] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetPosEtaU1: JF3 Raw Input 00432 m_blockUnpackFn[0xa80] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetPosEtaU2: Eta0 Input 00433 m_blockUnpackFn[0xa84] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetPosEtaU2: Eta0 Raw Input 00434 m_blockUnpackFn[0xa88] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf2JetPosEtaU2: JF1 Input 00435 m_blockUnpackFn[0xa89] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetPosEtaU2: JF1 Shared Received 00436 m_blockUnpackFn[0xa8a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetPosEtaU2: JF1 Shared Sent 00437 m_blockUnpackFn[0xa8b] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetPosEtaU2: JF1 Output 00438 m_blockUnpackFn[0xa8c] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetPosEtaU2: JF1 Raw Input 00439 m_blockUnpackFn[0xb00] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf3JetPosEtaU1: JF2 Input 00440 m_blockUnpackFn[0xb01] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetPosEtaU1: JF2 Shared Received 00441 m_blockUnpackFn[0xb02] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetPosEtaU1: JF2 Shared Sent 00442 m_blockUnpackFn[0xb03] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetPosEtaU1: JF2 Output 00443 m_blockUnpackFn[0xb04] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetPosEtaU1: JF2 Raw Input 00444 m_blockUnpackFn[0xb08] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf3JetPosEtaU1: JF3 Input 00445 m_blockUnpackFn[0xb09] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetPosEtaU1: JF3 Shared Received 00446 m_blockUnpackFn[0xb0a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetPosEtaU1: JF3 Shared Sent 00447 m_blockUnpackFn[0xb0b] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetPosEtaU1: JF3 Output 00448 m_blockUnpackFn[0xb0c] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetPosEtaU1: JF3 Raw Input 00449 m_blockUnpackFn[0xb80] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetPosEtaU2: Eta0 Input 00450 m_blockUnpackFn[0xb84] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetPosEtaU2: Eta0 Raw Input 00451 m_blockUnpackFn[0xb88] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf3JetPosEtaU2: JF1 Input 00452 m_blockUnpackFn[0xb89] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetPosEtaU2: JF1 Shared Received 00453 m_blockUnpackFn[0xb8a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetPosEtaU2: JF1 Shared Sent 00454 m_blockUnpackFn[0xb8b] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetPosEtaU2: JF1 Output 00455 m_blockUnpackFn[0xb8c] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetPosEtaU2: JF1 Raw Input 00456 // Jet Leaf FPGAs - Negative Eta 00457 m_blockUnpackFn[0xd00] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf1JetNegEtaU1: JF2 Input 00458 m_blockUnpackFn[0xd01] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetNegEtaU1: JF2 Shared Received 00459 m_blockUnpackFn[0xd02] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetNegEtaU1: JF2 Shared Sent 00460 m_blockUnpackFn[0xd03] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetNegEtaU1: JF2 Output 00461 m_blockUnpackFn[0xd04] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetNegEtaU1: JF2 Raw Input 00462 m_blockUnpackFn[0xd08] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf1JetNegEtaU1: JF3 Input 00463 m_blockUnpackFn[0xd09] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetNegEtaU1: JF3 Shared Received 00464 m_blockUnpackFn[0xd0a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetNegEtaU1: JF3 Shared Sent 00465 m_blockUnpackFn[0xd0b] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetNegEtaU1: JF3 Output 00466 m_blockUnpackFn[0xd0c] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetNegEtaU1: JF3 Raw Input 00467 m_blockUnpackFn[0xd80] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetNegEtaU2: Eta0 Input 00468 m_blockUnpackFn[0xd84] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetNegEtaU2: Eta0 Raw Input 00469 m_blockUnpackFn[0xd88] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf1JetNegEtaU2: JF1 Input 00470 m_blockUnpackFn[0xd89] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetNegEtaU2: JF1 Shared Received 00471 m_blockUnpackFn[0xd8a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf1JetNegEtaU2: JF1 Shared Sent 00472 m_blockUnpackFn[0xd8b] = &GctFormatTranslateV35::blockDoNothing; // Leaf1JetNegEtaU2: JF1 Output 00473 m_blockUnpackFn[0xd8c] = &GctFormatTranslateV35::blockToFibres; // Leaf1JetNegEtaU2: JF1 Raw Input 00474 m_blockUnpackFn[0xe00] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf2JetNegEtaU1: JF2 Input 00475 m_blockUnpackFn[0xe01] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetNegEtaU1: JF2 Shared Received 00476 m_blockUnpackFn[0xe02] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetNegEtaU1: JF2 Shared Sent 00477 m_blockUnpackFn[0xe03] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetNegEtaU1: JF2 Output 00478 m_blockUnpackFn[0xe04] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetNegEtaU1: JF2 Raw Input 00479 m_blockUnpackFn[0xe08] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf2JetNegEtaU1: JF3 Input 00480 m_blockUnpackFn[0xe09] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetNegEtaU1: JF3 Shared Received 00481 m_blockUnpackFn[0xe0a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetNegEtaU1: JF3 Shared Sent 00482 m_blockUnpackFn[0xe0b] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetNegEtaU1: JF3 Output 00483 m_blockUnpackFn[0xe0c] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetNegEtaU1: JF3 Raw Input 00484 m_blockUnpackFn[0xe80] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetNegEtaU2: Eta0 Input 00485 m_blockUnpackFn[0xe84] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetNegEtaU2: Eta0 Raw Input 00486 m_blockUnpackFn[0xe88] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf2JetNegEtaU2: JF1 Input 00487 m_blockUnpackFn[0xe89] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetNegEtaU2: JF1 Shared Received 00488 m_blockUnpackFn[0xe8a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf2JetNegEtaU2: JF1 Shared Sent 00489 m_blockUnpackFn[0xe8b] = &GctFormatTranslateV35::blockDoNothing; // Leaf2JetNegEtaU2: JF1 Output 00490 m_blockUnpackFn[0xe8c] = &GctFormatTranslateV35::blockToFibres; // Leaf2JetNegEtaU2: JF1 Raw Input 00491 m_blockUnpackFn[0xf00] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf3JetNegEtaU1: JF2 Input 00492 m_blockUnpackFn[0xf01] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetNegEtaU1: JF2 Shared Received 00493 m_blockUnpackFn[0xf02] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetNegEtaU1: JF2 Shared Sent 00494 m_blockUnpackFn[0xf03] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetNegEtaU1: JF2 Output 00495 m_blockUnpackFn[0xf04] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetNegEtaU1: JF2 Raw Input 00496 m_blockUnpackFn[0xf08] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf3JetNegEtaU1: JF3 Input 00497 m_blockUnpackFn[0xf09] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetNegEtaU1: JF3 Shared Received 00498 m_blockUnpackFn[0xf0a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetNegEtaU1: JF3 Shared Sent 00499 m_blockUnpackFn[0xf0b] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetNegEtaU1: JF3 Output 00500 m_blockUnpackFn[0xf0c] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetNegEtaU1: JF3 Raw Input 00501 m_blockUnpackFn[0xf80] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetNegEtaU2: Eta0 Input 00502 m_blockUnpackFn[0xf84] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetNegEtaU2: Eta0 Raw Input 00503 m_blockUnpackFn[0xf88] = &GctFormatTranslateV35::blockToRctCaloRegions; // Leaf3JetNegEtaU2: JF1 Input 00504 m_blockUnpackFn[0xf89] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetNegEtaU2: JF1 Shared Received 00505 m_blockUnpackFn[0xf8a] = &GctFormatTranslateV35::blockToGctJetPreCluster; // Leaf3JetNegEtaU2: JF1 Shared Sent 00506 m_blockUnpackFn[0xf8b] = &GctFormatTranslateV35::blockDoNothing; // Leaf3JetNegEtaU2: JF1 Output 00507 m_blockUnpackFn[0xf8c] = &GctFormatTranslateV35::blockToFibres; // Leaf3JetNegEtaU2: JF1 Raw Input 00508 00509 00510 /*** Setup RCT Em Crate Map ***/ 00511 m_rctEmCrate[0x804] = 13; 00512 m_rctEmCrate[0x884] = 9; 00513 m_rctEmCrate[0xc04] = 4; 00514 m_rctEmCrate[0xc84] = 0; 00515 00516 00517 /*** Setup RCT jet crate map. ***/ 00518 m_rctJetCrate[0x900] = 9; // PosEta Leaf 1 JF2 00519 m_rctJetCrate[0x908] = 10; // PosEta Leaf 1 JF3 00520 m_rctJetCrate[0x988] = 17; // PosEta Leaf 1 JF1 00521 m_rctJetCrate[0xa00] = 12; // PosEta Leaf 2 JF2 00522 m_rctJetCrate[0xa08] = 13; // PosEta Leaf 2 JF3 00523 m_rctJetCrate[0xa88] = 11; // PosEta Leaf 2 JF1 00524 m_rctJetCrate[0xb00] = 15; // PosEta Leaf 3 JF2 00525 m_rctJetCrate[0xb08] = 16; // PosEta Leaf 3 JF3 00526 m_rctJetCrate[0xb88] = 14; // PosEta Leaf 3 JF1 00527 m_rctJetCrate[0xd00] = 0; // NegEta Leaf 1 JF2 00528 m_rctJetCrate[0xd08] = 1; // NegEta Leaf 1 JF3 00529 m_rctJetCrate[0xd88] = 8; // NegEta Leaf 1 JF1 00530 m_rctJetCrate[0xe00] = 3; // NegEta Leaf 2 JF2 00531 m_rctJetCrate[0xe08] = 4; // NegEta Leaf 2 JF3 00532 m_rctJetCrate[0xe88] = 2; // NegEta Leaf 2 JF1 00533 m_rctJetCrate[0xf00] = 6; // NegEta Leaf 3 JF2 00534 m_rctJetCrate[0xf08] = 7; // NegEta Leaf 3 JF3 00535 m_rctJetCrate[0xf88] = 5; // NegEta Leaf 3 JF1 00536 00537 00538 /*** Setup Block ID map for pipeline payload positions of isolated Internal EM Cands. ***/ 00539 m_internEmIsoBounds[0x680] = IsoBoundaryPair(8,15); 00540 m_internEmIsoBounds[0x800] = IsoBoundaryPair(0, 9); 00541 m_internEmIsoBounds[0x803] = IsoBoundaryPair(0, 1); 00542 m_internEmIsoBounds[0x880] = IsoBoundaryPair(0, 7); 00543 m_internEmIsoBounds[0x883] = IsoBoundaryPair(0, 1); 00544 m_internEmIsoBounds[0xc00] = IsoBoundaryPair(0, 9); 00545 m_internEmIsoBounds[0xc03] = IsoBoundaryPair(0, 1); 00546 m_internEmIsoBounds[0xc80] = IsoBoundaryPair(0, 7); 00547 m_internEmIsoBounds[0xc83] = IsoBoundaryPair(0, 1); 00548 } 00549 }
GctFormatTranslateV35::~GctFormatTranslateV35 | ( | ) | [virtual] |
virtual const BlockLengthMap& GctFormatTranslateV35::blockLengthMap | ( | ) | const [inline, protected, virtual] |
get the static block ID to block-length map.
Implements GctFormatTranslateBase.
Definition at line 52 of file GctFormatTranslateV35.h.
References m_blockLength.
virtual BlockLengthMap& GctFormatTranslateV35::blockLengthMap | ( | ) | [inline, protected, virtual] |
get the static block ID to block-length map.
Implements GctFormatTranslateBase.
Definition at line 51 of file GctFormatTranslateV35.h.
References m_blockLength.
Referenced by generateBlockHeader().
virtual const BlockNameMap& GctFormatTranslateV35::blockNameMap | ( | ) | const [inline, protected, virtual] |
get the static block ID to blockname map.
Implements GctFormatTranslateBase.
Definition at line 55 of file GctFormatTranslateV35.h.
References m_blockName.
virtual BlockNameMap& GctFormatTranslateV35::blockNameMap | ( | ) | [inline, protected, virtual] |
get the static block ID to block-name map.
Implements GctFormatTranslateBase.
Definition at line 54 of file GctFormatTranslateV35.h.
References m_blockName.
void GctFormatTranslateV35::blockToFibres | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack Fibres
Definition at line 881 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), GctUnpackCollections::gctFibres(), GctFormatTranslateBase::hltMode(), i, LogDebug, GctBlockHeader::nSamples(), and p.
Referenced by blockToFibresAndToRctEmCand(), and GctFormatTranslateV35().
00882 { 00883 // Don't want to do this in HLT optimisation mode! 00884 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of GCT Fibres"; return; } 00885 00886 unsigned int id = hdr.blockId(); 00887 unsigned int nSamples = hdr.nSamples(); 00888 unsigned int length = hdr.blockLength(); 00889 00890 // re-interpret pointer 00891 uint32_t * p = reinterpret_cast<uint32_t *>(const_cast<unsigned char *>(d)); 00892 00893 for (unsigned int i=0; i<length; ++i) { 00894 for (unsigned int bx=0; bx<nSamples; ++bx) { 00895 colls()->gctFibres()->push_back( L1GctFibreWord(*p, id, i, bx) ); 00896 ++p; 00897 } 00898 } 00899 }
void GctFormatTranslateV35::blockToFibresAndToRctEmCand | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack Fibres and RCT EM Candidates
Definition at line 901 of file GctFormatTranslateV35.cc.
References blockToFibres(), and blockToRctEmCand().
Referenced by GctFormatTranslateV35().
00902 { 00903 this->blockToRctEmCand(d, hdr); 00904 this->blockToFibres(d, hdr); 00905 }
void GctFormatTranslateV35::blockToGctEmCandsAndEnergySums | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack GCT EM Candidates and energy sums.
Definition at line 623 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctFormatTranslateBase::colls(), em, GctUnpackCollections::gctEtHad(), GctUnpackCollections::gctEtMiss(), GctUnpackCollections::gctEtTot(), GctUnpackCollections::gctIsoEm(), GctUnpackCollections::gctNonIsoEm(), GctFormatTranslateBase::hltMode(), and GctBlockHeader::nSamples().
Referenced by GctFormatTranslateV35().
00624 { 00625 const unsigned int id = hdr.blockId(); 00626 const unsigned int nSamples = hdr.nSamples(); 00627 00628 // Re-interpret pointer. p16 will be pointing at the 16 bit word that 00629 // contains the rank0 non-isolated electron of the zeroth time-sample. 00630 const uint16_t * p16 = reinterpret_cast<const uint16_t *>(d); 00631 00632 // UNPACK EM CANDS 00633 00634 const unsigned int emCandCategoryOffset = nSamples * 4; // Offset to jump from the non-iso electrons to the isolated ones. 00635 const unsigned int timeSampleOffset = nSamples * 2; // Offset to jump to next candidate pair in the same time-sample. 00636 00637 unsigned int samplesToUnpack = 1; 00638 if(!hltMode()) { samplesToUnpack = nSamples; } // Only if not running in HLT mode do we want more than 1 timesample. 00639 00640 for (unsigned int iso=0; iso<2; ++iso) // loop over non-iso/iso candidate pairs 00641 { 00642 bool isoFlag = (iso==1); 00643 00644 // Get the correct collection to put them in. 00645 L1GctEmCandCollection* em; 00646 if (isoFlag) { em = colls()->gctIsoEm(); } 00647 else { em = colls()->gctNonIsoEm(); } 00648 00649 for (unsigned int bx=0; bx<samplesToUnpack; ++bx) // loop over time samples 00650 { 00651 // cand0Offset will give the offset on p16 to get the rank 0 candidate 00652 // of the correct category and timesample. 00653 const unsigned int cand0Offset = iso*emCandCategoryOffset + bx*2; 00654 00655 em->push_back(L1GctEmCand(p16[cand0Offset], isoFlag, id, 0, bx)); // rank0 electron 00656 em->push_back(L1GctEmCand(p16[cand0Offset + timeSampleOffset], isoFlag, id, 1, bx)); // rank1 electron 00657 em->push_back(L1GctEmCand(p16[cand0Offset + 1], isoFlag, id, 2, bx)); // rank2 electron 00658 em->push_back(L1GctEmCand(p16[cand0Offset + timeSampleOffset + 1], isoFlag, id, 3, bx)); // rank3 electron 00659 } 00660 } 00661 00662 p16 += emCandCategoryOffset * 2; // Move the pointer over the data we've already unpacked. 00663 00664 // UNPACK ENERGY SUMS 00665 // NOTE: we are only unpacking one timesample of these currently! 00666 00667 colls()->gctEtTot()->push_back(L1GctEtTotal(p16[0])); // Et total (timesample 0). 00668 colls()->gctEtHad()->push_back(L1GctEtHad(p16[1])); // Et hadronic (timesample 0). 00669 00670 // 32-bit pointer for getting Missing Et. 00671 const uint32_t * p32 = reinterpret_cast<const uint32_t *>(p16); 00672 00673 colls()->gctEtMiss()->push_back(L1GctEtMiss(p32[nSamples])); // Et Miss (timesample 0). 00674 }
void GctFormatTranslateV35::blockToGctInternEmCand | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack GCT internal EM Candidates
Definition at line 734 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), end, find(), GctUnpackCollections::gctInternEm(), GctFormatTranslateBase::hltMode(), i, internEmIsoBounds(), LogDebug, GctBlockHeader::nSamples(), offset, and p.
Referenced by GctFormatTranslateV35().
00735 { 00736 // Don't want to do this in HLT optimisation mode! 00737 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of internal EM Cands"; return; } 00738 00739 unsigned int id = hdr.blockId(); 00740 unsigned int nSamples = hdr.nSamples(); 00741 unsigned int numCandPairs = hdr.blockLength(); 00742 00743 // Debug assertion to prevent problems if definitions not up to date. 00744 assert(internEmIsoBounds().find(id) != internEmIsoBounds().end()); 00745 00746 unsigned int lowerIsoPairBound = internEmIsoBounds()[id].first; 00747 unsigned int upperIsoPairBound = internEmIsoBounds()[id].second; 00748 00749 // Re-interpret pointer to 16 bits so it sees one candidate at a time. 00750 uint16_t * p = reinterpret_cast<uint16_t *>(const_cast<unsigned char *>(d)); 00751 00752 // Loop over timesamples (i.e. bunch crossings) 00753 for(unsigned int bx=0; bx < nSamples; ++bx) 00754 { 00755 // Loop over candidate pairs (i.e. each iteration unpacks a pair of candidates) 00756 for(unsigned int candPair = 0 ; candPair < numCandPairs ; ++candPair) 00757 { 00758 // Is the candidate electron pair an isolated pair or not? 00759 bool iso = ((candPair>=lowerIsoPairBound) && (candPair<=upperIsoPairBound)); 00760 00761 // Loop over the two electron candidates in each pair 00762 for(unsigned int i = 0 ; i < 2 ; ++i) 00763 { 00764 unsigned offset = 2*(bx + candPair*nSamples) + i; 00765 uint16_t candRaw = p[offset]; 00766 colls()->gctInternEm()->push_back( L1GctInternEmCand(candRaw, iso, id, candPair*2 + i, bx) ); 00767 } 00768 } 00769 } 00770 }
void GctFormatTranslateV35::blockToGctJetCandsAndCounts | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
Unpack GCT Jet Candidates and jet counts.
Definition at line 676 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctFormatTranslateBase::colls(), GctFormatTranslateBase::FORWARD_JETS, L1GctHFBitCounts::fromConcHFBitCounts(), L1GctHFRingEtSums::fromConcRingSums(), GctUnpackCollections::gctHfBitCounts(), GctUnpackCollections::gctHfRingEtSums(), GctFormatTranslateBase::gctJets(), GctFormatTranslateBase::hltMode(), pfTauBenchmarkGeneric_cfi::jets, GctBlockHeader::nSamples(), GctFormatTranslateBase::NUM_JET_CATEGORIES, and GctFormatTranslateBase::TAU_JETS.
Referenced by GctFormatTranslateV35().
00677 { 00678 const unsigned int id = hdr.blockId(); // Capture block ID. 00679 const unsigned int nSamples = hdr.nSamples(); // Number of time-samples. 00680 00681 // Re-interpret block payload pointer to 16 bits so it sees one candidate at a time. 00682 // p16 points to the start of the block payload, at the rank0 tau jet candidate. 00683 const uint16_t * p16 = reinterpret_cast<const uint16_t *>(d); 00684 00685 // UNPACK JET CANDS 00686 00687 const unsigned int jetCandCategoryOffset = nSamples * 4; // Offset to jump from one jet category to the next. 00688 const unsigned int timeSampleOffset = nSamples * 2; // Offset to jump to next candidate pair in the same time-sample. 00689 00690 unsigned int samplesToUnpack = 1; 00691 if(!hltMode()) { samplesToUnpack = nSamples; } // Only if not running in HLT mode do we want more than 1 timesample. 00692 00693 // Loop over the different catagories of jets 00694 for(unsigned int iCat = 0 ; iCat < NUM_JET_CATEGORIES ; ++iCat) 00695 { 00696 L1GctJetCandCollection * const jets = gctJets(iCat); 00697 assert(jets->empty()); // The supplied vector should be empty. 00698 00699 bool tauflag = (iCat == TAU_JETS); 00700 bool forwardFlag = (iCat == FORWARD_JETS); 00701 00702 // Loop over the different timesamples (bunch crossings). 00703 for(unsigned int bx = 0 ; bx < samplesToUnpack ; ++bx) 00704 { 00705 // cand0Offset will give the offset on p16 to get the rank 0 Jet Cand of the correct category and timesample. 00706 const unsigned int cand0Offset = iCat*jetCandCategoryOffset + bx*2; 00707 00708 // Rank 0 Jet. 00709 jets->push_back(L1GctJetCand(p16[cand0Offset], tauflag, forwardFlag, id, 0, bx)); 00710 // Rank 1 Jet. 00711 jets->push_back(L1GctJetCand(p16[cand0Offset + timeSampleOffset], tauflag, forwardFlag, id, 1, bx)); 00712 // Rank 2 Jet. 00713 jets->push_back(L1GctJetCand(p16[cand0Offset + 1], tauflag, forwardFlag, id, 2, bx)); 00714 // Rank 3 Jet. 00715 jets->push_back(L1GctJetCand(p16[cand0Offset + timeSampleOffset + 1], tauflag, forwardFlag, id, 3, bx)); 00716 } 00717 } 00718 00719 p16 += NUM_JET_CATEGORIES * jetCandCategoryOffset; // Move the pointer over the data we've already unpacked. 00720 00721 // NOW UNPACK: HFBitCounts, HFRingEtSums (no Missing Ht yet) 00722 // NOTE: we are only unpacking one timesample of these currently! 00723 00724 // Re-interpret block payload pointer to 32 bits so it sees six jet counts at a time. 00725 const uint32_t * p32 = reinterpret_cast<const uint32_t *>(p16); 00726 00727 // Channel 0 carries both HF counts and sums 00728 colls()->gctHfBitCounts()->push_back(L1GctHFBitCounts::fromConcHFBitCounts(id,6,0,p32[0])); 00729 colls()->gctHfRingEtSums()->push_back(L1GctHFRingEtSums::fromConcRingSums(id,6,0,p32[0])); 00730 // Skip channel 1 for now. Later this may carry MHT would be accessed as p32[nSamples] 00731 }
void GctFormatTranslateV35::blockToGctJetClusterMinimal | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack GCT internal input to wheel jet sort
Definition at line 930 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), L1GctInternJetData::fromJetClusterMinimal(), GctUnpackCollections::gctInternJets(), GctFormatTranslateBase::hltMode(), i, LogDebug, GctBlockHeader::nSamples(), and p.
Referenced by GctFormatTranslateV35().
00931 { 00932 // Don't want to do this in HLT optimisation mode! 00933 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of internal Jet Cands"; return; } 00934 00935 unsigned int id = hdr.blockId(); 00936 unsigned int nSamples = hdr.nSamples(); 00937 unsigned int length = hdr.blockLength(); 00938 00939 // Re-interpret pointer to 16 bits so it sees one candidate at a time. 00940 uint16_t * p = reinterpret_cast<uint16_t *>(const_cast<unsigned char *>(d)); 00941 00942 for (unsigned int i=0; i<length; ++i) { 00943 // Loop over timesamples (i.e. bunch crossings) 00944 for (unsigned int bx=0; bx<nSamples; ++bx) { 00945 colls()->gctInternJets()->push_back( L1GctInternJetData::fromJetClusterMinimal(L1CaloRegionDetId(0,0),id,i,bx,*p)); 00946 ++p; 00947 colls()->gctInternJets()->push_back( L1GctInternJetData::fromJetClusterMinimal(L1CaloRegionDetId(0,0),id,i,bx,*p)); 00948 ++p; 00949 } 00950 } 00951 }
void GctFormatTranslateV35::blockToGctJetPreCluster | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack GCT internal shared jet finder info
Definition at line 953 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), L1GctInternJetData::fromJetPreCluster(), GctUnpackCollections::gctInternJets(), GctFormatTranslateBase::hltMode(), i, LogDebug, GctBlockHeader::nSamples(), and p.
Referenced by GctFormatTranslateV35().
00954 { 00955 // Don't want to do this in HLT optimisation mode! 00956 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of internal Jet Cands"; return; } 00957 00958 unsigned int id = hdr.blockId(); 00959 unsigned int nSamples = hdr.nSamples(); 00960 unsigned int length = hdr.blockLength(); 00961 00962 // Re-interpret pointer to 16 bits so it sees one candidate at a time. 00963 uint16_t * p = reinterpret_cast<uint16_t *>(const_cast<unsigned char *>(d)); 00964 00965 for (unsigned int i=0; i<length; ++i) { 00966 // Loop over timesamples (i.e. bunch crossings) 00967 for (unsigned int bx=0; bx<nSamples; ++bx) { 00968 colls()->gctInternJets()->push_back( L1GctInternJetData::fromJetPreCluster(L1CaloRegionDetId(0,0),id,i,bx,*p)); 00969 ++p; 00970 colls()->gctInternJets()->push_back( L1GctInternJetData::fromJetPreCluster(L1CaloRegionDetId(0,0),id,i,bx,*p)); 00971 ++p; 00972 } 00973 } 00974 }
void GctFormatTranslateV35::blockToGctTrigObjects | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack GCT internal wheel and conc jets
Definition at line 907 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), L1GctInternJetData::fromGctTrigObject(), GctUnpackCollections::gctInternJets(), GctFormatTranslateBase::hltMode(), i, LogDebug, GctBlockHeader::nSamples(), and p.
Referenced by GctFormatTranslateV35().
00908 { 00909 // Don't want to do this in HLT optimisation mode! 00910 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of internal Jet Cands"; return; } 00911 00912 unsigned int id = hdr.blockId(); 00913 unsigned int nSamples = hdr.nSamples(); 00914 unsigned int length = hdr.blockLength(); 00915 00916 // Re-interpret pointer to 16 bits so it sees one candidate at a time. 00917 uint16_t * p = reinterpret_cast<uint16_t *>(const_cast<unsigned char *>(d)); 00918 00919 for (unsigned int i=0; i<length; ++i) { 00920 // Loop over timesamples (i.e. bunch crossings) 00921 for (unsigned int bx=0; bx<nSamples; ++bx) { 00922 colls()->gctInternJets()->push_back( L1GctInternJetData::fromGctTrigObject(L1CaloRegionDetId(0,0),id,i,bx,*p)); 00923 ++p; 00924 colls()->gctInternJets()->push_back( L1GctInternJetData::fromGctTrigObject(L1CaloRegionDetId(0,0),id,i,bx,*p)); 00925 ++p; 00926 } 00927 } 00928 }
void GctFormatTranslateV35::blockToRctCaloRegions | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
Unpack RCT Calo Regions.
Definition at line 829 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), end, find(), GctFormatTranslateBase::hltMode(), i, LogDebug, GctFormatTranslateBase::makeL1CaloRegionBackPortHack(), GctBlockHeader::nSamples(), p, GctUnpackCollections::rctCalo(), and rctJetCrateMap().
Referenced by GctFormatTranslateV35().
00830 { 00831 // Don't want to do this in HLT optimisation mode! 00832 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of RCT Regions"; return; } 00833 00834 unsigned int id = hdr.blockId(); 00835 unsigned int nSamples = hdr.nSamples(); 00836 unsigned int length = hdr.blockLength(); 00837 00838 // Debug assertion to prevent problems if definitions not up to date. 00839 assert(rctJetCrateMap().find(id) != rctJetCrateMap().end()); 00840 00841 // get crate (need this to get ieta and iphi) 00842 unsigned int crate=rctJetCrateMap()[id]; 00843 00844 // re-interpret pointer 00845 uint16_t * p = reinterpret_cast<uint16_t *>(const_cast<unsigned char *>(d)); 00846 00847 // eta and phi 00848 unsigned int ieta; 00849 unsigned int iphi; 00850 00851 for (unsigned int i=0; i<length; ++i) { 00852 for (uint16_t bx=0; bx<nSamples; ++bx) { 00853 if (i>0) { 00854 if (crate<9){ // negative eta 00855 ieta = 11-i; 00856 iphi = 2*((11-crate)%9); 00857 } else { // positive eta 00858 ieta = 10+i; 00859 iphi = 2*((20-crate)%9); 00860 } 00861 // First region is phi=0 00862 colls()->rctCalo()->push_back( makeL1CaloRegionBackPortHack(*p, ieta, iphi, bx) ); 00863 ++p; 00864 // Second region is phi=1 00865 if (iphi>0){ 00866 iphi-=1; 00867 } else { 00868 iphi = 17; 00869 } 00870 colls()->rctCalo()->push_back( makeL1CaloRegionBackPortHack(*p, ieta, iphi, bx) ); 00871 ++p; 00872 } else { // Skip the first two regions which are duplicates. 00873 ++p; 00874 ++p; 00875 } 00876 } 00877 } 00878 }
void GctFormatTranslateV35::blockToRctEmCand | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [private] |
unpack RCT EM Candidates
Definition at line 775 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctBlockHeader::blockLength(), GctFormatTranslateBase::colls(), GctFormatTranslateBase::hltMode(), i, LogDebug, GctBlockHeader::nSamples(), p, GctUnpackCollections::rctEm(), rctEmCrateMap(), SourceCardRouting::SFPtoEMU(), and GctFormatTranslateBase::srcCardRouting().
Referenced by blockToFibresAndToRctEmCand().
00776 { 00777 // Don't want to do this in HLT optimisation mode! 00778 if(hltMode()) { LogDebug("GCT") << "HLT mode - skipping unpack of RCT EM Cands"; return; } 00779 00780 unsigned int id = hdr.blockId(); 00781 unsigned int nSamples = hdr.nSamples(); 00782 unsigned int length = hdr.blockLength(); 00783 00784 // re-interpret pointer 00785 uint16_t * p = reinterpret_cast<uint16_t *>(const_cast<unsigned char *>(d)); 00786 00787 // arrays of source card data 00788 uint16_t sfp[2][4]; // [ cycle ] [ SFP ] 00789 uint16_t eIsoRank[4]; 00790 uint16_t eIsoCard[4]; 00791 uint16_t eIsoRgn[4]; 00792 uint16_t eNonIsoRank[4]; 00793 uint16_t eNonIsoCard[4]; 00794 uint16_t eNonIsoRgn[4]; 00795 uint16_t MIPbits[7][2]; 00796 uint16_t QBits[7][2]; 00797 00798 unsigned int bx = 0; 00799 00800 // loop over crates 00801 for (unsigned int crate=rctEmCrateMap()[id]; crate<rctEmCrateMap()[id]+length/3; ++crate) { 00802 00803 // read SC SFP words 00804 for (unsigned short iSfp=0 ; iSfp<4 ; ++iSfp) { 00805 for (unsigned short cyc=0 ; cyc<2 ; ++cyc) { 00806 if (iSfp==0) { sfp[cyc][iSfp] = 0; } // muon bits 00807 else { // EM candidate 00808 sfp[cyc][iSfp] = *p; 00809 ++p; 00810 } 00811 } 00812 p = p + 2*(nSamples-1); 00813 } 00814 00815 // fill SC arrays 00816 srcCardRouting().SFPtoEMU(eIsoRank, eIsoCard, eIsoRgn, eNonIsoRank, eNonIsoCard, eNonIsoRgn, MIPbits, QBits, sfp); 00817 00818 // create EM cands 00819 for (unsigned short int i=0; i<4; ++i) { 00820 colls()->rctEm()->push_back( L1CaloEmCand( eIsoRank[i], eIsoRgn[i], eIsoCard[i], crate, true, i, bx) ); 00821 } 00822 for (unsigned short int i=0; i<4; ++i) { 00823 colls()->rctEm()->push_back( L1CaloEmCand( eNonIsoRank[i], eNonIsoRgn[i], eNonIsoCard[i], crate, false, i, bx) ); 00824 } 00825 } 00826 }
bool GctFormatTranslateV35::convertBlock | ( | const unsigned char * | d, | |
const GctBlockHeader & | hdr | |||
) | [virtual] |
Get digis from the block - will return true if it succeeds, false otherwise.
Implements GctFormatTranslateBase.
Definition at line 583 of file GctFormatTranslateV35.cc.
References GctBlockHeader::blockId(), GctFormatTranslateBase::checkBlock(), m_blockUnpackFn, GctBlockHeader::nSamples(), and edm::second().
00584 { 00585 // if the block has no time samples, don't bother with it. 00586 if ( hdr.nSamples() < 1 ) { return true; } 00587 00588 if(!checkBlock(hdr)) { return false; } // Check the block to see if it's possible to unpack. 00589 00590 // The header validity check above will protect against 00591 // the map::find() method returning the end of the map, 00592 // assuming the block header definitions are up-to-date. 00593 (this->*m_blockUnpackFn.find(hdr.blockId())->second)(data, hdr); // Calls the correct unpack function, based on block ID. 00594 00595 return true; 00596 }
GctBlockHeader GctFormatTranslateV35::generateBlockHeader | ( | const unsigned char * | data | ) | const [virtual] |
Generate a block header from four 8-bit values.
Implements GctFormatTranslateBase.
Definition at line 555 of file GctFormatTranslateV35.cc.
References blockLengthMap(), and TrackValidation_HighPurity_cff::valid.
00556 { 00557 // Turn the four 8-bit header words into the full 32-bit header. 00558 uint32_t hdr = data[0] + (data[1]<<8) + (data[2]<<16) + (data[3]<<24); 00559 00560 // Bit mapping of V35 header: 00561 // -------------------------- 00562 // 11:0 => block_id Unique pipeline identifier. 00563 // - 3:0 =>> pipe_id There can be up to 16 different pipelines per FPGA. 00564 // - 6:4 =>> reserved Do not use yet. Set to zero. 00565 // - 11:7 =>> fpga geograpical add The VME geographical address of the FPGA. 00566 // 15:12 => event_id Determined locally. Not reset by Resync. 00567 // 19:16 => number_of_time_samples If time samples 15 or more then value = 15. 00568 // 31:20 => event_bcid The bunch crossing the data was recorded. 00569 00570 unsigned blockId = hdr & 0xfff; 00571 unsigned blockLength = 0; // Set to zero until we know it's a valid block 00572 unsigned nSamples = (hdr>>16) & 0xf; 00573 unsigned bxId = (hdr>>20) & 0xfff; 00574 unsigned eventId = (hdr>>12) & 0xf; 00575 bool valid = (blockLengthMap().find(blockId) != blockLengthMap().end()); 00576 00577 if(valid) { blockLength = blockLengthMap().find(blockId)->second; } 00578 00579 return GctBlockHeader(blockId, blockLength, nSamples, bxId, eventId, valid); 00580 }
uint32_t GctFormatTranslateV35::generateRawHeader | ( | const uint32_t | blockId, | |
const uint32_t | nSamples, | |||
const uint32_t | bxId, | |||
const uint32_t | eventId | |||
) | const [protected, virtual] |
Returns a raw 32-bit header word generated from the blockId, number of time samples, bunch-crossing and event IDs.
Implements GctFormatTranslateBase.
Definition at line 601 of file GctFormatTranslateV35.cc.
00605 { 00606 // Bit mapping of V35 header: 00607 // -------------------------- 00608 // 11:0 => block_id Unique pipeline identifier. 00609 // - 3:0 =>> pipe_id There can be up to 16 different pipelines per FPGA. 00610 // - 6:4 =>> reserved Do not use yet. Set to zero. 00611 // - 11:7 =>> fpga geograpical add The VME geographical address of the FPGA. 00612 // 15:12 => event_id Determined locally. Not reset by Resync. 00613 // 19:16 => number_of_time_samples If time samples 15 or more then value = 15. 00614 // 31:20 => event_bxId The bunch crossing the data was recorded. 00615 00616 return ((bxId & 0xfff) << 20) | ((nSamples & 0xf) << 16) | ((eventId & 0xf) << 12) | (blockId & 0xfff); 00617 }
virtual const BlockIdToEmCandIsoBoundMap& GctFormatTranslateV35::internEmIsoBounds | ( | ) | const [inline, protected, virtual] |
get the static intern EM cand isolated boundary map.
Implements GctFormatTranslateBase.
Definition at line 64 of file GctFormatTranslateV35.h.
References m_internEmIsoBounds.
virtual BlockIdToEmCandIsoBoundMap& GctFormatTranslateV35::internEmIsoBounds | ( | ) | [inline, protected, virtual] |
get the static intern EM cand isolated boundary map.
Implements GctFormatTranslateBase.
Definition at line 63 of file GctFormatTranslateV35.h.
References m_internEmIsoBounds.
Referenced by blockToGctInternEmCand().
virtual const BlkToRctCrateMap& GctFormatTranslateV35::rctEmCrateMap | ( | ) | const [inline, protected, virtual] |
get static the block ID to RCT crate map for electrons.
Implements GctFormatTranslateBase.
Definition at line 58 of file GctFormatTranslateV35.h.
References m_rctEmCrate.
virtual BlkToRctCrateMap& GctFormatTranslateV35::rctEmCrateMap | ( | ) | [inline, protected, virtual] |
get the static block ID to RCT crate map for electrons.
Implements GctFormatTranslateBase.
Definition at line 57 of file GctFormatTranslateV35.h.
References m_rctEmCrate.
Referenced by blockToRctEmCand().
virtual const BlkToRctCrateMap& GctFormatTranslateV35::rctJetCrateMap | ( | ) | const [inline, protected, virtual] |
get the static block ID to RCT crate map for jets
Implements GctFormatTranslateBase.
Definition at line 61 of file GctFormatTranslateV35.h.
References m_rctJetCrate.
virtual BlkToRctCrateMap& GctFormatTranslateV35::rctJetCrateMap | ( | ) | [inline, protected, virtual] |
get the static block ID to RCT crate map for jets
Implements GctFormatTranslateBase.
Definition at line 60 of file GctFormatTranslateV35.h.
References m_rctJetCrate.
Referenced by blockToRctCaloRegions().
GctFormatTranslateV35::BlockLengthMap GctFormatTranslateV35::m_blockLength = GctFormatTranslateV35::BlockLengthMap() [static, private] |
Map to translate block number to fundamental size of a block (i.e. for 1 time-sample).
Definition at line 88 of file GctFormatTranslateV35.h.
Referenced by blockLengthMap(), and GctFormatTranslateV35().
GctFormatTranslateV35::BlockNameMap GctFormatTranslateV35::m_blockName = GctFormatTranslateV35::BlockNameMap() [static, private] |
Map to hold a description for each block number.
Definition at line 91 of file GctFormatTranslateV35.h.
Referenced by blockNameMap(), and GctFormatTranslateV35().
GctFormatTranslateV35::BlockIdToUnpackFnMap GctFormatTranslateV35::m_blockUnpackFn = GctFormatTranslateV35::BlockIdToUnpackFnMap() [static, private] |
Block ID to unpack function map.
Definition at line 104 of file GctFormatTranslateV35.h.
Referenced by convertBlock(), and GctFormatTranslateV35().
GctFormatTranslateV35::BlockIdToEmCandIsoBoundMap GctFormatTranslateV35::m_internEmIsoBounds = GctFormatTranslateV35::BlockIdToEmCandIsoBoundMap() [static, private] |
A map of Block IDs to IsoBoundaryPairs for storing the location of the isolated Internal EM cands in the pipeline, as this differs with Block ID.
Definition at line 101 of file GctFormatTranslateV35.h.
Referenced by GctFormatTranslateV35(), and internEmIsoBounds().
GctFormatTranslateV35::BlkToRctCrateMap GctFormatTranslateV35::m_rctEmCrate = GctFormatTranslateV35::BlkToRctCrateMap() [static, private] |
Map to relate capture block ID to the RCT crate the data originated from (for electrons).
Definition at line 94 of file GctFormatTranslateV35.h.
Referenced by GctFormatTranslateV35(), and rctEmCrateMap().
GctFormatTranslateV35::BlkToRctCrateMap GctFormatTranslateV35::m_rctJetCrate = GctFormatTranslateV35::BlkToRctCrateMap() [static, private] |
Map to relate capture block ID to the RCT crate the data originated from (for jets).
Definition at line 97 of file GctFormatTranslateV35.h.
Referenced by GctFormatTranslateV35(), and rctJetCrateMap().