CMS 3D CMS Logo

InefficientDoubleROC.py
Go to the documentation of this file.
1 #!/usr/bin/env python
2 
3 import sys
4 import math
5 from ROOT import *
6 from copy import deepcopy
7 from scipy import signal
8 
9 gROOT.SetBatch() # don't pop up canvases
10 
12  ############################################################################
13 
14  def __TraverseDirTree(self, dir):
15 
16  for obj in dir.GetListOfKeys():
17  if not obj.IsFolder():
18  if obj.ReadObjectAny(TClass.GetClass("TH2")):
19  th1 = deepcopy(obj.ReadObj())
20  name = th1.GetName()
21  if name.startswith(self.lookForStr): #take only module lvl plots
22  # print(''.join([dir.GetPath(), '/', name]))
23  newName = name.split(self.lookForStr)[1]
24  th1.SetName(newName)
25 
26  # used to sort outputs by disk/layer
27  layer = 0
28  # print(newName)
29  if newName.startswith("B"):
30  layer = "B" + ((newName.split("_LYR"))[1])[0]
31  else:
32  layer = ((newName.split("_D"))[1])[0]
33  if newName.startswith("FPix_Bm"):
34  layer = "-" + layer
35  layer = "F" + layer
36 
37  if layer in self.dicOfModuleHistograms:
38  self.dicOfModuleHistograms[layer].append(th1)
39  else:
40  self.dicOfModuleHistograms.update({layer : [th1]})
41  else:
42  self.__TraverseDirTree(obj.ReadObj())
43 
44  def __init__(self, inputDQMName, outputFileName, noiseOutputFileName, dirs):
45 
46  self.inputFileName = inputDQMName
47  self.outputFileName = outputFileName
48  self.noiseOutputFileName = noiseOutputFileName
49  self.dirs = dirs
50 
51  self.lookForStr = "digi_occupancy_per_col_per_row_"
52 
53  self.rocMaxCol = 52
54  self.rocMaxRow = 80
55  self.rocsInRow = 8
56  self.rocsInCol = 2
57 
58  self.inputFile = TFile(self.inputFileName)
60 
61  ### THRESHOLDS SECTION
63  self.rocOccupancyTh = 200
64 
65  self.barrelNoisyColumnTh = 1.35
68 
71 
72  ### ###################
73 
74  if self.inputFile.IsOpen():
75  print("%s opened successfully!" % (self.inputFileName))
76  #Get all neeeded histograms
77  for dir in self.dirs:
78  self.__TraverseDirTree(self.inputFile.Get(dir))
79  print("Histograms to read: %d" % (len(self.dicOfModuleHistograms)))
80 
81  self.detDict = {}
82 
83  else:
84  print("Unable to open file %s" % (self.inputFileName))
85 
86  def __lmsExp(self, data, xMin, xMax):
87  meanOfX = (xMax + xMin) * 0.5
88  meanOfY = sum( [math.log(data[i]) for i in range(len(data))] ) / len(data)
89 
90  D = 0
91  for i in range(xMin, xMax + 1):
92  D = D + (i - meanOfX)**2
93  # print(D)
94 
95  a = 0
96  for i in range(len(data)):
97  a = a + math.log(data[i]) * (xMin + i - meanOfX)
98  a = a/D
99 
100  lnb = meanOfY - a * meanOfX
101 
102  return a, math.exp(lnb)
103 
104  def __lmsLin(self, data, xMin, xMax):
105  meanOfX = (xMax + xMin) * 0.5
106  meanOfY = sum(data) / len(data)
107 
108  D = 0
109  for i in range(xMin, xMax + 1):
110  D = D + (i - meanOfX)**2
111 
112  a = 0
113  for i in range(len(data)):
114  a = a + data[i] * (xMin + i - meanOfX)
115  a = a/D
116 
117  b = meanOfY - a * meanOfX
118 
119  return a, b, D
120 
121  def __customMedianFilter(self, array, radius = 2):
122  # contrary to scipy implementation it provides adaptive kernel size instead of copying data on boundaries
123  filtered = [0 for i in range(len(array))]
124  currArray = []
125  for i in range(len(array)):
126  if i - radius < 0:
127  currArray = array[0 : i + radius + 1]
128  elif i + radius + 1 >= len(array):
129  currArray = array[i - radius : ]
130 
131  currArray.sort()
132  filtered[i] = currArray[len(currArray) // 2]
133 
134  return filtered
135 
136  def __getROCData(self, hist, startPixel, endPixel, row, repeatFilter = 3, filterKernelSize = 5):
137  pixelArr = []
138  columnsWithSuspiciouslyNoisyPixels = []
139 
140  for x in range(startPixel, endPixel):
141 
142  columnPixels = [hist.GetBinContent(x, y + 1) for y in range(row * self.rocMaxRow, (row + 1) * self.rocMaxRow)]
143  columnSum = sum(columnPixels)
144 
145  columnMean = columnSum / len(columnPixels)
146  for i in range(len(columnPixels)):
147  if columnPixels[i] > self.pixelNoisynessTh * columnMean:
148  # col = (startPixel % self.rocMaxCol) + 1
149 
150  columnsWithSuspiciouslyNoisyPixels.append(x)
151 
152  # print("WARNING:\t %s : %dx%d:%d may contain NOISY PIXELS instead of NOISY COLUMNS" % (hist.GetName(), col, row + 1, startPixel + i))
153  break
154 
155  pixelArr.append(columnSum)
156 
157  if len(pixelArr) == 0:
158  return None, None, None # ROC down
159 
160  medFiltRes, sciPyMedFiltRes = deepcopy(pixelArr), deepcopy(pixelArr)
161  for i in range(repeatFilter):
162  sciPyMedFiltRes = signal.medfilt(sciPyMedFiltRes, filterKernelSize) # 5 is obligatory to filter doublets!!!
163  medFiltRes = self.__customMedianFilter(medFiltRes, filterKernelSize // 2)
164 
165  return pixelArr, medFiltRes, columnsWithSuspiciouslyNoisyPixels, sciPyMedFiltRes
166 
167  def __getPixelArrWithRemovedDrops(self, pixelArr, medFiltRes):
168  return [ (pixelArr[i] if pixelArr[i] > medFiltRes[i] else medFiltRes[i]) if 0 < i < len(pixelArr) - 1 else min(medFiltRes) for i in range(len(pixelArr))]
169 
170  def __normalizeArray(self, pixelArr):
171  c_min, c_max = min(pixelArr), max(pixelArr)
172  if c_min != c_max:
173  c_diff_inv = 1.0 / (c_max - c_min)
174  return [ (pixelArr[i] - c_min) * c_diff_inv for i in range(len(pixelArr))]
175  return [0 for i in range(len(pixelArr))]
176 
177  def __setNormalizedArrayZeroInThePoint(self, pixelArr, pt):
178  c_diff_inv = 1.0 / (1.0 - pt)
179 
180  return [ (pixelArr[i] - pt) * c_diff_inv for i in range(len(pixelArr))]
181 
182  def __determineBarrelNoise(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, val, pos, rocCol, rocRow):
183  noisyROC = False;
184  if meanOfPixels < self.rocOccupancyTh:
185  #print("Very low mean occupancy: %f in %s in (col, row) (%d, %d)...\tSkipping noisy ROC calculation" % (meanOfPixels, histName, rocCol, rocRow) )
186  noisyROC = True
187  else:
188  th = self.barrelNoisyColumnTh * maxMed
189  if val > th:
190  if pos not in columnsWithSuspiciouslyNoisyPixels:
191  rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, pos, rocRow)
192  noiseFile.write("%s\t(x, row)->[rocNum, xRoc]\t(%d, %d)->[%d, %d];\t{VAL, TH}\t{%f, %f}\n" % (histName, pos, rocRow+1, rocNum, xCoordInROC, val, th))
193 
194  return 1, noisyROC
195  # else:
196  # print("WARNING: rejecting %s (x, row) (%d, %d) as being affected by a few noisy pixel(s)" % (histName, pos, rocRow+1))
197 
198  return 0, noisyROC
199 
200  def __determineBarrelNoise2(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, normVal, pos, rocCol, rocRow):
201  noisyROC = False;
202  if meanOfPixels < self.rocOccupancyTh:
203  #print("Very low mean occupancy: %f in %s in (col, row) (%d, %d)...\tSkipping noisy ROC calculation" % (meanOfPixels, histName, rocCol, rocRow) )
204  noisyROC = True
205  else:
206  th = self.barrelNoisyColumnTh2 * normMeanOfPixels
207  if normVal > th:
208  if pos not in columnsWithSuspiciouslyNoisyPixels:
209  rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, pos, rocRow)
210  noiseFile.write("%s\t(x, row)->[rocNum, xRoc]\t(%d, %d)->[%d, %d];\t{NORMVAL, TH}\t{%f, %f}\n" % (histName, pos, rocRow+1, rocNum, xCoordInROC, normVal, th))
211 
212  return 1, noisyROC
213  # else:
214  # print("WARNING: rejecting %s (x, row) (%d, %d) as being affected by a few noisy pixel(s)" % (histName, pos, rocRow+1))
215 
216  return 0, noisyROC
217 
218  def __determineEndcapNoise(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal, val, pos, rocCol, rocRow):
219  noisyROC = False;
220  if meanOfPixels < self.rocOccupancyTh:
221  # print("Very low mean occupancy: %f in %s in (col, row) (%d, %d)...\tSkipping noisy ROC calculation" % (meanOfPixels, histName, rocCol, rocRow) )
222  noisyROC = True
223 
224  else:
225  th = self.endcapNoisyColumnTh * linVal
226  if val > th:
227  if pos not in columnsWithSuspiciouslyNoisyPixels:
228  rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, pos, rocRow)
229  noiseFile.write("%s\t(x, row)->[rocNum, xRoc]\t(%d, %d)->[%d, %d];\t{VAL, TH}\t{%f, %f}\n" % (histName, pos, rocRow+1, rocNum, xCoordInROC, val, th))
230 
231  return 1, noisyROC
232  # else:
233  # print("WARNING: rejecting %s (x, row) (%d, %d) as being affected by a few noisy pixel(s)" % (histName, pos, rocRow+1))
234 
235  return 0, noisyROC
236 
237  def __convertCoordinatesFromHistToROCSpace(self, histName, histXpos, histRow):
238  tempXROC = (histXpos / self.rocMaxCol) # 0,...,7
239  tempYROC = histRow
240 
241  tempXCoordInROC = histXpos % self.rocMaxCol
242 
243  realXROC, realYROC = tempXROC, tempYROC
244  xCoordInROC = tempXCoordInROC
245 
246  rocNum = 0
247 
248  if histName.find("BPix_Bp") != -1: #zero ROC is in top left corner
249  realYROC = 1 - tempYROC
250  if realYROC == 1:
251  rocNum = 15 - realXROC
252  xCoordInROC = self.rocMaxCol - 1 - xCoordInROC
253  else:
254  rocNum = realXROC
255  else: # zero ROC is in bottom right corner
256  realXROC = 7 - tempXROC
257  if realYROC == 1:
258  rocNum = 15 - realXROC
259  else:
260  rocNum = realXROC
261  xCoordInROC = self.rocMaxCol - 1 - xCoordInROC
262 
263  return rocNum, xCoordInROC
264 
265 
266  def __determineBarrelDColInefficiencyAndNoise(self, medFiltRes, histName, pixelArr, pixelArrWithoutDrops, startPixel, rocCol, rocRow, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile):
267  meanOfPixels = sum(medFiltRes) / len(medFiltRes)
268  maxMed = max(medFiltRes)
269  minMed = min(medFiltRes)
270 
271  normMeanOfPixels = sum(pixelArrWithoutDrops) / len(pixelArrWithoutDrops)
272  # print( meanOfPixels, maxMed, minMed )
273 
274  doubleDeadCols = 0
275  noisyColsNum = 0
276  noisyROC = 0
277 
278  # for x in range(startPixel, endPixel, 1):
279  for i in range(1, len(pixelArr) - 2):
280  # print(i , i + 1)
281  bin1valDiff = minMed - pixelArr[i + 0]#hist.GetBinContent(x+0)
282  bin2valDiff = minMed - pixelArr[i + 1]
283  # WE ONLY WANT A SET OF TWO COLUMNS SO ADJACENT COLUMNS HAVE TO BE NORMAL
284  bin0valDiff = minMed - pixelArr[i - 1]
285  bin3valDiff = minMed - pixelArr[i + 2]
286 
287  # currentDoubleBinThreshold = minMed / math.sqrt(meanOfPixels) * self.barrelInefficientDColTh # error in bin entry grows as sqrt(N)
288  currentDoubleBinThreshold = math.sqrt(meanOfPixels) * self.barrelInefficientDColTh # error in bin entry grows as sqrt(N)
289 
290  if bin1valDiff > currentDoubleBinThreshold and bin2valDiff > currentDoubleBinThreshold and not bin3valDiff > currentDoubleBinThreshold and not bin0valDiff > currentDoubleBinThreshold:
291 
292  doubleColInRoc = ((i + startPixel) % (self.rocMaxCol)) // 2 + 1
293  doubleDeadCols = doubleDeadCols + 1
294 
295  # outputFile.write("%s,\tX: %d-%d\tROC COLUMN: %d\tROC ROW: %d\tDOUBLE COL IN ROC: %d\tTH: %f\tMIN IN ROC: %f\tBINVAL: %f\n" % (histName, startPixel + (i + 0), startPixel + (i + 1), rocCol, rocRow, doubleColInRoc, currentDoubleBinThreshold, minMed, pixelArr[i]))
296  rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, startPixel + i, rocRow)
297  outputFile.write("%s\t(x, row)->[rocNum, doubleXPixelColInROC]\t(%d, %d)->[%d, %d];\t{MIN - VAL, TH}\t{%f, %f}\n" % (histName, startPixel + i, rocRow + 1, rocNum, xCoordInROC / 2, bin1valDiff, currentDoubleBinThreshold))
298 
299  # HANDLE NOISY PIXELS
300  if noisyROC == True: #don't go inside if noisyness was determined already
301  continue
302 
303  # res = self.__determineBarrelNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, pixelArr[i], startPixel + i, rocCol, rocRow)
304  # noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
305  # if i == len(pixelArr) - 3: # CHECK NOISYNESS IN THE RIGHTMOST INNER COL
306  # res = self.__determineBarrelNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, pixelArr[i + 1], startPixel + i + 1, rocCol, rocRow)
307  # noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
308 
309  # NORMALIZED MEAN NOISE DETERMINATION METHOD
310  res = self.__determineBarrelNoise2(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, pixelArrWithoutDrops[i], startPixel + i, rocCol, rocRow)
311  noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
312  if i == len(pixelArr) - 3: # CHECK NOISYNESS IN THE RIGHTMOST INNER COL
313  res = self.__determineBarrelNoise2(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, pixelArrWithoutDrops[i + 1], startPixel + i + 1, rocCol, rocRow)
314  noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
315 
316 
317 
318  return doubleDeadCols, noisyColsNum
319 
320  def __determineEndcapDColInefficiencyAndNoise(self, medFiltRes, histName, pixelArr, startPixel, rocCol, rocRow, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile):
321  doubleDeadCols = 0
322  noisyColsNum = 0
323  noisyROC = 0
324 
325  useLin = True
326  # <D> might be used for high noise ROC recognition
327  a, b, D = self.__lmsLin(medFiltRes, startPixel, len(medFiltRes) + startPixel)
328 
329  meanOfPixels = sum(medFiltRes) / len(medFiltRes)
330 
331  # for x in range(startPixel, endPixel, 1):
332  for i in range(1, len(pixelArr) - 2):
333 
334  if useLin == True:
335  linVal1 = a * (i + startPixel + 0) + b
336  linVal2 = a * (i + startPixel + 1) + b
337 
338  linVal0 = a * (i + startPixel - 1) + b
339  linVal3 = a * (i + startPixel + 2) + b
340  else:
341  linVal1 = b * math.exp(a * (i + startPixel + 0))
342  linVal2 = b * math.exp(a * (i + startPixel + 1))
343 
344  linVal0 = b * math.exp(a * (i + startPixel - 1))
345  linVal3 = b * math.exp(a * (i + startPixel + 2))
346 
347  bin1valDiff = linVal1 - pixelArr[i + 0]
348  bin2valDiff = linVal2 - pixelArr[i + 1]
349  # WE ONLY WANT A SET OF TWO COLUMNS SO ADJACENT COLUMNS HAVE TO BE NORMAL
350  bin0valDiff = linVal0 - pixelArr[i - 1]
351  bin3valDiff = linVal3 - pixelArr[i + 2]
352 
353  try:
354  currentDoubleBinThreshold = math.sqrt((linVal1 + linVal2) * 0.5) * self.endcapInefficientDColTh
355  except:
356  # print(a, b, startPixel, i, linVal1, linVal2)
357  continue
358 
359  if bin1valDiff > currentDoubleBinThreshold and bin2valDiff > currentDoubleBinThreshold and not bin3valDiff > currentDoubleBinThreshold and not bin0valDiff > currentDoubleBinThreshold:
360 
361  doubleColInRoc = ((i + startPixel) % (self.rocMaxCol)) // 2 + 1
362  doubleDeadCols = doubleDeadCols + 1
363 
364  # outputFile.write("%s,\tX: %d-%d\tROC COLUMN: %d\tROC ROW: %d\tDOUBLE COL IN ROC: %d\tTH: %f\tLINVAL: %f\tBINVAL: %f\n" % (histName, startPixel + (i + 0), startPixel + (i + 1), rocCol, rocRow, doubleColInRoc, currentDoubleBinThreshold, linVal1, pixelArr[i]))
365  rocNum, xCoordInROC = self.__convertCoordinatesFromHistToROCSpace(histName, startPixel + i, rocRow)
366  outputFile.write("%s\t(x, row)->[rocNum, doubleXPixelColInROC]\t(%d, %d)->[%d, %d];\t{LIN(x) - VAL, TH}\t{%f, %f}\n" % (histName, startPixel + i, rocRow + 1, rocNum, xCoordInROC / 2, bin1valDiff, currentDoubleBinThreshold))
367 
368 
369  # HANDLE NOISY PIXELS
370  if noisyROC == True: #don't go inside if noisyness was determined already
371  continue
372 
373  res = self.__determineEndcapNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal1, pixelArr[i], i + startPixel, rocCol, rocRow)
374  noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
375  if i == len(pixelArr) - 3: # CHECK NOISYNESS IN THE RIGHTMOST INNER COL
376  res = self.__determineEndcapNoise(noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal2, pixelArr[i + 1], i + 1 + startPixel, rocCol, rocRow)
377  noisyColsNum, noisyROC = noisyColsNum + res[0], res[1]
378 
379  return doubleDeadCols, noisyColsNum
380 
381  def ReadHistograms(self):
382  doubleDeadCols, noisyColsNum = 0, 0
383 
384  with open(self.noiseOutputFileName, "w") as noiseFile:
385  with open(self.outputFileName, "w") as outputFile:
386  for layer in self.dicOfModuleHistograms:
387 
388  doubleDeadColsInLayer, noisyColsNumInLayer = 0, 0
389 
390  outputFile.write("-> " + layer + "\n\n")
391  noiseFile.write("-> " + layer + "\n\n")
392 
393  for hist in self.dicOfModuleHistograms[layer]:
394  for row in range(2):
395  for rocNum in range(self.rocsInRow):
396  startPixel = rocNum * self.rocMaxCol + 1
397  endPixel = (rocNum + 1) * self.rocMaxCol + 1 # - 1 ???
398 
399  rocCol = rocNum + 1
400 
401  pixelArr, medFiltRes, columnsWithSuspiciouslyNoisyPixels, sciPyMedFiltRes = self.__getROCData(hist, startPixel, endPixel, row, 3, 5)
402 
403  if pixelArr == None:
404  continue
405 
406  # meanOfPixels = sum(pixelArr) / len(pixelArr)
407  # pixelArrSorted = deepcopy(pixelArr)
408  # pixelArrSorted.sort()
409  # outputFile.write("%s: <x> <med_min> VS. <med_max> | x_min:\t%f %f %f | %f, %f, %f, %f\n" % (hist.GetName(), meanOfPixels, min(medFiltRes), max(medFiltRes), pixelArrSorted[0], pixelArrSorted[1], pixelArrSorted[2], pixelArrSorted[3]))
410 
411  if "F" not in layer:
412  # pixelArrWithoutDrops = self.__getPixelArrWithRemovedDrops(pixelArr, medFiltRes)
413  pixelArrWithoutDrops = self.__getPixelArrWithRemovedDrops(pixelArr, sciPyMedFiltRes)
414  pixelArrWithoutDropsNormalized = self.__normalizeArray(pixelArrWithoutDrops)
415  # tmp_mean = sum(pixelArrWithoutDropsNormalized) / len(pixelArrWithoutDropsNormalized)
416  # pixelArrWithoutDropsNormalized = self.__setNormalizedArrayZeroInThePoint(pixelArrWithoutDropsNormalized, tmp_mean)
417 
418  # print(min(pixelArrWithoutDropsNormalized), max(pixelArrWithoutDropsNormalized))
419  result = self.__determineBarrelDColInefficiencyAndNoise(medFiltRes, hist.GetName(), pixelArr, pixelArrWithoutDropsNormalized, startPixel, rocCol, row, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile)
420  else:
421  result = self.__determineEndcapDColInefficiencyAndNoise(medFiltRes, hist.GetName(), pixelArr, startPixel, rocCol, row, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile)
422 
423  doubleDeadCols, doubleDeadColsInLayer = doubleDeadCols + result[0], doubleDeadColsInLayer + result[0]
424  noisyColsNum, noisyColsNumInLayer = noisyColsNum + result[1], noisyColsNumInLayer + result[1]
425 
426  outputFile.write("\n\tTOTAL IN LAYER/DISK: %d\n\n" % (doubleDeadColsInLayer))
427  noiseFile.write("\n\tTOTAL IN LAYER/DISK: %d\n\n" % (noisyColsNumInLayer))
428 
429  print("Number of inefficient double columns: %d"%(doubleDeadCols))
430  print("Number of noisy cols: %d"%(noisyColsNum))
431 
432 
433 #--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
434 for i in range(1, len(sys.argv), 1):
435  if i == 1:
436  inputFileName = sys.argv[i]
437 
438 runNum = ((inputFileName.split("/")[-1].split("."))[0].split("_R000"))[1]
439 print("Run number: %s"%(runNum))
440 baseRootDir = ["DQMData/Run " + runNum + "/PixelPhase1/Run summary/Phase1_MechanicalView"]
441 print(baseRootDir[0])
442 outputFileName = "inefficientDPixelColumns.txt"
443 noiseOutputFileName = "noisyPixelColumns.txt"
444 
445 readerObj = InefficientDeadROCs(inputFileName, outputFileName, noiseOutputFileName, baseRootDir)
446 readerObj.ReadHistograms()
def __determineBarrelNoise2(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, normMeanOfPixels, normVal, pos, rocCol, rocRow)
def __init__(self, inputDQMName, outputFileName, noiseOutputFileName, dirs)
std::string print(const Track &, edm::Verbosity=edm::Concise)
Track print utility.
Definition: print.cc:10
def __getPixelArrWithRemovedDrops(self, pixelArr, medFiltRes)
def __convertCoordinatesFromHistToROCSpace(self, histName, histXpos, histRow)
def __determineBarrelNoise(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, maxMed, val, pos, rocCol, rocRow)
T min(T a, T b)
Definition: MathUtil.h:58
def __determineBarrelDColInefficiencyAndNoise(self, medFiltRes, histName, pixelArr, pixelArrWithoutDrops, startPixel, rocCol, rocRow, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile)
def __getROCData(self, hist, startPixel, endPixel, row, repeatFilter=3, filterKernelSize=5)
def __customMedianFilter(self, array, radius=2)
def __setNormalizedArrayZeroInThePoint(self, pixelArr, pt)
def __determineEndcapNoise(self, noiseFile, columnsWithSuspiciouslyNoisyPixels, histName, meanOfPixels, linVal, val, pos, rocCol, rocRow)
def __determineEndcapDColInefficiencyAndNoise(self, medFiltRes, histName, pixelArr, startPixel, rocCol, rocRow, outputFile, columnsWithSuspiciouslyNoisyPixels, noiseFile)
double split
Definition: MVATrainer.cc:139