CMS 3D CMS Logo

PFAlgo.cc
Go to the documentation of this file.
2 
9 
13 
21 
25 
26 // #include "FWCore/Framework/interface/OrphanHandle.h"
28 // #include "DataFormats/Common/interface/ProductID.h"
31 
32 
35 
38 
39 
40 #include "Math/PxPyPzM4D.h"
41 #include "Math/LorentzVector.h"
42 #include "Math/DisplacementVector3D.h"
43 #include "Math/SMatrix.h"
44 #include "TDecompChol.h"
45 
46 #include "boost/graph/adjacency_matrix.hpp"
47 #include "boost/graph/graph_utility.hpp"
48 
49 
50 
51 using namespace std;
52 using namespace reco;
53 using namespace boost;
54 
55 typedef std::list< reco::PFBlockRef >::iterator IBR;
56 
57 
58 
60  : pfCandidates_( new PFCandidateCollection),
61  nSigmaECAL_(0),
62  nSigmaHCAL_(1),
63  algo_(1),
64  debug_(false),
65  pfele_(nullptr),
66  pfpho_(nullptr),
67  pfegamma_(nullptr),
68  useVertices_(false)
69 {}
70 
72  if (usePFElectrons_) delete pfele_;
73  if (usePFPhotons_) delete pfpho_;
74  if (useEGammaFilters_) delete pfegamma_;
75 }
76 
77 
78 void
79 PFAlgo::setParameters(double nSigmaECAL,
80  double nSigmaHCAL,
81  const boost::shared_ptr<PFEnergyCalibration>& calibration,
82  const boost::shared_ptr<PFEnergyCalibrationHF>& thepfEnergyCalibrationHF) {
83 
84  nSigmaECAL_ = nSigmaECAL;
86 
87  calibration_ = calibration;
88  thepfEnergyCalibrationHF_ = thepfEnergyCalibrationHF;
89 
90 }
91 
92 
94  return pfmu_;
95 }
96 
97 //PFElectrons: a new method added to set the parameters for electron reconstruction.
98 void
99 PFAlgo::setPFEleParameters(double mvaEleCut,
100  string mvaWeightFileEleID,
101  bool usePFElectrons,
102  const boost::shared_ptr<PFSCEnergyCalibration>& thePFSCEnergyCalibration,
103  const boost::shared_ptr<PFEnergyCalibration>& thePFEnergyCalibration,
106  double coneEcalIsoForEgammaSC,
109  unsigned int nTrackIsoForEgammaSC,
112  bool usePFSCEleCalib,
113  bool useEGElectrons,
114  bool useEGammaSupercluster) {
115 
116  mvaEleCut_ = mvaEleCut;
120  thePFSCEnergyCalibration_ = thePFSCEnergyCalibration;
121  useEGElectrons_ = useEGElectrons;
130 
131 
132  if(!usePFElectrons_) return;
133  mvaWeightFileEleID_ = mvaWeightFileEleID;
134  FILE * fileEleID = fopen(mvaWeightFileEleID_.c_str(), "r");
135  if (fileEleID) {
136  fclose(fileEleID);
137  }
138  else {
139  string err = "PFAlgo: cannot open weight file '";
140  err += mvaWeightFileEleID;
141  err += "'";
142  throw invalid_argument( err );
143  }
146  thePFEnergyCalibration,
158 }
159 
160 void
162  std::string mvaWeightFileConvID,
163  double mvaConvCut,
164  bool useReg,
166  const boost::shared_ptr<PFEnergyCalibration>& thePFEnergyCalibration,
167  double sumPtTrackIsoForPhoton,
169  {
170 
172 
173  //for MVA pass PV if there is one in the collection otherwise pass a dummy
175  if(useVertices_)
176  {
177  dummy = primaryVertex_;
178  }
179  else { // create a dummy PV
181  e(0, 0) = 0.0015 * 0.0015;
182  e(1, 1) = 0.0015 * 0.0015;
183  e(2, 2) = 15. * 15.;
184  reco::Vertex::Point p(0, 0, 0);
185  dummy = reco::Vertex(p, e, 0, 0, 0);
186  }
187  // pv=&dummy;
188  if(! usePFPhotons_) return;
189  FILE * filePhotonConvID = fopen(mvaWeightFileConvID.c_str(), "r");
190  if (filePhotonConvID) {
191  fclose(filePhotonConvID);
192  }
193  else {
194  string err = "PFAlgo: cannot open weight file '";
195  err += mvaWeightFileConvID;
196  err += "'";
197  throw invalid_argument( err );
198  }
199  const reco::Vertex* pv=&dummy;
200  pfpho_ = new PFPhotonAlgo(mvaWeightFileConvID,
201  mvaConvCut,
202  useReg,
203  X0_Map,
204  *pv,
205  thePFEnergyCalibration,
206  sumPtTrackIsoForPhoton,
207  sumPtTrackIsoSlopeForPhoton
208  );
209  return;
210 }
211 
212 void PFAlgo::setEGammaParameters(bool use_EGammaFilters,
213  std::string ele_iso_path_mvaWeightFile,
214  double ele_iso_pt,
215  double ele_iso_mva_barrel,
216  double ele_iso_mva_endcap,
217  double ele_iso_combIso_barrel,
218  double ele_iso_combIso_endcap,
219  double ele_noniso_mva,
220  unsigned int ele_missinghits,
222  const edm::ParameterSet& ele_protectionsForJetMET,
223  double ph_MinEt,
224  double ph_combIso,
225  double ph_HoE,
226  double ph_sietaieta_eb,
227  double ph_sietaieta_ee,
228  const edm::ParameterSet& ph_protectionsForJetMET
229  )
230 {
231 
232  useEGammaFilters_ = use_EGammaFilters;
233 
234  if(!useEGammaFilters_ ) return;
235  FILE * fileEGamma_ele_iso_ID = fopen(ele_iso_path_mvaWeightFile.c_str(), "r");
236  if (fileEGamma_ele_iso_ID) {
237  fclose(fileEGamma_ele_iso_ID);
238  }
239  else {
240  string err = "PFAlgo: cannot open weight file '";
241  err += ele_iso_path_mvaWeightFile;
242  err += "'";
243  throw invalid_argument( err );
244  }
245 
246  // ele_iso_mvaID_ = new ElectronMVAEstimator(ele_iso_path_mvaWeightFile_);
248 
249  pfegamma_ = new PFEGammaFilters(ph_MinEt,
250  ph_combIso,
251  ph_HoE,
252  ph_sietaieta_eb,
253  ph_sietaieta_ee,
254  ph_protectionsForJetMET,
255  ele_iso_pt,
256  ele_iso_mva_barrel,
257  ele_iso_mva_endcap,
258  ele_iso_combIso_barrel,
259  ele_iso_combIso_endcap,
260  ele_noniso_mva,
261  ele_missinghits,
262  ele_iso_path_mvaWeightFile,
263  ele_protectionsForJetMET);
264 
265  return;
266 }
268  const edm::ValueMap<reco::GsfElectronRef> & valueMapGedElectrons,
269  const edm::ValueMap<reco::PhotonRef> & valueMapGedPhotons){
270  if(useEGammaFilters_) {
272  valueMapGedElectrons_ = & valueMapGedElectrons;
273  valueMapGedPhotons_ = & valueMapGedPhotons;
274  }
275 }
276 
277 
278 
279 /*
280 void PFAlgo::setPFPhotonRegWeights(
281  const GBRForest *LCorrForest,
282  const GBRForest *GCorrForest,
283  const GBRForest *ResForest
284  ) {
285  if(usePFPhotons_)
286  pfpho_->setGBRForest(LCorrForest, GCorrForest, ResForest);
287 }
288 */
290  const GBRForest *LCorrForestEB,
291  const GBRForest *LCorrForestEE,
292  const GBRForest *GCorrForestBarrel,
293  const GBRForest *GCorrForestEndcapHr9,
294  const GBRForest *GCorrForestEndcapLr9, const GBRForest *PFEcalResolution
295  ){
296 
297  pfpho_->setGBRForest(LCorrForestEB,LCorrForestEE,
298  GCorrForestBarrel, GCorrForestEndcapHr9,
299  GCorrForestEndcapLr9, PFEcalResolution);
300 }
301 void
303  // std::vector<double> muonHCAL,
304  // std::vector<double> muonECAL,
305  // std::vector<double> muonHO,
306  // double nSigmaTRACK,
307  // double ptError,
308  // std::vector<double> factors45)
309 {
310 
311 
312 
313 
314  pfmu_ = new PFMuonAlgo();
315  pfmu_->setParameters(pset);
316 
317  // Muon parameters
318  muonHCAL_= pset.getParameter<std::vector<double> >("muon_HCAL");
319  muonECAL_= pset.getParameter<std::vector<double> >("muon_ECAL");
320  muonHO_= pset.getParameter<std::vector<double> >("muon_HO");
321  assert ( muonHCAL_.size() == 2 && muonECAL_.size() == 2 && muonHO_.size() == 2);
322  nSigmaTRACK_= pset.getParameter<double>("nsigma_TRACK");
323  ptError_= pset.getParameter<double>("pt_Error");
324  factors45_ = pset.getParameter<std::vector<double> >("factors_45");
325  assert ( factors45_.size() == 2 );
326 
327 }
328 
329 
330 void
332  muonHandle_ = muons;
333 }
334 
335 
336 void
338  double minHFCleaningPt,
339  double minSignificance,
340  double maxSignificance,
342  double maxDeltaPhiPt,
343  double minDeltaMet) {
351 }
352 
353 void
355  bool rejectTracks_Step45,
357  bool usePFConversions,
358  bool usePFDecays,
359  double dptRel_DispVtx){
360 
367 
368 }
369 
370 
371 void
375 
376  //Set the vertices for muon cleaning
377  pfmu_->setInputsForCleaning(primaryVertices);
378 
379 
380  //Now find the primary vertex!
381  bool primaryVertexFound = false;
382  nVtx_ = primaryVertices->size();
383  if(usePFPhotons_){
384  pfpho_->setnPU(nVtx_);
385  }
386  for (unsigned short i=0 ;i<primaryVertices->size();++i)
387  {
388  if(primaryVertices->at(i).isValid()&&(!primaryVertices->at(i).isFake()))
389  {
390  primaryVertex_ = primaryVertices->at(i);
391  primaryVertexFound = true;
392  break;
393  }
394  }
395  //Use vertices if the user wants to but only if it exists a good vertex
396  useVertices_ = useVertex && primaryVertexFound;
397  if(usePFPhotons_) {
398  if (useVertices_ ){
400  }
401  else{
403  e(0, 0) = 0.0015 * 0.0015;
404  e(1, 1) = 0.0015 * 0.0015;
405  e(2, 2) = 15. * 15.;
406  reco::Vertex::Point p(0, 0, 0);
407  reco::Vertex dummy = reco::Vertex(p, e, 0, 0, 0);
408  // std::cout << " PFPho " << pfpho_ << std::endl;
409  pfpho_->setPhotonPrimaryVtx(dummy);
410  }
411  }
412 }
413 
414 
416 
417  blockHandle_ = blockHandle;
419 }
420 
421 
422 
424 
425  // reset output collection
426  if(pfCandidates_.get() )
427  pfCandidates_->clear();
428  else
430 
431  if(pfElectronCandidates_.get() )
432  pfElectronCandidates_->clear();
433  else
435 
436  // Clearing pfPhotonCandidates
437  if( pfPhotonCandidates_.get() )
438  pfPhotonCandidates_->clear();
439  else
441 
442  if(pfCleanedCandidates_.get() )
443  pfCleanedCandidates_->clear();
444  else
446 
447  // not a unique_ptr; should not be deleted after transfer
448  pfElectronExtra_.clear();
449  pfPhotonExtra_.clear();
450 
451  if( debug_ ) {
452  cout<<"*********************************************************"<<endl;
453  cout<<"***** Particle flow algorithm *****"<<endl;
454  cout<<"*********************************************************"<<endl;
455  }
456 
457  // sort elements in three lists:
458  std::list< reco::PFBlockRef > hcalBlockRefs;
459  std::list< reco::PFBlockRef > ecalBlockRefs;
460  std::list< reco::PFBlockRef > hoBlockRefs;
461  std::list< reco::PFBlockRef > otherBlockRefs;
462 
463  for( unsigned i=0; i<blocks.size(); ++i ) {
464  // reco::PFBlockRef blockref( blockh,i );
465  reco::PFBlockRef blockref = createBlockRef( blocks, i);
466 
467  const reco::PFBlock& block = *blockref;
469  elements = block.elements();
470 
471  bool singleEcalOrHcal = false;
472  if( elements.size() == 1 ){
473  if( elements[0].type() == reco::PFBlockElement::ECAL ){
474  ecalBlockRefs.push_back( blockref );
475  singleEcalOrHcal = true;
476  }
477  if( elements[0].type() == reco::PFBlockElement::HCAL ){
478  hcalBlockRefs.push_back( blockref );
479  singleEcalOrHcal = true;
480  }
481  if( elements[0].type() == reco::PFBlockElement::HO ){
482  // Single HO elements are likely to be noise. Not considered for now.
483  hoBlockRefs.push_back( blockref );
484  singleEcalOrHcal = true;
485  }
486  }
487 
488  if(!singleEcalOrHcal) {
489  otherBlockRefs.push_back( blockref );
490  }
491  }//loop blocks
492 
493  if( debug_ ){
494  cout<<"# Ecal blocks: "<<ecalBlockRefs.size()
495  <<", # Hcal blocks: "<<hcalBlockRefs.size()
496  <<", # HO blocks: "<<hoBlockRefs.size()
497  <<", # Other blocks: "<<otherBlockRefs.size()<<endl;
498  }
499 
500 
501  // loop on blocks that are not single ecal,
502  // and not single hcal.
503 
504  unsigned nblcks = 0;
505  for( IBR io = otherBlockRefs.begin(); io!=otherBlockRefs.end(); ++io) {
506  if ( debug_ ) std::cout << "Block number " << nblcks++ << std::endl;
507  processBlock( *io, hcalBlockRefs, ecalBlockRefs );
508  }
509 
510  std::list< reco::PFBlockRef > empty;
511 
512  unsigned hblcks = 0;
513  // process remaining single hcal blocks
514  for( IBR ih = hcalBlockRefs.begin(); ih!=hcalBlockRefs.end(); ++ih) {
515  if ( debug_ ) std::cout << "HCAL block number " << hblcks++ << std::endl;
516  processBlock( *ih, empty, empty );
517  }
518 
519  unsigned eblcks = 0;
520  // process remaining single ecal blocks
521  for( IBR ie = ecalBlockRefs.begin(); ie!=ecalBlockRefs.end(); ++ie) {
522  if ( debug_ ) std::cout << "ECAL block number " << eblcks++ << std::endl;
523  processBlock( *ie, empty, empty );
524  }
525 
526  // Post HF Cleaning
527  postCleaning();
528 
529  //Muon post cleaning
530  pfmu_->postClean(pfCandidates_.get());
531 
532  //Add Missing muons
533  if( muonHandle_.isValid())
535 }
536 
537 
539  std::list<reco::PFBlockRef>& hcalBlockRefs,
540  std::list<reco::PFBlockRef>& ecalBlockRefs ) {
541 
542  // debug_ = false;
543  assert(!blockref.isNull() );
544  const reco::PFBlock& block = *blockref;
545 
546  typedef std::multimap<double, unsigned>::iterator IE;
547  typedef std::multimap<double, std::pair<unsigned,::math::XYZVector> >::iterator IS;
548  typedef std::multimap<double, std::pair<unsigned,bool> >::iterator IT;
549  typedef std::multimap< unsigned, std::pair<double, unsigned> >::iterator II;
550 
551  if(debug_) {
552  cout<<"#########################################################"<<endl;
553  cout<<"##### Process Block: #####"<<endl;
554  cout<<"#########################################################"<<endl;
555  cout<<block<<endl;
556  }
557 
558 
559  const edm::OwnVector< reco::PFBlockElement >& elements = block.elements();
560  // make a copy of the link data, which will be edited.
561  PFBlock::LinkData linkData = block.linkData();
562 
563  // keep track of the elements which are still active.
564  vector<bool> active( elements.size(), true );
565 
566 
567  // //PFElectrons:
568  // usePFElectrons_ external configurable parameter to set the usage of pf electron
569  std::vector<reco::PFCandidate> tempElectronCandidates;
570  tempElectronCandidates.clear();
571  if (usePFElectrons_) {
572  if (pfele_->isElectronValidCandidate(blockref,active, primaryVertex_ )){
573  // if there is at least a valid candidate is get the vector of pfcandidates
574  const std::vector<reco::PFCandidate> PFElectCandidates_(pfele_->getElectronCandidates());
575  for ( std::vector<reco::PFCandidate>::const_iterator ec=PFElectCandidates_.begin(); ec != PFElectCandidates_.end(); ++ec )tempElectronCandidates.push_back(*ec);
576 
577  // (***) We're filling the ElectronCandidates into the PFCandiate collection
578  // ..... Once we let PFPhotonAlgo over-write electron-decision, we need to move this to
579  // ..... after the PhotonAlgo has run (Fabian)
580  }
581  // The vector active is automatically changed (it is passed by ref) in PFElectronAlgo
582  // for all the electron candidate
584  pfele_->getAllElectronCandidates().begin(),
585  pfele_->getAllElectronCandidates().end());
586 
587  pfElectronExtra_.insert(pfElectronExtra_.end(),
588  pfele_->getElectronExtra().begin(),
589  pfele_->getElectronExtra().end());
590 
591  }
592  if( /* --- */ usePFPhotons_ /* --- */ ) {
593 
594  if(debug_)
595  cout<<endl<<"--------------- entering PFPhotonAlgo ----------------"<<endl;
596  vector<PFCandidatePhotonExtra> pfPhotonExtraCand;
597  if ( pfpho_->isPhotonValidCandidate(blockref, // passing the reference to the PFBlock
598  active, // std::vector<bool> containing information about acitivity
599  pfPhotonCandidates_, // pointer to candidate vector, to be filled by the routine
600  pfPhotonExtraCand, // candidate extra vector, to be filled by the routine
601  tempElectronCandidates
602  //pfElectronCandidates_ // pointer to some auziliary UNTOUCHED FOR NOW
603  ) ) {
604  if(debug_)
605  std::cout<< " In this PFBlock we found "<<pfPhotonCandidates_->size()<<" Photon Candidates."<<std::endl;
606 
607  // CAUTION: In case we want to allow the PhotonAlgo to 'over-write' what the ElectronAlgo did above
608  // ........ we should NOT fill the PFCandidate-vector with the electrons above (***)
609 
610  // Here we need to add all the photon cands to the pfCandidate list
611  unsigned int extracand =0;
612  PFCandidateCollection::const_iterator cand = pfPhotonCandidates_->begin();
613  for( ; cand != pfPhotonCandidates_->end(); ++cand, ++extracand) {
614  pfCandidates_->push_back(*cand);
615  pfPhotonExtra_.push_back(pfPhotonExtraCand[extracand]);
616  }
617 
618  } // end of 'if' in case photons are found
619  pfPhotonExtraCand.clear();
620  pfPhotonCandidates_->clear();
621  } // end of Photon algo
622 
623  if (usePFElectrons_) {
624  for ( std::vector<reco::PFCandidate>::const_iterator ec=tempElectronCandidates.begin(); ec != tempElectronCandidates.end(); ++ec ){
625  pfCandidates_->push_back(*ec);
626  }
627  tempElectronCandidates.clear();
628  }
629 
630 
631  // New EGamma Reconstruction 10/10/2013
632  if(useEGammaFilters_) {
633 
634  // const edm::ValueMap<reco::GsfElectronRef> & myGedElectronValMap(*valueMapGedElectrons_);
635  bool egmLocalDebug = false;
636  bool egmLocalBlockDebug = false;
637 
638  unsigned int negmcandidates = pfEgammaCandidates_->size();
639  for(unsigned int ieg=0 ; ieg < negmcandidates; ++ieg) {
640  // const reco::PFCandidate & egmcand((*pfEgammaCandidates_)[ieg]);
642 
643  const PFCandidate::ElementsInBlocks& theElements = (*pfEgmRef).elementsInBlocks();
644  PFCandidate::ElementsInBlocks::const_iterator iegfirst = theElements.begin();
645  bool sameBlock = false;
646  bool isGoodElectron = false;
647  bool isGoodPhoton = false;
648  bool isPrimaryElectron = false;
649  if(iegfirst->first == blockref)
650  sameBlock = true;
651  if(sameBlock) {
652 
653  if(egmLocalDebug)
654  cout << " I am in looping on EGamma Candidates: pt " << (*pfEgmRef).pt()
655  << " eta,phi " << (*pfEgmRef).eta() << ", " << (*pfEgmRef).phi()
656  << " charge " << (*pfEgmRef).charge() << endl;
657 
658  if((*pfEgmRef).gsfTrackRef().isNonnull()) {
659 
660  reco::GsfElectronRef gedEleRef = (*valueMapGedElectrons_)[pfEgmRef];
661  if(gedEleRef.isNonnull()) {
662  isGoodElectron = pfegamma_->passElectronSelection(*gedEleRef,*pfEgmRef,nVtx_);
663  isPrimaryElectron = pfegamma_->isElectron(*gedEleRef);
664  if(egmLocalDebug){
665  if(isGoodElectron)
666  cout << "** Good Electron, pt " << gedEleRef->pt()
667  << " eta, phi " << gedEleRef->eta() << ", " << gedEleRef->phi()
668  << " charge " << gedEleRef->charge()
669  << " isPrimary " << isPrimaryElectron << endl;
670  }
671 
672 
673  }
674  }
675  if((*pfEgmRef).superClusterRef().isNonnull()) {
676 
677  reco::PhotonRef gedPhoRef = (*valueMapGedPhotons_)[pfEgmRef];
678  if(gedPhoRef.isNonnull()) {
679  isGoodPhoton = pfegamma_->passPhotonSelection(*gedPhoRef);
680  if(egmLocalDebug) {
681  if(isGoodPhoton)
682  cout << "** Good Photon, pt " << gedPhoRef->pt()
683  << " eta, phi " << gedPhoRef->eta() << ", " << gedPhoRef->phi() << endl;
684  }
685  }
686  }
687  } // end same block
688 
689  if(isGoodElectron && isGoodPhoton) {
690  if(isPrimaryElectron)
691  isGoodPhoton = false;
692  else
693  isGoodElectron = false;
694  }
695 
696  // isElectron
697  if(isGoodElectron) {
698  reco::GsfElectronRef gedEleRef = (*valueMapGedElectrons_)[pfEgmRef];
699  reco::PFCandidate myPFElectron = *pfEgmRef;
700  // run protections
701  bool lockTracks = false;
702  bool isSafe = true;
704  lockTracks = true;
705  isSafe = pfegamma_->isElectronSafeForJetMET(*gedEleRef,myPFElectron,primaryVertex_,lockTracks);
706  }
707 
708  if(isSafe) {
710  myPFElectron.setParticleType(particleType);
711  myPFElectron.setCharge(gedEleRef->charge());
712  myPFElectron.setP4(gedEleRef->p4());
713  myPFElectron.set_mva_e_pi(gedEleRef->mva_e_pi());
714  myPFElectron.set_mva_Isolated(gedEleRef->mva_Isolated());
715 
716  if(egmLocalDebug) {
717  cout << " PFAlgo: found an electron with NEW EGamma code " << endl;
718  cout << " myPFElectron: pt " << myPFElectron.pt()
719  << " eta,phi " << myPFElectron.eta() << ", " <<myPFElectron.phi()
720  << " mva " << myPFElectron.mva_e_pi()
721  << " charge " << myPFElectron.charge() << endl;
722  }
723 
724 
725  // Lock all the elements
726  if(egmLocalBlockDebug)
727  cout << " THE BLOCK " << *blockref << endl;
728  for (PFCandidate::ElementsInBlocks::const_iterator ieb = theElements.begin();
729  ieb<theElements.end(); ++ieb) {
730  active[ieb->second] = false;
731  if(egmLocalBlockDebug)
732  cout << " Elements used " << ieb->second << endl;
733  }
734 
735  // The electron is considered safe for JetMET and the additional tracks pointing to it are locked
736  if(lockTracks) {
737  const PFCandidate::ElementsInBlocks& extraTracks = myPFElectron.egammaExtraRef()->extraNonConvTracks();
738  for (PFCandidate::ElementsInBlocks::const_iterator itrk = extraTracks.begin();
739  itrk<extraTracks.end(); ++itrk) {
740  active[itrk->second] = false;
741  }
742  }
743 
744  pfCandidates_->push_back(myPFElectron);
745 
746  }
747  else {
748  if(egmLocalDebug)
749  cout << "PFAlgo: Electron DISCARDED, NOT SAFE FOR JETMET " << endl;
750  }
751  }
752  if(isGoodPhoton) {
753  reco::PhotonRef gedPhoRef = (*valueMapGedPhotons_)[pfEgmRef];
754  reco::PFCandidate myPFPhoton = *pfEgmRef;
755  bool isSafe = true;
757  isSafe = pfegamma_->isPhotonSafeForJetMET(*gedPhoRef,myPFPhoton);
758  }
759 
760 
761 
762  if(isSafe) {
764  myPFPhoton.setParticleType(particleType);
765  myPFPhoton.setCharge(0);
766  myPFPhoton.set_mva_nothing_gamma(1.);
768  myPFPhoton.setVertex( v );
769  myPFPhoton.setP4(gedPhoRef->p4());
770  if(egmLocalDebug) {
771  cout << " PFAlgo: found a photon with NEW EGamma code " << endl;
772  cout << " myPFPhoton: pt " << myPFPhoton.pt()
773  << " eta,phi " << myPFPhoton.eta() << ", " <<myPFPhoton.phi()
774  << " charge " << myPFPhoton.charge() << endl;
775  }
776 
777  // Lock all the elements
778  if(egmLocalBlockDebug)
779  cout << " THE BLOCK " << *blockref << endl;
780  for (PFCandidate::ElementsInBlocks::const_iterator ieb = theElements.begin();
781  ieb<theElements.end(); ++ieb) {
782  active[ieb->second] = false;
783  if(egmLocalBlockDebug)
784  cout << " Elements used " << ieb->second << endl;
785  }
786  pfCandidates_->push_back(myPFPhoton);
787 
788  } // end isSafe
789  } // end isGoodPhoton
790  } // end loop on EGM candidates
791  } // end if use EGammaFilters
792 
793 
794 
795  //Lock extra conversion tracks not used by Photon Algo
796  if (usePFConversions_ )
797  {
798  for(unsigned iEle=0; iEle<elements.size(); iEle++) {
799  PFBlockElement::Type type = elements[iEle].type();
800  if(type==PFBlockElement::TRACK)
801  {
802  if(elements[iEle].trackRef()->algo() == reco::TrackBase::conversionStep)
803  active[iEle]=false;
804  if(elements[iEle].trackRef()->quality(reco::TrackBase::highPurity))continue;
805  const reco::PFBlockElementTrack * trackRef = dynamic_cast<const reco::PFBlockElementTrack*>((&elements[iEle]));
806  if(!(trackRef->trackType(reco::PFBlockElement::T_FROM_GAMMACONV)))continue;
807  if(!elements[iEle].convRefs().empty())active[iEle]=false;
808  }
809  }
810  }
811 
812 
813 
814 
815 
816  if(debug_)
817  cout<<endl<<"--------------- loop 1 ------------------"<<endl;
818 
819  //COLINFEB16
820  // In loop 1, we loop on all elements.
821 
822  // The primary goal is to deal with tracks that are:
823  // - not associated to an HCAL cluster
824  // - not identified as an electron.
825  // Those tracks should be predominantly relatively low energy charged
826  // hadrons which are not detected in the ECAL.
827 
828  // The secondary goal is to prepare for the next loops
829  // - The ecal and hcal elements are sorted in separate vectors
830  // which will be used as a base for the corresponding loops.
831  // - For tracks which are connected to more than one HCAL cluster,
832  // the links between the track and the cluster are cut for all clusters
833  // but the closest one.
834  // - HF only blocks ( HFEM, HFHAD, HFEM+HFAD) are identified
835 
836  // obsolete comments?
837  // loop1:
838  // - sort ecal and hcal elements in separate vectors
839  // - for tracks:
840  // - lock closest ecal cluster
841  // - cut link to farthest hcal cluster, if more than 1.
842 
843  // vectors to store indices to ho, hcal and ecal elements
844  vector<unsigned> hcalIs;
845  vector<unsigned> hoIs;
846  vector<unsigned> ecalIs;
847  vector<unsigned> trackIs;
848  vector<unsigned> ps1Is;
849  vector<unsigned> ps2Is;
850 
851  vector<unsigned> hfEmIs;
852  vector<unsigned> hfHadIs;
853 
854 
855  for(unsigned iEle=0; iEle<elements.size(); iEle++) {
856  PFBlockElement::Type type = elements[iEle].type();
857 
858  if(debug_ && type != PFBlockElement::BREM ) cout<<endl<<elements[iEle];
859 
860  switch( type ) {
861  case PFBlockElement::TRACK:
862  if ( active[iEle] ) {
863  trackIs.push_back( iEle );
864  if(debug_) cout<<"TRACK, stored index, continue"<<endl;
865  }
866  break;
867  case PFBlockElement::ECAL:
868  if ( active[iEle] ) {
869  ecalIs.push_back( iEle );
870  if(debug_) cout<<"ECAL, stored index, continue"<<endl;
871  }
872  continue;
874  if ( active[iEle] ) {
875  hcalIs.push_back( iEle );
876  if(debug_) cout<<"HCAL, stored index, continue"<<endl;
877  }
878  continue;
879  case PFBlockElement::HO:
880  if (useHO_) {
881  if ( active[iEle] ) {
882  hoIs.push_back( iEle );
883  if(debug_) cout<<"HO, stored index, continue"<<endl;
884  }
885  }
886  continue;
887  case PFBlockElement::HFEM:
888  if ( active[iEle] ) {
889  hfEmIs.push_back( iEle );
890  if(debug_) cout<<"HFEM, stored index, continue"<<endl;
891  }
892  continue;
893  case PFBlockElement::HFHAD:
894  if ( active[iEle] ) {
895  hfHadIs.push_back( iEle );
896  if(debug_) cout<<"HFHAD, stored index, continue"<<endl;
897  }
898  continue;
899  default:
900  continue;
901  }
902 
903  // we're now dealing with a track
904  unsigned iTrack = iEle;
905  reco::MuonRef muonRef = elements[iTrack].muonRef();
906 
907  //Check if the track is a primary track of a secondary interaction
908  //If that is the case reconstruct a charged hadron noly using that
909  //track
910  if (active[iTrack] && isFromSecInt(elements[iEle], "primary")){
911  bool isPrimaryTrack = elements[iEle].displacedVertexRef(PFBlockElement::T_TO_DISP)->displacedVertexRef()->isTherePrimaryTracks();
912  if (isPrimaryTrack) {
913  if (debug_) cout << "Primary Track reconstructed alone" << endl;
914 
915  unsigned tmpi = reconstructTrack(elements[iEle]);
916  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEle );
917  active[iTrack] = false;
918  }
919  }
920 
921 
922  if(debug_) {
923  if ( !active[iTrack] )
924  cout << "Already used by electrons, muons, conversions" << endl;
925  }
926 
927  // Track already used as electron, muon, conversion?
928  // Added a check on the activated element
929  if ( ! active[iTrack] ) continue;
930 
931  reco::TrackRef trackRef = elements[iTrack].trackRef();
932  assert( !trackRef.isNull() );
933 
934  if (debug_ ) {
935  cout <<"PFAlgo:processBlock "<<" "<<trackIs.size()<<" "<<ecalIs.size()<<" "<<hcalIs.size()<<" "<<hoIs.size()<<endl;
936  }
937 
938  // look for associated elements of all types
939  //COLINFEB16
940  // all types of links are considered.
941  // the elements are sorted by increasing distance
942  std::multimap<double, unsigned> ecalElems;
943  block.associatedElements( iTrack, linkData,
944  ecalElems ,
947 
948  std::multimap<double, unsigned> hcalElems;
949  block.associatedElements( iTrack, linkData,
950  hcalElems,
953 
954  // When a track has no HCAL cluster linked, but another track is linked to the same
955  // ECAL cluster and an HCAL cluster, link the track to the HCAL cluster for
956  // later analysis
957  if ( hcalElems.empty() && !ecalElems.empty() ) {
958  // debug_ = true;
959  unsigned ntt = 1;
960  unsigned index = ecalElems.begin()->second;
961  std::multimap<double, unsigned> sortedTracks;
962  block.associatedElements( index, linkData,
963  sortedTracks,
966  // std::cout << "The ECAL is linked to " << sortedTracks.size() << std::endl;
967 
968  // Loop over all tracks
969  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
970  unsigned jTrack = ie->second;
971  // std::cout << "Track " << jTrack << std::endl;
972  // Track must be active
973  if ( !active[jTrack] ) continue;
974  //std::cout << "Active " << std::endl;
975 
976  // The loop is on the other tracks !
977  if ( jTrack == iTrack ) continue;
978  //std::cout << "A different track ! " << std::endl;
979 
980  // Check if the ECAL closest to this track is the current ECAL
981  // Otherwise ignore this track in the neutral energy determination
982  std::multimap<double, unsigned> sortedECAL;
983  block.associatedElements( jTrack, linkData,
984  sortedECAL,
987  if ( sortedECAL.begin()->second != index ) continue;
988  //std::cout << "With closest ECAL identical " << std::endl;
989 
990 
991  // Check if this track is also linked to an HCAL
992  std::multimap<double, unsigned> sortedHCAL;
993  block.associatedElements( jTrack, linkData,
994  sortedHCAL,
997  if ( sortedHCAL.empty() ) continue;
998  //std::cout << "With an HCAL cluster " << sortedHCAL.begin()->first << std::endl;
999  ntt++;
1000 
1001  // In that case establish a link with the first track
1002  block.setLink( iTrack,
1003  sortedHCAL.begin()->second,
1004  sortedECAL.begin()->first,
1005  linkData,
1006  PFBlock::LINKTEST_RECHIT );
1007 
1008  } // End other tracks
1009 
1010  // Redefine HCAL elements
1011  block.associatedElements( iTrack, linkData,
1012  hcalElems,
1015 
1016  if ( debug_ && !hcalElems.empty() )
1017  std::cout << "Track linked back to HCAL due to ECAL sharing with other tracks" << std::endl;
1018  }
1019 
1020  //MICHELE
1021  //TEMPORARY SOLUTION FOR ELECTRON REJECTION IN PFTAU
1022  //COLINFEB16
1023  // in case particle flow electrons are not reconstructed,
1024  // the mva_e_pi of the charged hadron will be set to 1
1025  // if a GSF element is associated to the current TRACK element
1026  // This information will be used in the electron rejection for tau ID.
1027  std::multimap<double,unsigned> gsfElems;
1028  if (usePFElectrons_ == false) {
1029  block.associatedElements( iTrack, linkData,
1030  gsfElems ,
1032  }
1033  //
1034 
1035  if(hcalElems.empty() && debug_) {
1036  cout<<"no hcal element connected to track "<<iTrack<<endl;
1037  }
1038 
1039  // will now loop on associated elements ...
1040  // typedef std::multimap<double, unsigned>::iterator IE;
1041 
1042  bool hcalFound = false;
1043 
1044  if(debug_)
1045  cout<<"now looping on elements associated to the track"<<endl;
1046 
1047  // ... first on associated ECAL elements
1048  // Check if there is still a free ECAL for this track
1049  for(IE ie = ecalElems.begin(); ie != ecalElems.end(); ++ie ) {
1050 
1051  unsigned index = ie->second;
1052  // Sanity checks and optional printout
1053  PFBlockElement::Type type = elements[index].type();
1054  if(debug_) {
1055  double dist = ie->first;
1056  cout<<"\telement "<<elements[index]<<" linked with distance = "<< dist <<endl;
1057  if ( ! active[index] ) cout << "This ECAL is already used - skip it" << endl;
1058  }
1059  assert( type == PFBlockElement::ECAL );
1060 
1061  // This ECAL is not free (taken by an electron?) - just skip it
1062  if ( ! active[index] ) continue;
1063 
1064  // Flag ECAL clusters for which the corresponding track is not linked to an HCAL cluster
1065 
1066  //reco::PFClusterRef clusterRef = elements[index].clusterRef();
1067  //assert( !clusterRef.isNull() );
1068  if( !hcalElems.empty() && debug_)
1069  cout<<"\t\tat least one hcal element connected to the track."
1070  <<" Sparing Ecal cluster for the hcal loop"<<endl;
1071 
1072  } //loop print ecal elements
1073 
1074 
1075  // tracks which are not linked to an HCAL
1076  // are reconstructed now.
1077 
1078  if( hcalElems.empty() ) {
1079 
1080  if ( debug_ )
1081  std::cout << "Now deals with tracks linked to no HCAL clusters" << std::endl;
1082  // vector<unsigned> elementIndices;
1083  // elementIndices.push_back(iTrack);
1084 
1085  // The track momentum
1086  double trackMomentum = elements[iTrack].trackRef()->p();
1087  if ( debug_ )
1088  std::cout << elements[iTrack] << std::endl;
1089 
1090  // Is it a "tight" muon ? In that case assume no
1091  //Track momentum corresponds to the calorimeter
1092  //energy for now
1093  bool thisIsAMuon = PFMuonAlgo::isMuon(elements[iTrack]);
1094  if ( thisIsAMuon ) trackMomentum = 0.;
1095 
1096  // If it is not a muon check if Is it a fake track ?
1097  //Michalis: I wonder if we should convert this to dpt/pt?
1098  bool rejectFake = false;
1099  if ( !thisIsAMuon && elements[iTrack].trackRef()->ptError() > ptError_ ) {
1100 
1101  double deficit = trackMomentum;
1102  double resol = neutralHadronEnergyResolution(trackMomentum,
1103  elements[iTrack].trackRef()->eta());
1104  resol *= trackMomentum;
1105 
1106  if ( !ecalElems.empty() ) {
1107  unsigned thisEcal = ecalElems.begin()->second;
1108  reco::PFClusterRef clusterRef = elements[thisEcal].clusterRef();
1109  deficit -= clusterRef->energy();
1110  resol = neutralHadronEnergyResolution(trackMomentum,
1111  clusterRef->positionREP().Eta());
1112  resol *= trackMomentum;
1113  }
1114 
1115  bool isPrimary = isFromSecInt(elements[iTrack], "primary");
1116 
1117  if ( deficit > nSigmaTRACK_*resol && !isPrimary) {
1118  rejectFake = true;
1119  active[iTrack] = false;
1120  if ( debug_ )
1121  std::cout << elements[iTrack] << std::endl
1122  << "is probably a fake (1) --> lock the track"
1123  << std::endl;
1124  }
1125  }
1126 
1127  if ( rejectFake ) continue;
1128 
1129  // Create a track candidate
1130  // unsigned tmpi = reconstructTrack( elements[iTrack] );
1131  //active[iTrack] = false;
1132  std::vector<unsigned> tmpi;
1133  std::vector<unsigned> kTrack;
1134 
1135  // Some cleaning : secondary tracks without calo's and large momentum must be fake
1136  double Dpt = trackRef->ptError();
1137 
1138  if ( rejectTracks_Step45_ && ecalElems.empty() &&
1139  trackMomentum > 30. && Dpt > 0.5 &&
1140  ( PFTrackAlgoTools::step45(trackRef->algo())) ) {
1141 
1142  double dptRel = Dpt/trackRef->pt()*100;
1143  bool isPrimaryOrSecondary = isFromSecInt(elements[iTrack], "all");
1144 
1145  if ( isPrimaryOrSecondary && dptRel < dptRel_DispVtx_) continue;
1146  unsigned nHits = elements[iTrack].trackRef()->hitPattern().trackerLayersWithMeasurement();
1147  unsigned int NLostHit = trackRef->hitPattern().trackerLayersWithoutMeasurement(HitPattern::TRACK_HITS);
1148 
1149  if ( debug_ )
1150  std::cout << "A track (algo = " << trackRef->algo() << ") with momentum " << trackMomentum
1151  << " / " << elements[iTrack].trackRef()->pt() << " +/- " << Dpt
1152  << " / " << elements[iTrack].trackRef()->eta()
1153  << " without any link to ECAL/HCAL and with " << nHits << " (" << NLostHit
1154  << ") hits (lost hits) has been cleaned" << std::endl;
1155  active[iTrack] = false;
1156  continue;
1157  }
1158 
1159 
1160  tmpi.push_back(reconstructTrack( elements[iTrack]));
1161 
1162  kTrack.push_back(iTrack);
1163  active[iTrack] = false;
1164 
1165  // No ECAL cluster either ... continue...
1166  if ( ecalElems.empty() ) {
1167  (*pfCandidates_)[tmpi[0]].setEcalEnergy( 0., 0. );
1168  (*pfCandidates_)[tmpi[0]].setHcalEnergy( 0., 0. );
1169  (*pfCandidates_)[tmpi[0]].setHoEnergy( 0., 0. );
1170  (*pfCandidates_)[tmpi[0]].setPs1Energy( 0 );
1171  (*pfCandidates_)[tmpi[0]].setPs2Energy( 0 );
1172  (*pfCandidates_)[tmpi[0]].addElementInBlock( blockref, kTrack[0] );
1173  continue;
1174  }
1175 
1176  // Look for closest ECAL cluster
1177  unsigned thisEcal = ecalElems.begin()->second;
1178  reco::PFClusterRef clusterRef = elements[thisEcal].clusterRef();
1179  if ( debug_ ) std::cout << " is associated to " << elements[thisEcal] << std::endl;
1180 
1181 
1182  // Set ECAL energy for muons
1183  if ( thisIsAMuon ) {
1184  (*pfCandidates_)[tmpi[0]].setEcalEnergy( clusterRef->energy(),
1185  std::min(clusterRef->energy(), muonECAL_[0]) );
1186  (*pfCandidates_)[tmpi[0]].setHcalEnergy( 0., 0. );
1187  (*pfCandidates_)[tmpi[0]].setHoEnergy( 0., 0. );
1188  (*pfCandidates_)[tmpi[0]].setPs1Energy( 0 );
1189  (*pfCandidates_)[tmpi[0]].setPs2Energy( 0 );
1190  (*pfCandidates_)[tmpi[0]].addElementInBlock( blockref, kTrack[0] );
1191  }
1192 
1193  double slopeEcal = 1.;
1194  bool connectedToEcal = false;
1195  unsigned iEcal = 99999;
1196  double calibEcal = 0.;
1197  double calibHcal = 0.;
1198  double totalEcal = thisIsAMuon ? -muonECAL_[0] : 0.;
1199 
1200  // Consider charged particles closest to the same ECAL cluster
1201  std::multimap<double, unsigned> sortedTracks;
1202  block.associatedElements( thisEcal, linkData,
1203  sortedTracks,
1206 
1207  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
1208  unsigned jTrack = ie->second;
1209 
1210  // Don't consider already used tracks
1211  if ( !active[jTrack] ) continue;
1212 
1213  // The loop is on the other tracks !
1214  if ( jTrack == iTrack ) continue;
1215 
1216  // Check if the ECAL cluster closest to this track is
1217  // indeed the current ECAL cluster. Only tracks not
1218  // linked to an HCAL cluster are considered here
1219  std::multimap<double, unsigned> sortedECAL;
1220  block.associatedElements( jTrack, linkData,
1221  sortedECAL,
1224  if ( sortedECAL.begin()->second != thisEcal ) continue;
1225 
1226  // Check if this track is a muon
1227  bool thatIsAMuon = PFMuonAlgo::isMuon(elements[jTrack]);
1228 
1229 
1230  // Check if this track is not a fake
1231  bool rejectFake = false;
1232  reco::TrackRef trackRef = elements[jTrack].trackRef();
1233  if ( !thatIsAMuon && trackRef->ptError() > ptError_) {
1234  double deficit = trackMomentum + trackRef->p() - clusterRef->energy();
1235  double resol = nSigmaTRACK_*neutralHadronEnergyResolution(trackMomentum+trackRef->p(),
1236  clusterRef->positionREP().Eta());
1237  resol *= (trackMomentum+trackRef->p());
1238  if ( deficit > nSigmaTRACK_*resol ) {
1239  rejectFake = true;
1240  kTrack.push_back(jTrack);
1241  active[jTrack] = false;
1242  if ( debug_ )
1243  std::cout << elements[jTrack] << std::endl
1244  << "is probably a fake (2) --> lock the track"
1245  << std::endl;
1246  }
1247  }
1248  if ( rejectFake ) continue;
1249 
1250 
1251  // Otherwise, add this track momentum to the total track momentum
1252  /* */
1253  // reco::TrackRef trackRef = elements[jTrack].trackRef();
1254  if ( !thatIsAMuon ) {
1255  if ( debug_ )
1256  std::cout << "Track momentum increased from " << trackMomentum << " GeV ";
1257  trackMomentum += trackRef->p();
1258  if ( debug_ ) {
1259  std::cout << "to " << trackMomentum << " GeV." << std::endl;
1260  std::cout << "with " << elements[jTrack] << std::endl;
1261  }
1262  } else {
1263  totalEcal -= muonECAL_[0];
1264  totalEcal = std::max(totalEcal, 0.);
1265  }
1266 
1267  // And create a charged particle candidate !
1268 
1269  tmpi.push_back(reconstructTrack( elements[jTrack] ));
1270 
1271 
1272  kTrack.push_back(jTrack);
1273  active[jTrack] = false;
1274 
1275  if ( thatIsAMuon ) {
1276  (*pfCandidates_)[tmpi.back()].setEcalEnergy(clusterRef->energy(),
1277  std::min(clusterRef->energy(),muonECAL_[0]));
1278  (*pfCandidates_)[tmpi.back()].setHcalEnergy( 0., 0. );
1279  (*pfCandidates_)[tmpi.back()].setHoEnergy( 0., 0. );
1280  (*pfCandidates_)[tmpi.back()].setPs1Energy( 0 );
1281  (*pfCandidates_)[tmpi.back()].setPs2Energy( 0 );
1282  (*pfCandidates_)[tmpi.back()].addElementInBlock( blockref, kTrack.back() );
1283  }
1284  }
1285 
1286 
1287  if ( debug_ ) std::cout << "Loop over all associated ECAL clusters" << std::endl;
1288  // Loop over all ECAL linked clusters ordered by increasing distance.
1289  for(IE ie = ecalElems.begin(); ie != ecalElems.end(); ++ie ) {
1290 
1291  unsigned index = ie->second;
1292  PFBlockElement::Type type = elements[index].type();
1293  assert( type == PFBlockElement::ECAL );
1294  if ( debug_ ) std::cout << elements[index] << std::endl;
1295 
1296  // Just skip clusters already taken
1297  if ( debug_ && ! active[index] ) std::cout << "is not active - ignore " << std::endl;
1298  if ( ! active[index] ) continue;
1299 
1300  // Just skip this cluster if it's closer to another track
1301  /* */
1302  block.associatedElements( index, linkData,
1303  sortedTracks,
1306  bool skip = true;
1307  for (unsigned ic=0; ic<kTrack.size();++ic) {
1308  if ( sortedTracks.begin()->second == kTrack[ic] ) {
1309  skip = false;
1310  break;
1311  }
1312  }
1313  if ( debug_ && skip ) std::cout << "is closer to another track - ignore " << std::endl;
1314  if ( skip ) continue;
1315  /* */
1316 
1317  // The corresponding PFCluster and energy
1318  reco::PFClusterRef clusterRef = elements[index].clusterRef();
1319  assert( !clusterRef.isNull() );
1320 
1321  if ( debug_ ) {
1322  double dist = ie->first;
1323  std::cout <<"Ecal cluster with raw energy = " << clusterRef->energy()
1324  <<" linked with distance = " << dist << std::endl;
1325  }
1326  /*
1327  double dist = ie->first;
1328  if ( !connectedToEcal && dist > 0.1 ) {
1329  std::cout << "Warning - first ECAL cluster at a distance of " << dist << "from the closest track!" << std::endl;
1330  cout<<"\telement "<<elements[index]<<" linked with distance = "<< dist <<endl;
1331  cout<<"\telement "<<elements[iTrack]<<" linked with distance = "<< dist <<endl;
1332  }
1333  */
1334 
1335  // Check the presence of preshower clusters in the vicinity
1336  // Preshower cluster closer to another ECAL cluster are ignored.
1337  //JOSH: This should use the association map already produced by the cluster corrector for consistency,
1338  //but should be ok for now
1339  vector<double> ps1Ene(1,static_cast<double>(0.));
1340  associatePSClusters(index, reco::PFBlockElement::PS1, block, elements, linkData, active, ps1Ene);
1341  vector<double> ps2Ene(1,static_cast<double>(0.));
1342  associatePSClusters(index, reco::PFBlockElement::PS2, block, elements, linkData, active, ps2Ene);
1343 
1344  double ecalEnergy = clusterRef->correctedEnergy();
1345  if ( debug_ )
1346  std::cout << "Corrected ECAL(+PS) energy = " << ecalEnergy << std::endl;
1347 
1348  // Since the electrons were found beforehand, this track must be a hadron. Calibrate
1349  // the energy under the hadron hypothesis.
1350  totalEcal += ecalEnergy;
1351  double previousCalibEcal = calibEcal;
1352  double previousSlopeEcal = slopeEcal;
1353  calibEcal = std::max(totalEcal,0.);
1354  calibHcal = 0.;
1355  calibration_->energyEmHad(trackMomentum,calibEcal,calibHcal,
1356  clusterRef->positionREP().Eta(),
1357  clusterRef->positionREP().Phi());
1358  if ( totalEcal > 0.) slopeEcal = calibEcal/totalEcal;
1359 
1360  if ( debug_ )
1361  std::cout << "The total calibrated energy so far amounts to = " << calibEcal << std::endl;
1362 
1363 
1364  // Stop the loop when adding more ECAL clusters ruins the compatibility
1365  if ( connectedToEcal && calibEcal - trackMomentum >= 0. ) {
1366  // if ( connectedToEcal && calibEcal - trackMomentum >=
1367  // nSigmaECAL_*neutralHadronEnergyResolution(trackMomentum,clusterRef->positionREP().Eta()) ) {
1368  calibEcal = previousCalibEcal;
1369  slopeEcal = previousSlopeEcal;
1370  totalEcal = calibEcal/slopeEcal;
1371 
1372  // Turn this last cluster in a photon
1373  // (The PS clusters are already locked in "associatePSClusters")
1374  active[index] = false;
1375 
1376  // Find the associated tracks
1377  std::multimap<double, unsigned> assTracks;
1378  block.associatedElements( index, linkData,
1379  assTracks,
1382 
1383 
1384  unsigned tmpe = reconstructCluster( *clusterRef, ecalEnergy );
1385  (*pfCandidates_)[tmpe].setEcalEnergy( clusterRef->energy(), ecalEnergy );
1386  (*pfCandidates_)[tmpe].setHcalEnergy( 0., 0. );
1387  (*pfCandidates_)[tmpe].setHoEnergy( 0., 0. );
1388  (*pfCandidates_)[tmpe].setPs1Energy( ps1Ene[0] );
1389  (*pfCandidates_)[tmpe].setPs2Energy( ps2Ene[0] );
1390  (*pfCandidates_)[tmpe].addElementInBlock( blockref, index );
1391  // Check that there is at least one track
1392  if(!assTracks.empty()) {
1393  (*pfCandidates_)[tmpe].addElementInBlock( blockref, assTracks.begin()->second );
1394 
1395  // Assign the position of the track at the ECAL entrance
1396  const ::math::XYZPointF& chargedPosition =
1397  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[assTracks.begin()->second])->positionAtECALEntrance();
1398  (*pfCandidates_)[tmpe].setPositionAtECALEntrance(chargedPosition);
1399  }
1400  break;
1401  }
1402 
1403  // Lock used clusters.
1404  connectedToEcal = true;
1405  iEcal = index;
1406  active[index] = false;
1407  for (unsigned ic=0; ic<tmpi.size();++ic)
1408  (*pfCandidates_)[tmpi[ic]].addElementInBlock( blockref, iEcal );
1409 
1410 
1411  } // Loop ecal elements
1412 
1413  bool bNeutralProduced = false;
1414 
1415  // Create a photon if the ecal energy is too large
1416  if( connectedToEcal ) {
1417  reco::PFClusterRef pivotalRef = elements[iEcal].clusterRef();
1418 
1419  double neutralEnergy = calibEcal - trackMomentum;
1420 
1421  /*
1422  // Check if there are other tracks linked to that ECAL
1423  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end() && neutralEnergy > 0; ++ie ) {
1424  unsigned jTrack = ie->second;
1425 
1426  // The loop is on the other tracks !
1427  if ( jTrack == iTrack ) continue;
1428 
1429  // Check if the ECAL closest to this track is the current ECAL
1430  // Otherwise ignore this track in the neutral energy determination
1431  std::multimap<double, unsigned> sortedECAL;
1432  block.associatedElements( jTrack, linkData,
1433  sortedECAL,
1434  reco::PFBlockElement::ECAL,
1435  reco::PFBlock::LINKTEST_ALL );
1436  if ( sortedECAL.begin()->second != iEcal ) continue;
1437 
1438  // Check if this track is also linked to an HCAL
1439  // (in which case it goes to the next loop and is ignored here)
1440  std::multimap<double, unsigned> sortedHCAL;
1441  block.associatedElements( jTrack, linkData,
1442  sortedHCAL,
1443  reco::PFBlockElement::HCAL,
1444  reco::PFBlock::LINKTEST_ALL );
1445  if ( sortedHCAL.size() ) continue;
1446 
1447  // Otherwise, subtract this track momentum from the ECAL energy
1448  reco::TrackRef trackRef = elements[jTrack].trackRef();
1449  neutralEnergy -= trackRef->p();
1450 
1451  } // End other tracks
1452  */
1453 
1454  // Add a photon is the energy excess is large enough
1455  double resol = neutralHadronEnergyResolution(trackMomentum,pivotalRef->positionREP().Eta());
1456  resol *= trackMomentum;
1457  if ( neutralEnergy > std::max(0.5,nSigmaECAL_*resol) ) {
1458  neutralEnergy /= slopeEcal;
1459  unsigned tmpj = reconstructCluster( *pivotalRef, neutralEnergy );
1460  (*pfCandidates_)[tmpj].setEcalEnergy( pivotalRef->energy(), neutralEnergy );
1461  (*pfCandidates_)[tmpj].setHcalEnergy( 0., 0. );
1462  (*pfCandidates_)[tmpj].setHoEnergy( 0., 0. );
1463  (*pfCandidates_)[tmpj].setPs1Energy( 0. );
1464  (*pfCandidates_)[tmpj].setPs2Energy( 0. );
1465  (*pfCandidates_)[tmpj].addElementInBlock(blockref, iEcal);
1466  bNeutralProduced = true;
1467  for (unsigned ic=0; ic<kTrack.size();++ic)
1468  (*pfCandidates_)[tmpj].addElementInBlock( blockref, kTrack[ic] );
1469  } // End neutral energy
1470 
1471  // Set elements in blocks and ECAL energies to all tracks
1472  for (unsigned ic=0; ic<tmpi.size();++ic) {
1473 
1474  // Skip muons
1475  if ( (*pfCandidates_)[tmpi[ic]].particleId() == reco::PFCandidate::mu ) continue;
1476 
1477  double fraction = trackMomentum > 0 ? (*pfCandidates_)[tmpi[ic]].trackRef()->p()/trackMomentum : 0;
1478  double ecalCal = bNeutralProduced ?
1479  (calibEcal-neutralEnergy*slopeEcal)*fraction : calibEcal*fraction;
1480  double ecalRaw = totalEcal*fraction;
1481 
1482  if (debug_) cout << "The fraction after photon supression is " << fraction << " calibrated ecal = " << ecalCal << endl;
1483 
1484  (*pfCandidates_)[tmpi[ic]].setEcalEnergy( ecalRaw, ecalCal );
1485  (*pfCandidates_)[tmpi[ic]].setHcalEnergy( 0., 0. );
1486  (*pfCandidates_)[tmpi[ic]].setHoEnergy( 0., 0. );
1487  (*pfCandidates_)[tmpi[ic]].setPs1Energy( 0 );
1488  (*pfCandidates_)[tmpi[ic]].setPs2Energy( 0 );
1489  (*pfCandidates_)[tmpi[ic]].addElementInBlock( blockref, kTrack[ic] );
1490  }
1491 
1492  } // End connected ECAL
1493 
1494  // Fill the element_in_block for tracks that are eventually linked to no ECAL clusters at all.
1495  for (unsigned ic=0; ic<tmpi.size();++ic) {
1496  const PFCandidate& pfc = (*pfCandidates_)[tmpi[ic]];
1497  const PFCandidate::ElementsInBlocks& eleInBlocks = pfc.elementsInBlocks();
1498  if ( eleInBlocks.empty() ) {
1499  if ( debug_ )std::cout << "Single track / Fill element in block! " << std::endl;
1500  (*pfCandidates_)[tmpi[ic]].addElementInBlock( blockref, kTrack[ic] );
1501  }
1502  }
1503 
1504  }
1505 
1506 
1507  // In case several HCAL elements are linked to this track,
1508  // unlinking all of them except the closest.
1509  for(IE ie = hcalElems.begin(); ie != hcalElems.end(); ++ie ) {
1510 
1511  unsigned index = ie->second;
1512 
1513  PFBlockElement::Type type = elements[index].type();
1514 
1515  if(debug_) {
1516  double dist = block.dist(iTrack,index,linkData,reco::PFBlock::LINKTEST_ALL);
1517  cout<<"\telement "<<elements[index]<<" linked with distance "<< dist <<endl;
1518  }
1519 
1520  assert( type == PFBlockElement::HCAL );
1521 
1522  // all hcal clusters except the closest
1523  // will be unlinked from the track
1524  if( !hcalFound ) { // closest hcal
1525  if(debug_)
1526  cout<<"\t\tclosest hcal cluster, doing nothing"<<endl;
1527 
1528  hcalFound = true;
1529 
1530  // active[index] = false;
1531  // hcalUsed.push_back( index );
1532  }
1533  else { // other associated hcal
1534  // unlink from the track
1535  if(debug_)
1536  cout<<"\t\tsecondary hcal cluster. unlinking"<<endl;
1537  block.setLink( iTrack, index, -1., linkData,
1538  PFBlock::LINKTEST_RECHIT );
1539  }
1540  } //loop hcal elements
1541  } // end of loop 1 on elements iEle of any type
1542 
1543 
1544 
1545  // deal with HF.
1546  if( !(hfEmIs.empty() && hfHadIs.empty() ) ) {
1547  // there is at least one HF element in this block.
1548  // so all elements must be HF.
1549  assert( hfEmIs.size() + hfHadIs.size() == elements.size() );
1550 
1551  if( elements.size() == 1 ) {
1552  //Auguste: HAD-only calibration here
1553  reco::PFClusterRef clusterRef = elements[0].clusterRef();
1554  double energyHF = 0.;
1555  double uncalibratedenergyHF = 0.;
1556  unsigned tmpi = 0;
1557  switch( clusterRef->layer() ) {
1558  case PFLayer::HF_EM:
1559  // do EM-only calibration here
1560  energyHF = clusterRef->energy();
1561  uncalibratedenergyHF = energyHF;
1562  if(thepfEnergyCalibrationHF_->getcalibHF_use()==true){
1563  energyHF = thepfEnergyCalibrationHF_->energyEm(uncalibratedenergyHF,
1564  clusterRef->positionREP().Eta(),
1565  clusterRef->positionREP().Phi());
1566  }
1567  tmpi = reconstructCluster( *clusterRef, energyHF );
1568  (*pfCandidates_)[tmpi].setEcalEnergy( uncalibratedenergyHF, energyHF );
1569  (*pfCandidates_)[tmpi].setHcalEnergy( 0., 0.);
1570  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0.);
1571  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
1572  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
1573  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfEmIs[0] );
1574  //std::cout << "HF EM alone ! " << energyHF << std::endl;
1575  break;
1576  case PFLayer::HF_HAD:
1577  // do HAD-only calibration here
1578  energyHF = clusterRef->energy();
1579  uncalibratedenergyHF = energyHF;
1580  if(thepfEnergyCalibrationHF_->getcalibHF_use()==true){
1581  energyHF = thepfEnergyCalibrationHF_->energyHad(uncalibratedenergyHF,
1582  clusterRef->positionREP().Eta(),
1583  clusterRef->positionREP().Phi());
1584  }
1585  tmpi = reconstructCluster( *clusterRef, energyHF );
1586  (*pfCandidates_)[tmpi].setHcalEnergy( uncalibratedenergyHF, energyHF );
1587  (*pfCandidates_)[tmpi].setEcalEnergy( 0., 0.);
1588  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0.);
1589  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
1590  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
1591  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfHadIs[0] );
1592  //std::cout << "HF Had alone ! " << energyHF << std::endl;
1593  break;
1594  default:
1595  assert(0);
1596  }
1597  }
1598  else if( elements.size() == 2 ) {
1599  //Auguste: EM + HAD calibration here
1600  reco::PFClusterRef c0 = elements[0].clusterRef();
1601  reco::PFClusterRef c1 = elements[1].clusterRef();
1602  // 2 HF elements. Must be in each layer.
1603  reco::PFClusterRef cem = ( c0->layer() == PFLayer::HF_EM ? c0 : c1 );
1604  reco::PFClusterRef chad = ( c1->layer() == PFLayer::HF_HAD ? c1 : c0 );
1605 
1606  if( cem->layer() != PFLayer::HF_EM || chad->layer() != PFLayer::HF_HAD ) {
1607  cerr<<"Error: 2 elements, but not 1 HFEM and 1 HFHAD"<<endl;
1608  cerr<<block<<endl;
1609  assert(0);
1610 // assert( c1->layer()== PFLayer::HF_EM &&
1611 // c0->layer()== PFLayer::HF_HAD );
1612  }
1613  // do EM+HAD calibration here
1614  double energyHfEm = cem->energy();
1615  double energyHfHad = chad->energy();
1616  double uncalibratedenergyHFEm = energyHfEm;
1617  double uncalibratedenergyHFHad = energyHfHad;
1618  if(thepfEnergyCalibrationHF_->getcalibHF_use()==true){
1619 
1620  energyHfEm = thepfEnergyCalibrationHF_->energyEmHad(uncalibratedenergyHFEm,
1621  0.0,
1622  c0->positionREP().Eta(),
1623  c0->positionREP().Phi());
1624  energyHfHad = thepfEnergyCalibrationHF_->energyEmHad(0.0,
1625  uncalibratedenergyHFHad,
1626  c1->positionREP().Eta(),
1627  c1->positionREP().Phi());
1628  }
1629  unsigned tmpi = reconstructCluster( *chad, energyHfEm+energyHfHad );
1630  (*pfCandidates_)[tmpi].setEcalEnergy( uncalibratedenergyHFEm, energyHfEm );
1631  (*pfCandidates_)[tmpi].setHcalEnergy( uncalibratedenergyHFHad, energyHfHad);
1632  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0.);
1633  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
1634  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
1635  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfEmIs[0] );
1636  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfHadIs[0] );
1637  //std::cout << "HF EM+HAD found ! " << energyHfEm << " " << energyHfHad << std::endl;
1638  }
1639  else {
1640  // 1 HF element in the block,
1641  // but number of elements not equal to 1 or 2
1642  cerr<<"Warning: HF, but n elem different from 1 or 2"<<endl;
1643  cerr<<block<<endl;
1644 // assert(0);
1645 // cerr<<"not ready for navigation in the HF!"<<endl;
1646  }
1647  }
1648 
1649 
1650 
1651  if(debug_) {
1652  cout<<endl;
1653  cout<<endl<<"--------------- loop hcal ---------------------"<<endl;
1654  }
1655 
1656  // track information:
1657  // trackRef
1658  // ecal energy
1659  // hcal energy
1660  // rescale
1661 
1662  for(unsigned i=0; i<hcalIs.size(); i++) {
1663 
1664  unsigned iHcal= hcalIs[i];
1665  PFBlockElement::Type type = elements[iHcal].type();
1666 
1667  assert( type == PFBlockElement::HCAL );
1668 
1669  if(debug_) cout<<endl<<elements[iHcal]<<endl;
1670 
1671  // vector<unsigned> elementIndices;
1672  // elementIndices.push_back(iHcal);
1673 
1674  // associated tracks
1675  std::multimap<double, unsigned> sortedTracks;
1676  block.associatedElements( iHcal, linkData,
1677  sortedTracks,
1680 
1681  std::multimap< unsigned, std::pair<double, unsigned> > associatedEcals;
1682 
1683  std::map< unsigned, std::pair<double, double> > associatedPSs;
1684 
1685  std::multimap<double, std::pair<unsigned,bool> > associatedTracks;
1686 
1687  // A temporary maps for ECAL satellite clusters
1688  std::multimap<double,std::pair<unsigned,::math::XYZVector> > ecalSatellites;
1689  std::pair<unsigned,::math::XYZVector> fakeSatellite = make_pair(iHcal,::math::XYZVector(0.,0.,0.));
1690  ecalSatellites.insert( make_pair(-1., fakeSatellite) );
1691 
1692  std::multimap< unsigned, std::pair<double, unsigned> > associatedHOs;
1693 
1694  PFClusterRef hclusterref = elements[iHcal].clusterRef();
1695  assert(!hclusterref.isNull() );
1696 
1697 
1698  //if there is no track attached to that HCAL, then do not
1699  //reconstruct an HCAL alone, check if it can be recovered
1700  //first
1701 
1702  // if no associated tracks, create a neutral hadron
1703  //if(sortedTracks.empty() ) {
1704 
1705  if( sortedTracks.empty() ) {
1706  if(debug_)
1707  cout<<"\tno associated tracks, keep for later"<<endl;
1708  continue;
1709  }
1710 
1711  // Lock the HCAL cluster
1712  active[iHcal] = false;
1713 
1714 
1715  // in the following, tracks are associated to this hcal cluster.
1716  // will look for an excess of energy in the calorimeters w/r to
1717  // the charged energy, and turn this excess into a neutral hadron or
1718  // a photon.
1719 
1720  if(debug_) cout<<"\t"<<sortedTracks.size()<<" associated tracks:"<<endl;
1721 
1722  double totalChargedMomentum = 0;
1723  double sumpError2 = 0.;
1724  double totalHO = 0.;
1725  double totalEcal = 0.;
1726  double totalHcal = hclusterref->energy();
1727  vector<double> hcalP;
1728  vector<double> hcalDP;
1729  vector<unsigned> tkIs;
1730  double maxDPovP = -9999.;
1731 
1732  //Keep track of how much energy is assigned to calorimeter-vs-track energy/momentum excess
1733  vector< unsigned > chargedHadronsIndices;
1734  vector< unsigned > chargedHadronsInBlock;
1735  double mergedNeutralHadronEnergy = 0;
1736  double mergedPhotonEnergy = 0;
1737  double muonHCALEnergy = 0.;
1738  double muonECALEnergy = 0.;
1739  double muonHCALError = 0.;
1740  double muonECALError = 0.;
1741  unsigned nMuons = 0;
1742 
1743 
1744  ::math::XYZVector photonAtECAL(0.,0.,0.);
1745  std::vector<std::pair<unsigned,::math::XYZVector> > ecalClusters;
1746  double sumEcalClusters=0;
1747  ::math::XYZVector hadronDirection(hclusterref->position().X(),
1748  hclusterref->position().Y(),
1749  hclusterref->position().Z());
1750  hadronDirection = hadronDirection.Unit();
1751  ::math::XYZVector hadronAtECAL = totalHcal * hadronDirection;
1752 
1753  // Loop over all tracks associated to this HCAL cluster
1754  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
1755 
1756  unsigned iTrack = ie->second;
1757 
1758  // Check the track has not already been used (e.g., in electrons, conversions...)
1759  if ( !active[iTrack] ) continue;
1760  // Sanity check 1
1761  PFBlockElement::Type type = elements[iTrack].type();
1762  assert( type == reco::PFBlockElement::TRACK );
1763  // Sanity check 2
1764  reco::TrackRef trackRef = elements[iTrack].trackRef();
1765  assert( !trackRef.isNull() );
1766 
1767  // The direction at ECAL entrance
1768  const ::math::XYZPointF& chargedPosition =
1769  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[iTrack])->positionAtECALEntrance();
1770  ::math::XYZVector chargedDirection(chargedPosition.X(),chargedPosition.Y(),chargedPosition.Z());
1771  chargedDirection = chargedDirection.Unit();
1772 
1773  // look for ECAL elements associated to iTrack (associated to iHcal)
1774  std::multimap<double, unsigned> sortedEcals;
1775  block.associatedElements( iTrack, linkData,
1776  sortedEcals,
1779 
1780  if(debug_) cout<<"\t\t\tnumber of Ecal elements linked to this track: "
1781  <<sortedEcals.size()<<endl;
1782 
1783  // look for HO elements associated to iTrack (associated to iHcal)
1784  std::multimap<double, unsigned> sortedHOs;
1785  if (useHO_) {
1786  block.associatedElements( iTrack, linkData,
1787  sortedHOs,
1790 
1791  }
1792  if(debug_)
1793  cout<<"PFAlgo : number of HO elements linked to this track: "
1794  <<sortedHOs.size()<<endl;
1795 
1796  // Create a PF Candidate right away if the track is a tight muon
1797  reco::MuonRef muonRef = elements[iTrack].muonRef();
1798 
1799 
1800  bool thisIsAMuon = PFMuonAlgo::isMuon(elements[iTrack]);
1801  bool thisIsAnIsolatedMuon = PFMuonAlgo::isIsolatedMuon(elements[iTrack]);
1802  bool thisIsALooseMuon = false;
1803 
1804 
1805  if(!thisIsAMuon ) {
1806  thisIsALooseMuon = PFMuonAlgo::isLooseMuon(elements[iTrack]);
1807  }
1808 
1809 
1810  if ( thisIsAMuon ) {
1811  if ( debug_ ) {
1812  std::cout << "\t\tThis track is identified as a muon - remove it from the stack" << std::endl;
1813  std::cout << "\t\t" << elements[iTrack] << std::endl;
1814  }
1815 
1816  // Create a muon.
1817 
1818  unsigned tmpi = reconstructTrack( elements[iTrack] );
1819 
1820 
1821  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
1822  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
1823  double muonHcal = std::min(muonHCAL_[0]+muonHCAL_[1],totalHcal);
1824 
1825  // if muon is isolated and muon momentum exceeds the calo energy, absorb the calo energy
1826  // rationale : there has been a EM showering by the muon in the calorimeter - or the coil -
1827  // and we don't want to double count the energy
1828  bool letMuonEatCaloEnergy = false;
1829 
1830  if(thisIsAnIsolatedMuon){
1831  // The factor 1.3 is the e/pi factor in HCAL...
1832  double totalCaloEnergy = totalHcal / 1.30;
1833  unsigned iEcal = 0;
1834  if( !sortedEcals.empty() ) {
1835  iEcal = sortedEcals.begin()->second;
1836  PFClusterRef eclusterref = elements[iEcal].clusterRef();
1837  totalCaloEnergy += eclusterref->energy();
1838  }
1839 
1840  if (useHO_) {
1841  // The factor 1.3 is assumed to be the e/pi factor in HO, too.
1842  unsigned iHO = 0;
1843  if( !sortedHOs.empty() ) {
1844  iHO = sortedHOs.begin()->second;
1845  PFClusterRef eclusterref = elements[iHO].clusterRef();
1846  totalCaloEnergy += eclusterref->energy() / 1.30;
1847  }
1848  }
1849 
1850  // std::cout << "muon p / total calo = " << muonRef->p() << " " << (pfCandidates_->back()).p() << " " << totalCaloEnergy << std::endl;
1851  //if(muonRef->p() > totalCaloEnergy ) letMuonEatCaloEnergy = true;
1852  if( (pfCandidates_->back()).p() > totalCaloEnergy ) letMuonEatCaloEnergy = true;
1853  }
1854 
1855  if(letMuonEatCaloEnergy) muonHcal = totalHcal;
1856  double muonEcal =0.;
1857  unsigned iEcal = 0;
1858  if( !sortedEcals.empty() ) {
1859  iEcal = sortedEcals.begin()->second;
1860  PFClusterRef eclusterref = elements[iEcal].clusterRef();
1861  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal);
1862  muonEcal = std::min(muonECAL_[0]+muonECAL_[1],eclusterref->energy());
1863  if(letMuonEatCaloEnergy) muonEcal = eclusterref->energy();
1864  // If the muon expected energy accounts for the whole ecal cluster energy, lock the ecal cluster
1865  if ( eclusterref->energy() - muonEcal < 0.2 ) active[iEcal] = false;
1866  (*pfCandidates_)[tmpi].setEcalEnergy(eclusterref->energy(), muonEcal);
1867  }
1868  unsigned iHO = 0;
1869  double muonHO =0.;
1870  if (useHO_) {
1871  if( !sortedHOs.empty() ) {
1872  iHO = sortedHOs.begin()->second;
1873  PFClusterRef hoclusterref = elements[iHO].clusterRef();
1874  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHO);
1875  muonHO = std::min(muonHO_[0]+muonHO_[1],hoclusterref->energy());
1876  if(letMuonEatCaloEnergy) muonHO = hoclusterref->energy();
1877  // If the muon expected energy accounts for the whole HO cluster energy, lock the HO cluster
1878  if ( hoclusterref->energy() - muonHO < 0.2 ) active[iHO] = false;
1879  (*pfCandidates_)[tmpi].setHcalEnergy(totalHcal, muonHcal);
1880  (*pfCandidates_)[tmpi].setHoEnergy(hoclusterref->energy(), muonHO);
1881  }
1882  } else {
1883  (*pfCandidates_)[tmpi].setHcalEnergy(totalHcal, muonHcal);
1884  }
1885 
1886  if(letMuonEatCaloEnergy){
1887  muonHCALEnergy += totalHcal;
1888  if (useHO_) muonHCALEnergy +=muonHO;
1889  muonHCALError += 0.;
1890  muonECALEnergy += muonEcal;
1891  muonECALError += 0.;
1892  photonAtECAL -= muonEcal*chargedDirection;
1893  hadronAtECAL -= totalHcal*chargedDirection;
1894  if ( !sortedEcals.empty() ) active[iEcal] = false;
1895  active[iHcal] = false;
1896  if (useHO_ && !sortedHOs.empty() ) active[iHO] = false;
1897  }
1898  else{
1899  // Estimate of the energy deposit & resolution in the calorimeters
1900  muonHCALEnergy += muonHCAL_[0];
1901  muonHCALError += muonHCAL_[1]*muonHCAL_[1];
1902  if ( muonHO > 0. ) {
1903  muonHCALEnergy += muonHO_[0];
1904  muonHCALError += muonHO_[1]*muonHO_[1];
1905  }
1906  muonECALEnergy += muonECAL_[0];
1907  muonECALError += muonECAL_[1]*muonECAL_[1];
1908  // ... as well as the equivalent "momentum" at ECAL entrance
1909  photonAtECAL -= muonECAL_[0]*chargedDirection;
1910  hadronAtECAL -= muonHCAL_[0]*chargedDirection;
1911  }
1912 
1913  // Remove it from the stack
1914  active[iTrack] = false;
1915  // Go to next track
1916  continue;
1917  }
1918 
1919  //
1920 
1921  if(debug_) cout<<"\t\t"<<elements[iTrack]<<endl;
1922 
1923  // introduce tracking errors
1924  double trackMomentum = trackRef->p();
1925  totalChargedMomentum += trackMomentum;
1926 
1927  // If the track is not a tight muon, but still resembles a muon
1928  // keep it for later for blocks with too large a charged energy
1929  if ( thisIsALooseMuon && !thisIsAMuon ) nMuons += 1;
1930 
1931  // ... and keep anyway the pt error for possible fake rejection
1932  // ... blow up errors of 5th anf 4th iteration, to reject those
1933  // ... tracks first (in case it's needed)
1934  double Dpt = trackRef->ptError();
1935  double blowError = PFTrackAlgoTools::errorScale(trackRef->algo(),factors45_);
1936  // except if it is from an interaction
1937  bool isPrimaryOrSecondary = isFromSecInt(elements[iTrack], "all");
1938 
1939  if ( isPrimaryOrSecondary ) blowError = 1.;
1940 
1941  std::pair<unsigned,bool> tkmuon = make_pair(iTrack,thisIsALooseMuon);
1942  associatedTracks.insert( make_pair(-Dpt*blowError, tkmuon) );
1943 
1944  // Also keep the total track momentum error for comparison with the calo energy
1945  double Dp = trackRef->qoverpError()*trackMomentum*trackMomentum;
1946  sumpError2 += Dp*Dp;
1947 
1948  bool connectedToEcal = false; // Will become true if there is at least one ECAL cluster connected
1949  if( !sortedEcals.empty() )
1950  { // start case: at least one ecal element associated to iTrack
1951 
1952  // Loop over all connected ECAL clusters
1953  for ( IE iec=sortedEcals.begin();
1954  iec!=sortedEcals.end(); ++iec ) {
1955 
1956  unsigned iEcal = iec->second;
1957  double dist = iec->first;
1958 
1959  // Ignore ECAL cluters already used
1960  if( !active[iEcal] ) {
1961  if(debug_) cout<<"\t\tcluster locked"<<endl;
1962  continue;
1963  }
1964 
1965  // Sanity checks
1966  PFBlockElement::Type type = elements[ iEcal ].type();
1967  assert( type == PFBlockElement::ECAL );
1968  PFClusterRef eclusterref = elements[iEcal].clusterRef();
1969  assert(!eclusterref.isNull() );
1970 
1971  // Check if this ECAL is not closer to another track - ignore it in that case
1972  std::multimap<double, unsigned> sortedTracksEcal;
1973  block.associatedElements( iEcal, linkData,
1974  sortedTracksEcal,
1977  unsigned jTrack = sortedTracksEcal.begin()->second;
1978  if ( jTrack != iTrack ) continue;
1979 
1980  // double chi2Ecal = block.chi2(jTrack,iEcal,linkData,
1981  // reco::PFBlock::LINKTEST_ALL);
1982  double distEcal = block.dist(jTrack,iEcal,linkData,
1984 
1985  // totalEcal += eclusterref->energy();
1986  // float ecalEnergyUnCalibrated = eclusterref->energy();
1987  //std::cout << "Ecal Uncalibrated " << ecalEnergyUnCalibrated << std::endl;
1988 
1989  float ecalEnergyCalibrated = eclusterref->correctedEnergy();
1990  ::math::XYZVector photonDirection(eclusterref->position().X(),
1991  eclusterref->position().Y(),
1992  eclusterref->position().Z());
1993  photonDirection = photonDirection.Unit();
1994 
1995  if ( !connectedToEcal ) { // This is the closest ECAL cluster - will add its energy later
1996 
1997  if(debug_) cout<<"\t\t\tclosest: "
1998  <<elements[iEcal]<<endl;
1999 
2000  connectedToEcal = true;
2001  // PJ 1st-April-09 : To be done somewhere !!! (Had to comment it, but it is needed)
2002  // currentChargedHadron.addElementInBlock( blockref, iEcal );
2003 
2004  std::pair<unsigned,::math::XYZVector> satellite =
2005  make_pair(iEcal,ecalEnergyCalibrated*photonDirection);
2006  ecalSatellites.insert( make_pair(-1., satellite) );
2007 
2008  } else { // Keep satellite clusters for later
2009 
2010  std::pair<unsigned,::math::XYZVector> satellite =
2011  make_pair(iEcal,ecalEnergyCalibrated*photonDirection);
2012  ecalSatellites.insert( make_pair(dist, satellite) );
2013 
2014  }
2015 
2016  std::pair<double, unsigned> associatedEcal
2017  = make_pair( distEcal, iEcal );
2018  associatedEcals.insert( make_pair(iTrack, associatedEcal) );
2019 
2020  } // End loop ecal associated to iTrack
2021  } // end case: at least one ecal element associated to iTrack
2022 
2023  if( useHO_ && !sortedHOs.empty() )
2024  { // start case: at least one ho element associated to iTrack
2025 
2026  // Loop over all connected HO clusters
2027  for ( IE ieho=sortedHOs.begin(); ieho!=sortedHOs.end(); ++ieho ) {
2028 
2029  unsigned iHO = ieho->second;
2030  double distHO = ieho->first;
2031 
2032  // Ignore HO cluters already used
2033  if( !active[iHO] ) {
2034  if(debug_) cout<<"\t\tcluster locked"<<endl;
2035  continue;
2036  }
2037 
2038  // Sanity checks
2039  PFBlockElement::Type type = elements[ iHO ].type();
2040  assert( type == PFBlockElement::HO );
2041  PFClusterRef hoclusterref = elements[iHO].clusterRef();
2042  assert(!hoclusterref.isNull() );
2043 
2044  // Check if this HO is not closer to another track - ignore it in that case
2045  std::multimap<double, unsigned> sortedTracksHO;
2046  block.associatedElements( iHO, linkData,
2047  sortedTracksHO,
2050  unsigned jTrack = sortedTracksHO.begin()->second;
2051  if ( jTrack != iTrack ) continue;
2052 
2053  // double chi2HO = block.chi2(jTrack,iHO,linkData,
2054  // reco::PFBlock::LINKTEST_ALL);
2055  //double distHO = block.dist(jTrack,iHO,linkData,
2056  // reco::PFBlock::LINKTEST_ALL);
2057 
2058  // Increment the total energy by the energy of this HO cluster
2059  totalHO += hoclusterref->energy();
2060  active[iHO] = false;
2061  // Keep track for later reference in the PFCandidate.
2062  std::pair<double, unsigned> associatedHO
2063  = make_pair( distHO, iHO );
2064  associatedHOs.insert( make_pair(iTrack, associatedHO) );
2065 
2066  } // End loop ho associated to iTrack
2067  } // end case: at least one ho element associated to iTrack
2068 
2069 
2070  } // end loop on tracks associated to hcal element iHcal
2071 
2072  // Include totalHO in totalHCAL for the time being (it will be calibrated as HCAL energy)
2073  totalHcal += totalHO;
2074 
2075  // test compatibility between calo and tracker. //////////////
2076 
2077  double caloEnergy = 0.;
2078  double slopeEcal = 1.0;
2079  double calibEcal = 0.;
2080  double calibHcal = 0.;
2081  hadronDirection = hadronAtECAL.Unit();
2082 
2083  // Determine the expected calo resolution from the total charged momentum
2084  double Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2085  Caloresolution *= totalChargedMomentum;
2086  // Account for muons
2087  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2088  totalEcal -= std::min(totalEcal,muonECALEnergy);
2089  totalHcal -= std::min(totalHcal,muonHCALEnergy);
2090  if ( totalEcal < 1E-9 ) photonAtECAL = ::math::XYZVector(0.,0.,0.);
2091  if ( totalHcal < 1E-9 ) hadronAtECAL = ::math::XYZVector(0.,0.,0.);
2092 
2093  // Loop over all ECAL satellites, starting for the closest to the various tracks
2094  // and adding other satellites until saturation of the total track momentum
2095  // Note : for code simplicity, the first element of the loop is the HCAL cluster
2096  // with 0 energy in the ECAL
2097  for ( IS is = ecalSatellites.begin(); is != ecalSatellites.end(); ++is ) {
2098 
2099  // Add the energy of this ECAL cluster
2100  double previousCalibEcal = calibEcal;
2101  double previousCalibHcal = calibHcal;
2102  double previousCaloEnergy = caloEnergy;
2103  double previousSlopeEcal = slopeEcal;
2104  ::math::XYZVector previousHadronAtECAL = hadronAtECAL;
2105  //
2106  totalEcal += sqrt(is->second.second.Mag2());
2107  photonAtECAL += is->second.second;
2108  calibEcal = std::max(0.,totalEcal);
2109  calibHcal = std::max(0.,totalHcal);
2110  hadronAtECAL = calibHcal * hadronDirection;
2111  // Calibrate ECAL and HCAL energy under the hadron hypothesis.
2112  calibration_->energyEmHad(totalChargedMomentum,calibEcal,calibHcal,
2113  hclusterref->positionREP().Eta(),
2114  hclusterref->positionREP().Phi());
2115  caloEnergy = calibEcal+calibHcal;
2116  if ( totalEcal > 0.) slopeEcal = calibEcal/totalEcal;
2117 
2118  hadronAtECAL = calibHcal * hadronDirection;
2119 
2120  // Continue looping until all closest clusters are exhausted and as long as
2121  // the calorimetric energy does not saturate the total momentum.
2122  if ( is->first < 0. || caloEnergy - totalChargedMomentum <= 0. ) {
2123  if(debug_) cout<<"\t\t\tactive, adding "<<is->second.second
2124  <<" to ECAL energy, and locking"<<endl;
2125  active[is->second.first] = false;
2126  double clusterEnergy=sqrt(is->second.second.Mag2());
2127  if(clusterEnergy>50) {
2128  ecalClusters.push_back(is->second);
2129  sumEcalClusters+=clusterEnergy;
2130  }
2131  continue;
2132  }
2133 
2134  // Otherwise, do not consider the last cluster examined and exit.
2135  // active[is->second.first] = true;
2136  totalEcal -= sqrt(is->second.second.Mag2());
2137  photonAtECAL -= is->second.second;
2138  calibEcal = previousCalibEcal;
2139  calibHcal = previousCalibHcal;
2140  hadronAtECAL = previousHadronAtECAL;
2141  slopeEcal = previousSlopeEcal;
2142  caloEnergy = previousCaloEnergy;
2143 
2144  break;
2145 
2146  }
2147 
2148  // Sanity check !
2149  assert(caloEnergy>=0);
2150 
2151 
2152  // And now check for hadronic energy excess...
2153 
2154  //colin: resolution should be measured on the ecal+hcal case.
2155  // however, the result will be close.
2156  // double Caloresolution = neutralHadronEnergyResolution( caloEnergy );
2157  // Caloresolution *= caloEnergy;
2158  // PJ The resolution is on the expected charged calo energy !
2159  //double Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2160  //Caloresolution *= totalChargedMomentum;
2161  // that of the charged particles linked to the cluster!
2162 
2163  /* */
2165  if ( totalChargedMomentum - caloEnergy > nSigmaTRACK_*Caloresolution ) {
2166 
2167  /*
2168  cout<<"\tCompare Calo Energy to total charged momentum "<<endl;
2169  cout<<"\t\tsum p = "<<totalChargedMomentum<<" +- "<<sqrt(sumpError2)<<endl;
2170  cout<<"\t\tsum ecal = "<<totalEcal<<endl;
2171  cout<<"\t\tsum hcal = "<<totalHcal<<endl;
2172  cout<<"\t\t => Calo Energy = "<<caloEnergy<<" +- "<<Caloresolution<<endl;
2173  cout<<"\t\t => Calo Energy- total charged momentum = "
2174  <<caloEnergy-totalChargedMomentum<<" +- "<<TotalError<<endl;
2175  cout<<endl;
2176  cout << "\t\tNumber/momentum of muons found in the block : " << nMuons << std::endl;
2177  */
2178  // First consider loose muons
2179  if ( nMuons > 0 ) {
2180  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2181  unsigned iTrack = it->second.first;
2182  // Only active tracks
2183  if ( !active[iTrack] ) continue;
2184  // Only muons
2185  if ( !it->second.second ) continue;
2186 
2187  double trackMomentum = elements[it->second.first].trackRef()->p();
2188 
2189  // look for ECAL elements associated to iTrack (associated to iHcal)
2190  std::multimap<double, unsigned> sortedEcals;
2191  block.associatedElements( iTrack, linkData,
2192  sortedEcals,
2195  std::multimap<double, unsigned> sortedHOs;
2196  block.associatedElements( iTrack, linkData,
2197  sortedHOs,
2200 
2201  //Here allow for loose muons!
2202  unsigned tmpi = reconstructTrack( elements[iTrack],true);
2203 
2204  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
2205  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
2206  double muonHcal = std::min(muonHCAL_[0]+muonHCAL_[1],totalHcal-totalHO);
2207  double muonHO = 0.;
2208  (*pfCandidates_)[tmpi].setHcalEnergy(totalHcal,muonHcal);
2209  if( !sortedEcals.empty() ) {
2210  unsigned iEcal = sortedEcals.begin()->second;
2211  PFClusterRef eclusterref = elements[iEcal].clusterRef();
2212  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal);
2213  double muonEcal = std::min(muonECAL_[0]+muonECAL_[1],eclusterref->energy());
2214  (*pfCandidates_)[tmpi].setEcalEnergy(eclusterref->energy(),muonEcal);
2215  }
2216  if( useHO_ && !sortedHOs.empty() ) {
2217  unsigned iHO = sortedHOs.begin()->second;
2218  PFClusterRef hoclusterref = elements[iHO].clusterRef();
2219  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHO);
2220  muonHO = std::min(muonHO_[0]+muonHO_[1],hoclusterref->energy());
2221  (*pfCandidates_)[tmpi].setHcalEnergy(max(totalHcal-totalHO,0.0),muonHcal);
2222  (*pfCandidates_)[tmpi].setHoEnergy(hoclusterref->energy(),muonHO);
2223  }
2224  // Remove it from the block
2225  const ::math::XYZPointF& chargedPosition =
2226  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[it->second.first])->positionAtECALEntrance();
2227  ::math::XYZVector chargedDirection(chargedPosition.X(), chargedPosition.Y(), chargedPosition.Z());
2228  chargedDirection = chargedDirection.Unit();
2229  totalChargedMomentum -= trackMomentum;
2230  // Update the calo energies
2231  if ( totalEcal > 0. )
2232  calibEcal -= std::min(calibEcal,muonECAL_[0]*calibEcal/totalEcal);
2233  if ( totalHcal > 0. )
2234  calibHcal -= std::min(calibHcal,muonHCAL_[0]*calibHcal/totalHcal);
2235  totalEcal -= std::min(totalEcal,muonECAL_[0]);
2236  totalHcal -= std::min(totalHcal,muonHCAL_[0]);
2237  if ( totalEcal > muonECAL_[0] ) photonAtECAL -= muonECAL_[0] * chargedDirection;
2238  if ( totalHcal > muonHCAL_[0] ) hadronAtECAL -= muonHCAL_[0]*calibHcal/totalHcal * chargedDirection;
2239  caloEnergy = calibEcal+calibHcal;
2240  muonHCALEnergy += muonHCAL_[0];
2241  muonHCALError += muonHCAL_[1]*muonHCAL_[1];
2242  if ( muonHO > 0. ) {
2243  muonHCALEnergy += muonHO_[0];
2244  muonHCALError += muonHO_[1]*muonHO_[1];
2245  if ( totalHcal > 0. ) {
2246  calibHcal -= std::min(calibHcal,muonHO_[0]*calibHcal/totalHcal);
2247  totalHcal -= std::min(totalHcal,muonHO_[0]);
2248  }
2249  }
2250  muonECALEnergy += muonECAL_[0];
2251  muonECALError += muonECAL_[1]*muonECAL_[1];
2252  active[iTrack] = false;
2253  // Stop the loop whenever enough muons are removed
2254  //Commented out: Keep looking for muons since they often come in pairs -Matt
2255  //if ( totalChargedMomentum < caloEnergy ) break;
2256  }
2257  // New calo resolution.
2258  Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2259  Caloresolution *= totalChargedMomentum;
2260  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2261  }
2262  }
2263  /*
2264  if(debug_){
2265  cout<<"\tBefore Cleaning "<<endl;
2266  cout<<"\tCompare Calo Energy to total charged momentum "<<endl;
2267  cout<<"\t\tsum p = "<<totalChargedMomentum<<" +- "<<sqrt(sumpError2)<<endl;
2268  cout<<"\t\tsum ecal = "<<totalEcal<<endl;
2269  cout<<"\t\tsum hcal = "<<totalHcal<<endl;
2270  cout<<"\t\t => Calo Energy = "<<caloEnergy<<" +- "<<Caloresolution<<endl;
2271  cout<<"\t\t => Calo Energy- total charged momentum = "
2272  <<caloEnergy-totalChargedMomentum<<" +- "<<TotalError<<endl;
2273  cout<<endl;
2274  }
2275  */
2276 
2277  // Second consider bad tracks (if still needed after muon removal)
2278  unsigned corrTrack = 10000000;
2279  double corrFact = 1.;
2280 
2281  if (rejectTracks_Bad_ &&
2282  totalChargedMomentum - caloEnergy > nSigmaTRACK_*Caloresolution) {
2283 
2284  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2285  unsigned iTrack = it->second.first;
2286  // Only active tracks
2287  if ( !active[iTrack] ) continue;
2288  const reco::TrackRef& trackref = elements[it->second.first].trackRef();
2289 
2290  double dptRel = fabs(it->first)/trackref->pt()*100;
2291  bool isSecondary = isFromSecInt(elements[iTrack], "secondary");
2292  bool isPrimary = isFromSecInt(elements[iTrack], "primary");
2293 
2294  if ( isSecondary && dptRel < dptRel_DispVtx_ ) continue;
2295  // Consider only bad tracks
2296  if ( fabs(it->first) < ptError_ ) break;
2297  // What would become the block charged momentum if this track were removed
2298  double wouldBeTotalChargedMomentum =
2299  totalChargedMomentum - trackref->p();
2300  // Reject worst tracks, as long as the total charged momentum
2301  // is larger than the calo energy
2302 
2303  if ( wouldBeTotalChargedMomentum > caloEnergy ) {
2304 
2305  if (debug_ && isSecondary) {
2306  cout << "In bad track rejection step dptRel = " << dptRel << " dptRel_DispVtx_ = " << dptRel_DispVtx_ << endl;
2307  cout << "The calo energy would be still smaller even without this track but it is attached to a NI"<< endl;
2308  }
2309 
2310 
2311  if(isPrimary || (isSecondary && dptRel < dptRel_DispVtx_)) continue;
2312  active[iTrack] = false;
2313  totalChargedMomentum = wouldBeTotalChargedMomentum;
2314  if ( debug_ )
2315  std::cout << "\tElement " << elements[iTrack]
2316  << " rejected (Dpt = " << -it->first
2317  << " GeV/c, algo = " << trackref->algo() << ")" << std::endl;
2318  // Just rescale the nth worst track momentum to equalize the calo energy
2319  } else {
2320  if(isPrimary) break;
2321  corrTrack = iTrack;
2322  corrFact = (caloEnergy - wouldBeTotalChargedMomentum)/elements[it->second.first].trackRef()->p();
2323  if ( trackref->p()*corrFact < 0.05 ) {
2324  corrFact = 0.;
2325  active[iTrack] = false;
2326  }
2327  totalChargedMomentum -= trackref->p()*(1.-corrFact);
2328  if ( debug_ )
2329  std::cout << "\tElement " << elements[iTrack]
2330  << " (Dpt = " << -it->first
2331  << " GeV/c, algo = " << trackref->algo()
2332  << ") rescaled by " << corrFact
2333  << " Now the total charged momentum is " << totalChargedMomentum << endl;
2334  break;
2335  }
2336  }
2337  }
2338 
2339  // New determination of the calo and track resolution avec track deletion/rescaling.
2340  Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2341  Caloresolution *= totalChargedMomentum;
2342  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2343 
2344  // Check if the charged momentum is still very inconsistent with the calo measurement.
2345  // In this case, just drop all tracks from 4th and 5th iteration linked to this block
2346 
2347  if ( rejectTracks_Step45_ &&
2348  sortedTracks.size() > 1 &&
2349  totalChargedMomentum - caloEnergy > nSigmaTRACK_*Caloresolution ) {
2350  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2351  unsigned iTrack = it->second.first;
2352  reco::TrackRef trackref = elements[iTrack].trackRef();
2353  if ( !active[iTrack] ) continue;
2354 
2355  double dptRel = fabs(it->first)/trackref->pt()*100;
2356  bool isPrimaryOrSecondary = isFromSecInt(elements[iTrack], "all");
2357 
2358 
2359 
2360 
2361  if (isPrimaryOrSecondary && dptRel < dptRel_DispVtx_) continue;
2362 
2363  if (PFTrackAlgoTools::step5(trackref->algo())) {
2364  active[iTrack] = false;
2365  totalChargedMomentum -= trackref->p();
2366 
2367  if ( debug_ )
2368  std::cout << "\tElement " << elements[iTrack]
2369  << " rejected (Dpt = " << -it->first
2370  << " GeV/c, algo = " << trackref->algo() << ")" << std::endl;
2371 
2372  }
2373  }
2374 
2375  }
2376 
2377  // New determination of the calo and track resolution avec track deletion/rescaling.
2378  Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2379  Caloresolution *= totalChargedMomentum;
2380  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2381 
2382  // Make PF candidates with the remaining tracks in the block
2383  sumpError2 = 0.;
2384  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2385  unsigned iTrack = it->second.first;
2386  if ( !active[iTrack] ) continue;
2387  reco::TrackRef trackRef = elements[iTrack].trackRef();
2388  double trackMomentum = trackRef->p();
2389  double Dp = trackRef->qoverpError()*trackMomentum*trackMomentum;
2390  unsigned tmpi = reconstructTrack( elements[iTrack] );
2391 
2392 
2393  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
2394  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
2395  std::pair<II,II> myEcals = associatedEcals.equal_range(iTrack);
2396  for (II ii=myEcals.first; ii!=myEcals.second; ++ii ) {
2397  unsigned iEcal = ii->second.second;
2398  if ( active[iEcal] ) continue;
2399  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
2400  }
2401 
2402  if (useHO_) {
2403  std::pair<II,II> myHOs = associatedHOs.equal_range(iTrack);
2404  for (II ii=myHOs.first; ii!=myHOs.second; ++ii ) {
2405  unsigned iHO = ii->second.second;
2406  if ( active[iHO] ) continue;
2407  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHO );
2408  }
2409  }
2410 
2411  if ( iTrack == corrTrack ) {
2412  (*pfCandidates_)[tmpi].rescaleMomentum(corrFact);
2413  trackMomentum *= corrFact;
2414  }
2415  chargedHadronsIndices.push_back( tmpi );
2416  chargedHadronsInBlock.push_back( iTrack );
2417  active[iTrack] = false;
2418  hcalP.push_back(trackMomentum);
2419  hcalDP.push_back(Dp);
2420  if (Dp/trackMomentum > maxDPovP) maxDPovP = Dp/trackMomentum;
2421  sumpError2 += Dp*Dp;
2422  }
2423 
2424  // The total uncertainty of the difference Calo-Track
2425  double TotalError = sqrt(sumpError2 + Caloresolution*Caloresolution);
2426 
2427  if ( debug_ ) {
2428  cout<<"\tCompare Calo Energy to total charged momentum "<<endl;
2429  cout<<"\t\tsum p = "<<totalChargedMomentum<<" +- "<<sqrt(sumpError2)<<endl;
2430  cout<<"\t\tsum ecal = "<<totalEcal<<endl;
2431  cout<<"\t\tsum hcal = "<<totalHcal<<endl;
2432  cout<<"\t\t => Calo Energy = "<<caloEnergy<<" +- "<<Caloresolution<<endl;
2433  cout<<"\t\t => Calo Energy- total charged momentum = "
2434  <<caloEnergy-totalChargedMomentum<<" +- "<<TotalError<<endl;
2435  cout<<endl;
2436  }
2437 
2438  /* */
2439 
2441  double nsigma = nSigmaHCAL(totalChargedMomentum,hclusterref->positionREP().Eta());
2442  //double nsigma = nSigmaHCAL(caloEnergy,hclusterref->positionREP().Eta());
2443  if ( abs(totalChargedMomentum-caloEnergy)<nsigma*TotalError ) {
2444 
2445  // deposited caloEnergy compatible with total charged momentum
2446  // if tracking errors are large take weighted average
2447 
2448  if(debug_) {
2449  cout<<"\t\tcase 1: COMPATIBLE "
2450  <<"|Calo Energy- total charged momentum| = "
2451  <<abs(caloEnergy-totalChargedMomentum)
2452  <<" < "<<nsigma<<" x "<<TotalError<<endl;
2453  if (maxDPovP < 0.1 )
2454  cout<<"\t\t\tmax DP/P = "<< maxDPovP
2455  <<" less than 0.1: do nothing "<<endl;
2456  else
2457  cout<<"\t\t\tmax DP/P = "<< maxDPovP
2458  <<" > 0.1: take weighted averages "<<endl;
2459  }
2460 
2461  // if max DP/P < 10% do nothing
2462  if (maxDPovP > 0.1) {
2463 
2464  // for each track associated to hcal
2465  // int nrows = tkIs.size();
2466  int nrows = chargedHadronsIndices.size();
2467  TMatrixTSym<double> a (nrows);
2468  TVectorD b (nrows);
2469  TVectorD check(nrows);
2470  double sigma2E = Caloresolution*Caloresolution;
2471  for(int i=0; i<nrows; i++) {
2472  double sigma2i = hcalDP[i]*hcalDP[i];
2473  if (debug_){
2474  cout<<"\t\t\ttrack associated to hcal "<<i
2475  <<" P = "<<hcalP[i]<<" +- "
2476  <<hcalDP[i]<<endl;
2477  }
2478  a(i,i) = 1./sigma2i + 1./sigma2E;
2479  b(i) = hcalP[i]/sigma2i + caloEnergy/sigma2E;
2480  for(int j=0; j<nrows; j++) {
2481  if (i==j) continue;
2482  a(i,j) = 1./sigma2E;
2483  } // end loop on j
2484  } // end loop on i
2485 
2486  // solve ax = b
2487  //if (debug_){// debug1
2488  //cout<<" matrix a(i,j) "<<endl;
2489  //a.Print();
2490  //cout<<" vector b(i) "<<endl;
2491  //b.Print();
2492  //} // debug1
2493  TDecompChol decomp(a);
2494  bool ok = false;
2495  TVectorD x = decomp.Solve(b, ok);
2496  // for each track create a PFCandidate track
2497  // with a momentum rescaled to weighted average
2498  if (ok) {
2499  for (int i=0; i<nrows; i++){
2500  // unsigned iTrack = trackInfos[i].index;
2501  unsigned ich = chargedHadronsIndices[i];
2502  double rescaleFactor = x(i)/hcalP[i];
2503  (*pfCandidates_)[ich].rescaleMomentum( rescaleFactor );
2504 
2505  if(debug_){
2506  cout<<"\t\t\told p "<<hcalP[i]
2507  <<" new p "<<x(i)
2508  <<" rescale "<<rescaleFactor<<endl;
2509  }
2510  }
2511  }
2512  else {
2513  cerr<<"not ok!"<<endl;
2514  assert(0);
2515  }
2516  }
2517  }
2518 
2520  else if( caloEnergy > totalChargedMomentum ) {
2521 
2522  //case 2: caloEnergy > totalChargedMomentum + nsigma*TotalError
2523  //there is an excess of energy in the calos
2524  //create a neutral hadron or a photon
2525 
2526  /*
2527  //If it's isolated don't create neutrals since the energy deposit is always coming from a showering muon
2528  bool thisIsAnIsolatedMuon = false;
2529  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
2530  unsigned iTrack = ie->second;
2531  if(PFMuonAlgo::isIsolatedMuon(elements[iTrack].muonRef())) thisIsAnIsolatedMuon = true;
2532  }
2533 
2534  if(thisIsAnIsolatedMuon){
2535  if(debug_)cout<<" Not looking for neutral b/c this is an isolated muon "<<endl;
2536  break;
2537  }
2538  */
2539  double eNeutralHadron = caloEnergy - totalChargedMomentum;
2540  double ePhoton = (caloEnergy - totalChargedMomentum) / slopeEcal;
2541 
2542  if(debug_) {
2543  if(!sortedTracks.empty() ){
2544  cout<<"\t\tcase 2: NEUTRAL DETECTION "
2545  <<caloEnergy<<" > "<<nsigma<<"x"<<TotalError
2546  <<" + "<<totalChargedMomentum<<endl;
2547  cout<<"\t\tneutral activity detected: "<<endl
2548  <<"\t\t\t photon = "<<ePhoton<<endl
2549  <<"\t\t\tor neutral hadron = "<<eNeutralHadron<<endl;
2550 
2551  cout<<"\t\tphoton or hadron ?"<<endl;}
2552 
2553  if(sortedTracks.empty() )
2554  cout<<"\t\tno track -> hadron "<<endl;
2555  else
2556  cout<<"\t\t"<<sortedTracks.size()
2557  <<"tracks -> check if the excess is photonic or hadronic"<<endl;
2558  }
2559 
2560 
2561  double ratioMax = 0.;
2562  reco::PFClusterRef maxEcalRef;
2563  unsigned maxiEcal= 9999;
2564 
2565  // for each track associated to hcal: iterator IE ie :
2566 
2567  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
2568 
2569  unsigned iTrack = ie->second;
2570 
2571  PFBlockElement::Type type = elements[iTrack].type();
2572  assert( type == reco::PFBlockElement::TRACK );
2573 
2574  reco::TrackRef trackRef = elements[iTrack].trackRef();
2575  assert( !trackRef.isNull() );
2576 
2577  II iae = associatedEcals.find(iTrack);
2578 
2579  if( iae == associatedEcals.end() ) continue;
2580 
2581  // double distECAL = iae->second.first;
2582  unsigned iEcal = iae->second.second;
2583 
2584  PFBlockElement::Type typeEcal = elements[iEcal].type();
2585  assert(typeEcal == reco::PFBlockElement::ECAL);
2586 
2587  reco::PFClusterRef clusterRef = elements[iEcal].clusterRef();
2588  assert( !clusterRef.isNull() );
2589 
2590  double pTrack = trackRef->p();
2591  double eECAL = clusterRef->energy();
2592  double eECALOverpTrack = eECAL / pTrack;
2593 
2594  if ( eECALOverpTrack > ratioMax ) {
2595  ratioMax = eECALOverpTrack;
2596  maxEcalRef = clusterRef;
2597  maxiEcal = iEcal;
2598  }
2599 
2600  } // end loop on tracks associated to hcal: iterator IE ie
2601 
2602  std::vector<reco::PFClusterRef> pivotalClusterRef;
2603  std::vector<unsigned> iPivotal;
2604  std::vector<double> particleEnergy, ecalEnergy, hcalEnergy, rawecalEnergy, rawhcalEnergy;
2605  std::vector<::math::XYZVector> particleDirection;
2606 
2607  // If the excess is smaller than the ecal energy, assign the whole
2608  // excess to photons
2609  if ( ePhoton < totalEcal || eNeutralHadron-calibEcal < 1E-10 ) {
2610  if ( !maxEcalRef.isNull() ) {
2611  // So the merged photon energy is,
2612  mergedPhotonEnergy = ePhoton;
2613  }
2614  } else {
2615  // Otherwise assign the whole ECAL energy to the photons
2616  if ( !maxEcalRef.isNull() ) {
2617  // So the merged photon energy is,
2618  mergedPhotonEnergy = totalEcal;
2619  }
2620  // ... and assign the remaining excess to neutral hadrons using the direction of ecal clusters
2621  mergedNeutralHadronEnergy = eNeutralHadron-calibEcal;
2622  }
2623 
2624  if ( mergedPhotonEnergy > 0 ) {
2625  // Split merged photon into photons for each energetic ecal cluster (necessary for jet substructure reconstruction)
2626  // make only one merged photon if less than 2 ecal clusters
2627  if ( ecalClusters.size()<=1 ) {
2628  ecalClusters.clear();
2629  ecalClusters.push_back(make_pair(maxiEcal, photonAtECAL));
2630  sumEcalClusters=sqrt(photonAtECAL.Mag2());
2631  }
2632  for(std::vector<std::pair<unsigned,::math::XYZVector> >::const_iterator pae = ecalClusters.begin(); pae != ecalClusters.end(); ++pae ) {
2633  double clusterEnergy=sqrt(pae->second.Mag2());
2634  particleEnergy.push_back(mergedPhotonEnergy*clusterEnergy/sumEcalClusters);
2635  particleDirection.push_back(pae->second);
2636  ecalEnergy.push_back(mergedPhotonEnergy*clusterEnergy/sumEcalClusters);
2637  hcalEnergy.push_back(0.);
2638  rawecalEnergy.push_back(totalEcal);
2639  rawhcalEnergy.push_back(totalHcal);
2640  pivotalClusterRef.push_back(elements[pae->first].clusterRef());
2641  iPivotal.push_back(pae->first);
2642  }
2643  }
2644 
2645  if ( mergedNeutralHadronEnergy > 1.0 ) {
2646  // Split merged neutral hadrons according to directions of energetic ecal clusters (necessary for jet substructure reconstruction)
2647  // make only one merged neutral hadron if less than 2 ecal clusters
2648  if ( ecalClusters.size()<=1 ) {
2649  ecalClusters.clear();
2650  ecalClusters.push_back(make_pair(iHcal, hadronAtECAL));
2651  sumEcalClusters=sqrt(hadronAtECAL.Mag2());
2652  }
2653  for(std::vector<std::pair<unsigned,::math::XYZVector> >::const_iterator pae = ecalClusters.begin(); pae != ecalClusters.end(); ++pae ) {
2654  double clusterEnergy=sqrt(pae->second.Mag2());
2655  particleEnergy.push_back(mergedNeutralHadronEnergy*clusterEnergy/sumEcalClusters);
2656  particleDirection.push_back(pae->second);
2657  ecalEnergy.push_back(0.);
2658  hcalEnergy.push_back(mergedNeutralHadronEnergy*clusterEnergy/sumEcalClusters);
2659  rawecalEnergy.push_back(totalEcal);
2660  rawhcalEnergy.push_back(totalHcal);
2661  pivotalClusterRef.push_back(hclusterref);
2662  iPivotal.push_back(iHcal);
2663  }
2664  }
2665 
2666  // reconstructing a merged neutral
2667  // the type of PFCandidate is known from the
2668  // reference to the pivotal cluster.
2669 
2670  for ( unsigned iPivot=0; iPivot<iPivotal.size(); ++iPivot ) {
2671 
2672  if ( particleEnergy[iPivot] < 0. )
2673  std::cout << "ALARM = Negative energy ! "
2674  << particleEnergy[iPivot] << std::endl;
2675 
2676  bool useDirection = true;
2677  unsigned tmpi = reconstructCluster( *pivotalClusterRef[iPivot],
2678  particleEnergy[iPivot],
2679  useDirection,
2680  particleDirection[iPivot].X(),
2681  particleDirection[iPivot].Y(),
2682  particleDirection[iPivot].Z());
2683 
2684 
2685  (*pfCandidates_)[tmpi].setEcalEnergy( rawecalEnergy[iPivot],ecalEnergy[iPivot] );
2686  if ( !useHO_ ) {
2687  (*pfCandidates_)[tmpi].setHcalEnergy( rawhcalEnergy[iPivot],hcalEnergy[iPivot] );
2688  (*pfCandidates_)[tmpi].setHoEnergy(0., 0.);
2689  } else {
2690  (*pfCandidates_)[tmpi].setHcalEnergy( max(rawhcalEnergy[iPivot]-totalHO,0.0),hcalEnergy[iPivot]*(1.-totalHO/rawhcalEnergy[iPivot]));
2691  (*pfCandidates_)[tmpi].setHoEnergy(totalHO, totalHO * hcalEnergy[iPivot]/rawhcalEnergy[iPivot]);
2692  }
2693  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
2694  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
2695  (*pfCandidates_)[tmpi].set_mva_nothing_gamma( -1. );
2696  // (*pfCandidates_)[tmpi].addElement(&elements[iPivotal]);
2697  // (*pfCandidates_)[tmpi].addElementInBlock(blockref, iPivotal[iPivot]);
2698  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
2699  for ( unsigned ich=0; ich<chargedHadronsInBlock.size(); ++ich) {
2700  unsigned iTrack = chargedHadronsInBlock[ich];
2701  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
2702  // Assign the position of the track at the ECAL entrance
2703  const ::math::XYZPointF& chargedPosition =
2704  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[iTrack])->positionAtECALEntrance();
2705  (*pfCandidates_)[tmpi].setPositionAtECALEntrance(chargedPosition);
2706 
2707  std::pair<II,II> myEcals = associatedEcals.equal_range(iTrack);
2708  for (II ii=myEcals.first; ii!=myEcals.second; ++ii ) {
2709  unsigned iEcal = ii->second.second;
2710  if ( active[iEcal] ) continue;
2711  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
2712  }
2713  }
2714 
2715  }
2716 
2717  } // excess of energy
2718 
2719 
2720  // will now share the hcal energy between the various charged hadron
2721  // candidates, taking into account the potential neutral hadrons
2722 
2723  double totalHcalEnergyCalibrated = calibHcal;
2724  double totalEcalEnergyCalibrated = calibEcal;
2725  //JB: The question is: we've resolved the merged photons cleanly, but how should
2726  //the remaining hadrons be assigned the remaining ecal energy?
2727  //*Temporary solution*: follow HCAL example with fractions...
2728 
2729  /*
2730  if(totalEcal>0) {
2731  // removing ecal energy from abc calibration
2732  totalHcalEnergyCalibrated -= calibEcal;
2733  // totalHcalEnergyCalibrated -= calibration_->paramECALplusHCAL_slopeECAL() * totalEcal;
2734  }
2735  */
2736  // else caloEnergy = hcal only calibrated energy -> ok.
2737 
2738  // remove the energy of the potential neutral hadron
2739  totalHcalEnergyCalibrated -= mergedNeutralHadronEnergy;
2740  // similarly for the merged photons
2741  totalEcalEnergyCalibrated -= mergedPhotonEnergy;
2742  // share between the charged hadrons
2743 
2744  //COLIN can compute this before
2745  // not exactly equal to sum p, this is sum E
2746  double chargedHadronsTotalEnergy = 0;
2747  for( unsigned ich=0; ich<chargedHadronsIndices.size(); ++ich ) {
2748  unsigned index = chargedHadronsIndices[ich];
2749  reco::PFCandidate& chargedHadron = (*pfCandidates_)[index];
2750  chargedHadronsTotalEnergy += chargedHadron.energy();
2751  }
2752 
2753  for( unsigned ich=0; ich<chargedHadronsIndices.size(); ++ich ) {
2754  unsigned index = chargedHadronsIndices[ich];
2755  reco::PFCandidate& chargedHadron = (*pfCandidates_)[index];
2756  float fraction = chargedHadron.energy()/chargedHadronsTotalEnergy;
2757 
2758  if ( !useHO_ ) {
2759  chargedHadron.setHcalEnergy( fraction * totalHcal, fraction * totalHcalEnergyCalibrated );
2760  chargedHadron.setHoEnergy( 0., 0. );
2761  } else {
2762  chargedHadron.setHcalEnergy( fraction * max(totalHcal-totalHO,0.0), fraction * totalHcalEnergyCalibrated * (1.-totalHO/totalHcal) );
2763  chargedHadron.setHoEnergy( fraction * totalHO, fraction * totalHO * totalHcalEnergyCalibrated / totalHcal );
2764  }
2765  //JB: fixing up (previously omitted) setting of ECAL energy gouzevit
2766  chargedHadron.setEcalEnergy( fraction * totalEcal, fraction * totalEcalEnergyCalibrated );
2767  }
2768 
2769  // Finally treat unused ecal satellites as photons.
2770  for ( IS is = ecalSatellites.begin(); is != ecalSatellites.end(); ++is ) {
2771 
2772  // Ignore satellites already taken
2773  unsigned iEcal = is->second.first;
2774  if ( !active[iEcal] ) continue;
2775 
2776  // Sanity checks again (well not useful, this time!)
2777  PFBlockElement::Type type = elements[ iEcal ].type();
2778  assert( type == PFBlockElement::ECAL );
2779  PFClusterRef eclusterref = elements[iEcal].clusterRef();
2780  assert(!eclusterref.isNull() );
2781 
2782  // Lock the cluster
2783  active[iEcal] = false;
2784 
2785  // Find the associated tracks
2786  std::multimap<double, unsigned> assTracks;
2787  block.associatedElements( iEcal, linkData,
2788  assTracks,
2791 
2792  // Create a photon
2793  unsigned tmpi = reconstructCluster( *eclusterref, sqrt(is->second.second.Mag2()) );
2794  (*pfCandidates_)[tmpi].setEcalEnergy( eclusterref->energy(),sqrt(is->second.second.Mag2()) );
2795  (*pfCandidates_)[tmpi].setHcalEnergy( 0., 0. );
2796  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0. );
2797  (*pfCandidates_)[tmpi].setPs1Energy( associatedPSs[iEcal].first );
2798  (*pfCandidates_)[tmpi].setPs2Energy( associatedPSs[iEcal].second );
2799  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
2800  (*pfCandidates_)[tmpi].addElementInBlock( blockref, sortedTracks.begin()->second) ;
2801  }
2802 
2803 
2804  }
2805 
2806  // end loop on hcal element iHcal= hcalIs[i]
2807 
2808 
2809  // Processing the remaining HCAL clusters
2810  if(debug_) {
2811  cout<<endl;
2812  if(debug_)
2813  cout<<endl
2814  <<"---- loop remaining hcal ------- "<<endl;
2815  }
2816 
2817 
2818  //COLINFEB16
2819  // now dealing with the HCAL elements that are not linked to any track
2820  for(unsigned ihcluster=0; ihcluster<hcalIs.size(); ihcluster++) {
2821  unsigned iHcal = hcalIs[ihcluster];
2822 
2823  // Keep ECAL and HO elements for reference in the PFCandidate
2824  std::vector<unsigned> ecalRefs;
2825  std::vector<unsigned> hoRefs;
2826 
2827  if(debug_)
2828  cout<<endl<<elements[iHcal]<<" ";
2829 
2830 
2831  if( !active[iHcal] ) {
2832  if(debug_)
2833  cout<<"not active"<<endl;
2834  continue;
2835  }
2836 
2837  // Find the ECAL elements linked to it
2838  std::multimap<double, unsigned> ecalElems;
2839  block.associatedElements( iHcal, linkData,
2840  ecalElems ,
2843 
2844  // Loop on these ECAL elements
2845  float totalEcal = 0.;
2846  float ecalMax = 0.;
2847  reco::PFClusterRef eClusterRef;
2848  for(IE ie = ecalElems.begin(); ie != ecalElems.end(); ++ie ) {
2849 
2850  unsigned iEcal = ie->second;
2851  double dist = ie->first;
2852  PFBlockElement::Type type = elements[iEcal].type();
2853  assert( type == PFBlockElement::ECAL );
2854 
2855  // Check if already used
2856  if( !active[iEcal] ) continue;
2857 
2858  // Check the distance (one HCALPlusECAL tower, roughly)
2859  // if ( dist > 0.15 ) continue;
2860 
2861  //COLINFEB16
2862  // what could be done is to
2863  // - link by rechit.
2864  // - take in the neutral hadron all the ECAL clusters
2865  // which are within the same CaloTower, according to the distance,
2866  // except the ones which are closer to another HCAL cluster.
2867  // - all the other ECAL linked to this HCAL are photons.
2868  //
2869  // about the closest HCAL cluster.
2870  // it could maybe be easier to loop on the ECAL clusters first
2871  // to cut the links to all HCAL clusters except the closest, as is
2872  // done in the first track loop. But maybe not!
2873  // or add an helper function to the PFAlgo class to ask
2874  // if a given element is the closest of a given type to another one?
2875 
2876  // Check if not closer from another free HCAL
2877  std::multimap<double, unsigned> hcalElems;
2878  block.associatedElements( iEcal, linkData,
2879  hcalElems ,
2882 
2883  bool isClosest = true;
2884  for(IE ih = hcalElems.begin(); ih != hcalElems.end(); ++ih ) {
2885 
2886  unsigned jHcal = ih->second;
2887  double distH = ih->first;
2888 
2889  if ( !active[jHcal] ) continue;
2890 
2891  if ( distH < dist ) {
2892  isClosest = false;
2893  break;
2894  }
2895 
2896  }
2897 
2898  if (!isClosest) continue;
2899 
2900 
2901  if(debug_) {
2902  cout<<"\telement "<<elements[iEcal]<<" linked with dist "<< dist<<endl;
2903  cout<<"Added to HCAL cluster to form a neutral hadron"<<endl;
2904  }
2905 
2906  reco::PFClusterRef eclusterRef = elements[iEcal].clusterRef();
2907  assert( !eclusterRef.isNull() );
2908 
2909  double ecalEnergy = eclusterRef->correctedEnergy();
2910 
2911  //std::cout << "EcalEnergy, ps1, ps2 = " << ecalEnergy
2912  // << ", " << ps1Ene[0] << ", " << ps2Ene[0] << std::endl;
2913  totalEcal += ecalEnergy;
2914  if ( ecalEnergy > ecalMax ) {
2915  ecalMax = ecalEnergy;
2916  eClusterRef = eclusterRef;
2917  }
2918 
2919  ecalRefs.push_back(iEcal);
2920  active[iEcal] = false;
2921 
2922 
2923  }// End loop ECAL
2924 
2925  // Now find the HO clusters linked to the HCAL cluster
2926  double totalHO = 0.;
2927  double hoMax = 0.;
2928  //unsigned jHO = 0;
2929  if (useHO_) {
2930  std::multimap<double, unsigned> hoElems;
2931  block.associatedElements( iHcal, linkData,
2932  hoElems ,
2935 
2936  // Loop on these HO elements
2937  // double totalHO = 0.;
2938  // double hoMax = 0.;
2939  // unsigned jHO = 0;
2940  reco::PFClusterRef hoClusterRef;
2941  for(IE ie = hoElems.begin(); ie != hoElems.end(); ++ie ) {
2942 
2943  unsigned iHO = ie->second;
2944  double dist = ie->first;
2945  PFBlockElement::Type type = elements[iHO].type();
2946  assert( type == PFBlockElement::HO );
2947 
2948  // Check if already used
2949  if( !active[iHO] ) continue;
2950 
2951  // Check the distance (one HCALPlusHO tower, roughly)
2952  // if ( dist > 0.15 ) continue;
2953 
2954  // Check if not closer from another free HCAL
2955  std::multimap<double, unsigned> hcalElems;
2956  block.associatedElements( iHO, linkData,
2957  hcalElems ,
2960 
2961  bool isClosest = true;
2962  for(IE ih = hcalElems.begin(); ih != hcalElems.end(); ++ih ) {
2963 
2964  unsigned jHcal = ih->second;
2965  double distH = ih->first;
2966 
2967  if ( !active[jHcal] ) continue;
2968 
2969  if ( distH < dist ) {
2970  isClosest = false;
2971  break;
2972  }
2973 
2974  }
2975 
2976  if (!isClosest) continue;
2977 
2978  if(debug_ && useHO_) {
2979  cout<<"\telement "<<elements[iHO]<<" linked with dist "<< dist<<endl;
2980  cout<<"Added to HCAL cluster to form a neutral hadron"<<endl;
2981  }
2982 
2983  reco::PFClusterRef hoclusterRef = elements[iHO].clusterRef();
2984  assert( !hoclusterRef.isNull() );
2985 
2986  double hoEnergy = hoclusterRef->energy(); // calibration_->energyEm(*hoclusterRef,ps1Ene,ps2Ene,crackCorrection);
2987 
2988  totalHO += hoEnergy;
2989  if ( hoEnergy > hoMax ) {
2990  hoMax = hoEnergy;
2991  hoClusterRef = hoclusterRef;
2992  //jHO = iHO;
2993  }
2994 
2995  hoRefs.push_back(iHO);
2996  active[iHO] = false;
2997 
2998  }// End loop HO
2999  }
3000 
3001  PFClusterRef hclusterRef
3002  = elements[iHcal].clusterRef();
3003  assert( !hclusterRef.isNull() );
3004 
3005  // HCAL energy
3006  double totalHcal = hclusterRef->energy();
3007  // Include the HO energy
3008  if ( useHO_ ) totalHcal += totalHO;
3009 
3010  // std::cout << "Hcal Energy,eta : " << totalHcal
3011  // << ", " << hclusterRef->positionREP().Eta()
3012  // << std::endl;
3013  // Calibration
3014  //double caloEnergy = totalHcal;
3015  // double slopeEcal = 1.0;
3016  double calibEcal = totalEcal > 0. ? totalEcal : 0.;
3017  double calibHcal = std::max(0.,totalHcal);
3018  if ( hclusterRef->layer() == PFLayer::HF_HAD ||
3019  hclusterRef->layer() == PFLayer::HF_EM ) {
3020  //caloEnergy = totalHcal/0.7;
3021  calibEcal = totalEcal;
3022  } else {
3023  calibration_->energyEmHad(-1.,calibEcal,calibHcal,
3024  hclusterRef->positionREP().Eta(),
3025  hclusterRef->positionREP().Phi());
3026  //caloEnergy = calibEcal+calibHcal;
3027  }
3028 
3029  // std::cout << "CalibEcal,HCal = " << calibEcal << ", " << calibHcal << std::endl;
3030  // std::cout << "-------------------------------------------------------------------" << std::endl;
3031  // ECAL energy : calibration
3032 
3033  // double particleEnergy = caloEnergy;
3034  // double particleEnergy = totalEcal + calibHcal;
3035  // particleEnergy /= (1.-0.724/sqrt(particleEnergy)-0.0226/particleEnergy);
3036 
3037  unsigned tmpi = reconstructCluster( *hclusterRef,
3038  calibEcal+calibHcal );
3039 
3040 
3041  (*pfCandidates_)[tmpi].setEcalEnergy( totalEcal, calibEcal );
3042  if ( !useHO_ ) {
3043  (*pfCandidates_)[tmpi].setHcalEnergy( totalHcal, calibHcal );
3044  (*pfCandidates_)[tmpi].setHoEnergy(0.,0.);
3045  } else {
3046  (*pfCandidates_)[tmpi].setHcalEnergy( max(totalHcal-totalHO,0.0), calibHcal*(1.-totalHO/totalHcal));
3047  (*pfCandidates_)[tmpi].setHoEnergy(totalHO,totalHO*calibHcal/totalHcal);
3048  }
3049  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
3050  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
3051  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
3052  for (unsigned iec=0; iec<ecalRefs.size(); ++iec)
3053  (*pfCandidates_)[tmpi].addElementInBlock( blockref, ecalRefs[iec] );
3054  for (unsigned iho=0; iho<hoRefs.size(); ++iho)
3055  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hoRefs[iho] );
3056 
3057  }//loop hcal elements
3058 
3059 
3060 
3061 
3062  if(debug_) {
3063  cout<<endl;
3064  if(debug_) cout<<endl<<"---- loop ecal------- "<<endl;
3065  }
3066 
3067  // for each ecal element iEcal = ecalIs[i] in turn:
3068 
3069  for(unsigned i=0; i<ecalIs.size(); i++) {
3070  unsigned iEcal = ecalIs[i];
3071 
3072  if(debug_)
3073  cout<<endl<<elements[iEcal]<<" ";
3074 
3075  if( ! active[iEcal] ) {
3076  if(debug_)
3077  cout<<"not active"<<endl;
3078  continue;
3079  }
3080 
3081  PFBlockElement::Type type = elements[ iEcal ].type();
3082  assert( type == PFBlockElement::ECAL );
3083 
3084  PFClusterRef clusterref = elements[iEcal].clusterRef();
3085  assert(!clusterref.isNull() );
3086 
3087  active[iEcal] = false;
3088 
3089  float ecalEnergy = clusterref->correctedEnergy();
3090  // float ecalEnergy = calibration_->energyEm( clusterref->energy() );
3091  double particleEnergy = ecalEnergy;
3092 
3093  unsigned tmpi = reconstructCluster( *clusterref,
3094  particleEnergy );
3095 
3096  (*pfCandidates_)[tmpi].setEcalEnergy( clusterref->energy(),ecalEnergy );
3097  (*pfCandidates_)[tmpi].setHcalEnergy( 0., 0. );
3098  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0. );
3099  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
3100  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
3101  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
3102 
3103 
3104  } // end loop on ecal elements iEcal = ecalIs[i]
3105 
3106 } // end processBlock
3107 
3109 unsigned PFAlgo::reconstructTrack( const reco::PFBlockElement& elt, bool allowLoose) {
3110 
3111  const reco::PFBlockElementTrack* eltTrack
3112  = dynamic_cast<const reco::PFBlockElementTrack*>(&elt);
3113 
3114  const reco::TrackRef& trackRef = eltTrack->trackRef();
3115  const reco::Track& track = *trackRef;
3116  const reco::MuonRef& muonRef = eltTrack->muonRef();
3117  int charge = track.charge()>0 ? 1 : -1;
3118 
3119  // Assume this particle is a charged Hadron
3120  double px = track.px();
3121  double py = track.py();
3122  double pz = track.pz();
3123  double energy = sqrt(track.p()*track.p() + 0.13957*0.13957);
3124 
3125  // Create a PF Candidate
3126  ::math::XYZTLorentzVector momentum(px,py,pz,energy);
3129 
3130  // Add it to the stack
3131  pfCandidates_->push_back( PFCandidate( charge,
3132  momentum,
3133  particleType ) );
3134  //Set vertex and stuff like this
3135  pfCandidates_->back().setVertexSource( PFCandidate::kTrkVertex );
3136  pfCandidates_->back().setTrackRef( trackRef );
3137  pfCandidates_->back().setPositionAtECALEntrance( eltTrack->positionAtECALEntrance());
3138  if( muonRef.isNonnull())
3139  pfCandidates_->back().setMuonRef( muonRef );
3140 
3141 
3142  //Set time
3143  if (elt.isTimeValid()) pfCandidates_->back().setTime( elt.time(), elt.timeError() );
3144 
3145  //OK Now try to reconstruct the particle as a muon
3146  bool isMuon=pfmu_->reconstructMuon(pfCandidates_->back(),muonRef,allowLoose);
3147  bool isFromDisp = isFromSecInt(elt, "secondary");
3148 
3149 
3150  if ((!isMuon) && isFromDisp) {
3151  double Dpt = trackRef->ptError();
3152  double dptRel = Dpt/trackRef->pt()*100;
3153  //If the track is ill measured it is better to not refit it, since the track information probably would not be used.
3154  //In the PFAlgo we use the trackref information. If the track error is too big the refitted information might be very different
3155  // from the not refitted one.
3156  if (dptRel < dptRel_DispVtx_){
3157  if (debug_)
3158  cout << "Not refitted px = " << px << " py = " << py << " pz = " << pz << " energy = " << energy << endl;
3159  //reco::TrackRef trackRef = eltTrack->trackRef();
3161  reco::Track trackRefit = vRef->refittedTrack(trackRef);
3162  //change the momentum with the refitted track
3163  ::math::XYZTLorentzVector momentum(trackRefit.px(),
3164  trackRefit.py(),
3165  trackRefit.pz(),
3166  sqrt(trackRefit.p()*trackRefit.p() + 0.13957*0.13957));
3167  if (debug_)
3168  cout << "Refitted px = " << px << " py = " << py << " pz = " << pz << " energy = " << energy << endl;
3169  }
3170  pfCandidates_->back().setFlag( reco::PFCandidate::T_FROM_DISP, true);
3171  pfCandidates_->back().setDisplacedVertexRef( eltTrack->displacedVertexRef(reco::PFBlockElement::T_FROM_DISP)->displacedVertexRef(), reco::PFCandidate::T_FROM_DISP);
3172  }
3173 
3174  // do not label as primary a track which would be recognised as a muon. A muon cannot produce NI. It is with high probability a fake
3175  if(isFromSecInt(elt, "primary") && !isMuon) {
3176  pfCandidates_->back().setFlag( reco::PFCandidate::T_TO_DISP, true);
3177  pfCandidates_->back().setDisplacedVertexRef( eltTrack->displacedVertexRef(reco::PFBlockElement::T_TO_DISP)->displacedVertexRef(), reco::PFCandidate::T_TO_DISP);
3178  }
3179 
3180  // returns index to the newly created PFCandidate
3181  return pfCandidates_->size()-1;
3182 }
3183 
3184 
3185 unsigned
3187  double particleEnergy,
3188  bool useDirection,
3189  double particleX,
3190  double particleY,
3191  double particleZ) {
3192 
3194 
3195  // need to convert the ::math::XYZPoint data member of the PFCluster class=
3196  // to a displacement vector:
3197 
3198  // Transform particleX,Y,Z to a position at ECAL/HCAL entrance
3199  double factor = 1.;
3200  if ( useDirection ) {
3201  switch( cluster.layer() ) {
3202  case PFLayer::ECAL_BARREL:
3203  case PFLayer::HCAL_BARREL1:
3204  factor = std::sqrt(cluster.position().Perp2()/(particleX*particleX+particleY*particleY));
3205  break;
3206  case PFLayer::ECAL_ENDCAP:
3207  case PFLayer::HCAL_ENDCAP:
3208  case PFLayer::HF_HAD:
3209  case PFLayer::HF_EM:
3210  factor = cluster.position().Z()/particleZ;
3211  break;
3212  default:
3213  assert(0);
3214  }
3215  }
3216  //MIKE First of all let's check if we have vertex.
3217  ::math::XYZPoint vertexPos;
3218  if(useVertices_)
3220  else
3221  vertexPos = ::math::XYZPoint(0.0,0.0,0.0);
3222 
3223 
3224  ::math::XYZVector clusterPos( cluster.position().X()-vertexPos.X(),
3225  cluster.position().Y()-vertexPos.Y(),
3226  cluster.position().Z()-vertexPos.Z());
3227  ::math::XYZVector particleDirection ( particleX*factor-vertexPos.X(),
3228  particleY*factor-vertexPos.Y(),
3229  particleZ*factor-vertexPos.Z() );
3230 
3231  //::math::XYZVector clusterPos( cluster.position().X(), cluster.position().Y(),cluster.position().Z() );
3232  //::math::XYZVector particleDirection ( particleX, particleY, particleZ );
3233 
3234  clusterPos = useDirection ? particleDirection.Unit() : clusterPos.Unit();
3235  clusterPos *= particleEnergy;
3236 
3237  // clusterPos is now a vector along the cluster direction,
3238  // with a magnitude equal to the cluster energy.
3239 
3240  double mass = 0;
3241  ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >
3242  momentum( clusterPos.X(), clusterPos.Y(), clusterPos.Z(), mass);
3243  // mathcore is a piece of #$%
3245  // implicit constructor not allowed
3246  tmp = momentum;
3247 
3248  // Charge
3249  int charge = 0;
3250 
3251  // Type
3252  switch( cluster.layer() ) {
3253  case PFLayer::ECAL_BARREL:
3254  case PFLayer::ECAL_ENDCAP:
3255  particleType = PFCandidate::gamma;
3256  break;
3257  case PFLayer::HCAL_BARREL1:
3258  case PFLayer::HCAL_ENDCAP:
3259  particleType = PFCandidate::h0;
3260  break;
3261  case PFLayer::HF_HAD:
3262  particleType = PFCandidate::h_HF;
3263  break;
3264  case PFLayer::HF_EM:
3265  particleType = PFCandidate::egamma_HF;
3266  break;
3267  default:
3268  assert(0);
3269  }
3270 
3271  // The pf candidate
3272  pfCandidates_->push_back( PFCandidate( charge,
3273  tmp,
3274  particleType ) );
3275 
3276  // The position at ECAL entrance (well: watch out, it is not true
3277  // for HCAL clusters... to be fixed)
3278  pfCandidates_->back().
3279  setPositionAtECALEntrance(::math::XYZPointF(cluster.position().X(),
3280  cluster.position().Y(),
3281  cluster.position().Z()));
3282 
3283  //Set the cnadidate Vertex
3284  pfCandidates_->back().setVertex(vertexPos);
3285 
3286  //*TODO* cluster time is not reliable at the moment, so only use track timing
3287 
3288  if(debug_)
3289  cout<<"** candidate: "<<pfCandidates_->back()<<endl;
3290 
3291  // returns index to the newly created PFCandidate
3292  return pfCandidates_->size()-1;
3293 
3294 }
3295 
3296 
3297 //GMA need the followign two for HO also
3298 
3299 double
3300 PFAlgo::neutralHadronEnergyResolution(double clusterEnergyHCAL, double eta) const {
3301 
3302  // Add a protection
3303  if ( clusterEnergyHCAL < 1. ) clusterEnergyHCAL = 1.;
3304 
3305  double resol = fabs(eta) < 1.48 ?
3306  sqrt (1.02*1.02/clusterEnergyHCAL + 0.065*0.065)
3307  :
3308  sqrt (1.20*1.20/clusterEnergyHCAL + 0.028*0.028);
3309 
3310  return resol;
3311 
3312 }
3313 
3314 double
3315 PFAlgo::nSigmaHCAL(double clusterEnergyHCAL, double eta) const {
3316  double nS = fabs(eta) < 1.48 ?
3317  nSigmaHCAL_ * (1. + exp(-clusterEnergyHCAL/100.))
3318  :
3319  nSigmaHCAL_ * (1. + exp(-clusterEnergyHCAL/100.));
3320 
3321  return nS;
3322 }
3323 
3324 
3325 ostream& operator<<(ostream& out, const PFAlgo& algo) {
3326  if(!out ) return out;
3327 
3328  out<<"====== Particle Flow Algorithm ======= ";
3329  out<<endl;
3330  out<<"nSigmaECAL_ "<<algo.nSigmaECAL_<<endl;
3331  out<<"nSigmaHCAL_ "<<algo.nSigmaHCAL_<<endl;
3332  out<<endl;
3333  out<<(*(algo.calibration_))<<endl;
3334  out<<endl;
3335  out<<"reconstructed particles: "<<endl;
3336 
3337  const std::unique_ptr<reco::PFCandidateCollection>& candidates = algo.pfCandidates();
3338 
3339  if(!candidates.get() ) {
3340  out<<"candidates already transfered"<<endl;
3341  return out;
3342  }
3343  for(PFCandidateConstIterator ic=algo.pfCandidates_->begin();
3344  ic != algo.pfCandidates_->end(); ic++) {
3345  out<<(*ic)<<endl;
3346  }
3347 
3348  return out;
3349 }
3350 
3353  unsigned bi ) {
3354 
3355  if( blockHandle_.isValid() ) {
3356  return reco::PFBlockRef( blockHandle_, bi );
3357  }
3358  else {
3359  return reco::PFBlockRef( &blocks, bi );
3360  }
3361 }
3362 
3363 void
3365  reco::PFBlockElement::Type psElementType,
3366  const reco::PFBlock& block,
3368  const reco::PFBlock::LinkData& linkData,
3369  std::vector<bool>& active,
3370  std::vector<double>& psEne) {
3371 
3372  // Find all PS clusters with type psElement associated to ECAL cluster iEcal,
3373  // within all PFBlockElement "elements" of a given PFBlock "block"
3374  // psElement can be reco::PFBlockElement::PS1 or reco::PFBlockElement::PS2
3375  // Returns a vector of PS cluster energies, and updates the "active" vector.
3376 
3377  // Find all PS clusters linked to the iEcal cluster
3378  std::multimap<double, unsigned> sortedPS;
3379  typedef std::multimap<double, unsigned>::iterator IE;
3380  block.associatedElements( iEcal, linkData,
3381  sortedPS, psElementType,
3383 
3384  // Loop over these PS clusters
3385  double totalPS = 0.;
3386  for ( IE ips=sortedPS.begin(); ips!=sortedPS.end(); ++ips ) {
3387 
3388  // CLuster index and distance to iEcal
3389  unsigned iPS = ips->second;
3390  // double distPS = ips->first;
3391 
3392  // Ignore clusters already in use
3393  if (!active[iPS]) continue;
3394 
3395  // Check that this cluster is not closer to another ECAL cluster
3396  std::multimap<double, unsigned> sortedECAL;
3397  block.associatedElements( iPS, linkData,
3398  sortedECAL,
3401  unsigned jEcal = sortedECAL.begin()->second;
3402  if ( jEcal != iEcal ) continue;
3403 
3404  // Update PS energy
3405  PFBlockElement::Type pstype = elements[ iPS ].type();
3406  assert( pstype == psElementType );
3407  PFClusterRef psclusterref = elements[iPS].clusterRef();
3408  assert(!psclusterref.isNull() );
3409  totalPS += psclusterref->energy();
3410  psEne[0] += psclusterref->energy();
3411  active[iPS] = false;
3412  }
3413 
3414 
3415 }
3416 
3417 
3418 bool
3419 PFAlgo::isFromSecInt(const reco::PFBlockElement& eTrack, string order) const {
3420 
3423  // reco::PFBlockElement::TrackType T_FROM_GAMMACONV = reco::PFBlockElement::T_FROM_GAMMACONV;
3425 
3426  bool bPrimary = (order.find("primary") != string::npos);
3427  bool bSecondary = (order.find("secondary") != string::npos);
3428  bool bAll = (order.find("all") != string::npos);
3429 
3430  bool isToDisp = usePFNuclearInteractions_ && eTrack.trackType(T_TO_DISP);
3431  bool isFromDisp = usePFNuclearInteractions_ && eTrack.trackType(T_FROM_DISP);
3432 
3433  if (bPrimary && isToDisp) return true;
3434  if (bSecondary && isFromDisp ) return true;
3435  if (bAll && ( isToDisp || isFromDisp ) ) return true;
3436 
3437 // bool isFromConv = usePFConversions_ && eTrack.trackType(T_FROM_GAMMACONV);
3438 
3439 // if ((bAll || bSecondary)&& isFromConv) return true;
3440 
3441  bool isFromDecay = (bAll || bSecondary) && usePFDecays_ && eTrack.trackType(T_FROM_V0);
3442 
3443  return isFromDecay;
3444 
3445 
3446 }
3447 
3448 
3449 void
3452 }
3453 
3454 void
3456 
3457  // Check if the post HF Cleaning was requested - if not, do nothing
3458  if ( !postHFCleaning_ ) return;
3459 
3460  //Compute met and met significance (met/sqrt(SumEt))
3461  double metX = 0.;
3462  double metY = 0.;
3463  double sumet = 0;
3464  std::vector<unsigned int> pfCandidatesToBeRemoved;
3465  for(unsigned i=0; i<pfCandidates_->size(); i++) {
3466  const PFCandidate& pfc = (*pfCandidates_)[i];
3467  metX += pfc.px();
3468  metY += pfc.py();
3469  sumet += pfc.pt();
3470  }
3471  double met2 = metX*metX+metY*metY;
3472  // Select events with large MET significance.
3473  double significance = std::sqrt(met2/sumet);
3474  double significanceCor = significance;
3475  if ( significance > minSignificance_ ) {
3476 
3477  double metXCor = metX;
3478  double metYCor = metY;
3479  double sumetCor = sumet;
3480  double met2Cor = met2;
3481  double deltaPhi = 3.14159;
3482  double deltaPhiPt = 100.;
3483  bool next = true;
3484  unsigned iCor = 1E9;
3485 
3486  // Find the HF candidate with the largest effect on the MET
3487  while ( next ) {
3488 
3489  double metReduc = -1.;
3490  // Loop on the candidates
3491  for(unsigned i=0; i<pfCandidates_->size(); ++i) {
3492  const PFCandidate& pfc = (*pfCandidates_)[i];
3493 
3494  // Check that the pfCandidate is in the HF
3495  if ( pfc.particleId() != reco::PFCandidate::h_HF &&
3496  pfc.particleId() != reco::PFCandidate::egamma_HF ) continue;
3497 
3498  // Check if has meaningful pt
3499  if ( pfc.pt() < minHFCleaningPt_ ) continue;
3500 
3501  // Check that it is not already scheculed to be cleaned
3502  bool skip = false;
3503  for(unsigned j=0; j<pfCandidatesToBeRemoved.size(); ++j) {
3504  if ( i == pfCandidatesToBeRemoved[j] ) skip = true;
3505  if ( skip ) break;
3506  }
3507  if ( skip ) continue;
3508 
3509  // Check that the pt and the MET are aligned
3510  deltaPhi = std::acos((metX*pfc.px()+metY*pfc.py())/(pfc.pt()*std::sqrt(met2)));
3511  deltaPhiPt = deltaPhi*pfc.pt();
3512  if ( deltaPhiPt > maxDeltaPhiPt_ ) continue;
3513 
3514  // Now remove the candidate from the MET
3515  double metXInt = metX - pfc.px();
3516  double metYInt = metY - pfc.py();
3517  double sumetInt = sumet - pfc.pt();
3518  double met2Int = metXInt*metXInt+metYInt*metYInt;
3519  if ( met2Int < met2Cor ) {
3520  metXCor = metXInt;
3521  metYCor = metYInt;
3522  metReduc = (met2-met2Int)/met2Int;
3523  met2Cor = met2Int;
3524  sumetCor = sumetInt;
3525  significanceCor = std::sqrt(met2Cor/sumetCor);
3526  iCor = i;
3527  }
3528  }
3529  //
3530  // If the MET must be significanly reduced, schedule the candidate to be cleaned
3531  if ( metReduc > minDeltaMet_ ) {
3532  pfCandidatesToBeRemoved.push_back(iCor);
3533  metX = metXCor;
3534  metY = metYCor;
3535  sumet = sumetCor;
3536  met2 = met2Cor;
3537  } else {
3538  // Otherwise just stop the loop
3539  next = false;
3540  }
3541  }
3542  //
3543  // The significance must be significantly reduced to indeed clean the candidates
3544  if ( significance - significanceCor > minSignificanceReduction_ &&
3545  significanceCor < maxSignificance_ ) {
3546  std::cout << "Significance reduction = " << significance << " -> "
3547  << significanceCor << " = " << significanceCor - significance
3548  << std::endl;
3549  for(unsigned j=0; j<pfCandidatesToBeRemoved.size(); ++j) {
3550  std::cout << "Removed : " << (*pfCandidates_)[pfCandidatesToBeRemoved[j]] << std::endl;
3551  pfCleanedCandidates_->push_back( (*pfCandidates_)[ pfCandidatesToBeRemoved[j] ] );
3552  (*pfCandidates_)[pfCandidatesToBeRemoved[j]].rescaleMomentum(1E-6);
3553  //reco::PFCandidate::ParticleType unknown = reco::PFCandidate::X;
3554  //(*pfCandidates_)[pfCandidatesToBeRemoved[j]].setParticleType(unknown);
3555  }
3556  }
3557  }
3558 
3559 }
3560 
3561 void
3563 
3564 
3565  // No hits to recover, leave.
3566  if ( cleanedHits.empty() ) return;
3567 
3568  //Compute met and met significance (met/sqrt(SumEt))
3569  double metX = 0.;
3570  double metY = 0.;
3571  double sumet = 0;
3572  std::vector<unsigned int> hitsToBeAdded;
3573  for(unsigned i=0; i<pfCandidates_->size(); i++) {
3574  const PFCandidate& pfc = (*pfCandidates_)[i];
3575  metX += pfc.px();
3576  metY += pfc.py();
3577  sumet += pfc.pt();
3578  }
3579  double met2 = metX*metX+metY*metY;
3580  double met2_Original = met2;
3581  // Select events with large MET significance.
3582  // double significance = std::sqrt(met2/sumet);
3583  // double significanceCor = significance;
3584  double metXCor = metX;
3585  double metYCor = metY;
3586  double sumetCor = sumet;
3587  double met2Cor = met2;
3588  bool next = true;
3589  unsigned iCor = 1E9;
3590 
3591  // Find the cleaned hit with the largest effect on the MET
3592  while ( next ) {
3593 
3594  double metReduc = -1.;
3595  // Loop on the candidates
3596  for(unsigned i=0; i<cleanedHits.size(); ++i) {
3597  const PFRecHit& hit = cleanedHits[i];
3598  double length = std::sqrt(hit.position().mag2());
3599  double px = hit.energy() * hit.position().x()/length;
3600  double py = hit.energy() * hit.position().y()/length;
3601  double pt = std::sqrt(px*px + py*py);
3602 
3603  // Check that it is not already scheculed to be cleaned
3604  bool skip = false;
3605  for(unsigned j=0; j<hitsToBeAdded.size(); ++j) {
3606  if ( i == hitsToBeAdded[j] ) skip = true;
3607  if ( skip ) break;
3608  }
3609  if ( skip ) continue;
3610 
3611  // Now add the candidate to the MET
3612  double metXInt = metX + px;
3613  double metYInt = metY + py;
3614  double sumetInt = sumet + pt;
3615  double met2Int = metXInt*metXInt+metYInt*metYInt;
3616 
3617  // And check if it could contribute to a MET reduction
3618  if ( met2Int < met2Cor ) {
3619  metXCor = metXInt;
3620  metYCor = metYInt;
3621  metReduc = (met2-met2Int)/met2Int;
3622  met2Cor = met2Int;
3623  sumetCor = sumetInt;
3624  // significanceCor = std::sqrt(met2Cor/sumetCor);
3625  iCor = i;
3626  }
3627  }
3628  //
3629  // If the MET must be significanly reduced, schedule the candidate to be added
3630  //
3631  if ( metReduc > minDeltaMet_ ) {
3632  hitsToBeAdded.push_back(iCor);
3633  metX = metXCor;
3634  metY = metYCor;
3635  sumet = sumetCor;
3636  met2 = met2Cor;
3637  } else {
3638  // Otherwise just stop the loop
3639  next = false;
3640  }
3641  }
3642  //
3643  // At least 10 GeV MET reduction
3644  if ( std::sqrt(met2_Original) - std::sqrt(met2) > 5. ) {
3645  if ( debug_ ) {
3646  std::cout << hitsToBeAdded.size() << " hits were re-added " << std::endl;
3647  std::cout << "MET reduction = " << std::sqrt(met2_Original) << " -> "
3648  << std::sqrt(met2Cor) << " = " << std::sqrt(met2Cor) - std::sqrt(met2_Original)
3649  << std::endl;
3650  std::cout << "Added after cleaning check : " << std::endl;
3651  }
3652  for(unsigned j=0; j<hitsToBeAdded.size(); ++j) {
3653  const PFRecHit& hit = cleanedHits[hitsToBeAdded[j]];
3654  PFCluster cluster(hit.layer(), hit.energy(),
3655  hit.position().x(), hit.position().y(), hit.position().z() );
3656  reconstructCluster(cluster,hit.energy());
3657  if ( debug_ ) {
3658  std::cout << pfCandidates_->back() << ". time = " << hit.time() << std::endl;
3659  }
3660  }
3661  }
3662 
3663 }
3664 
3665 
3666 
3668  if(!usePFElectrons_) return;
3669  // std::cout << " setElectronExtraRef " << std::endl;
3670  unsigned size=pfCandidates_->size();
3671 
3672  for(unsigned ic=0;ic<size;++ic) {
3673  // select the electrons and add the extra
3674  if((*pfCandidates_)[ic].particleId()==PFCandidate::e) {
3675 
3676  PFElectronExtraEqual myExtraEqual((*pfCandidates_)[ic].gsfTrackRef());
3677  std::vector<PFCandidateElectronExtra>::const_iterator it=find_if(pfElectronExtra_.begin(),pfElectronExtra_.end(),myExtraEqual);
3678  if(it!=pfElectronExtra_.end()) {
3679  // std::cout << " Index " << it-pfElectronExtra_.begin() << std::endl;
3680  reco::PFCandidateElectronExtraRef theRef(extrah,it-pfElectronExtra_.begin());
3681  (*pfCandidates_)[ic].setPFElectronExtraRef(theRef);
3682  }
3683  else {
3684  (*pfCandidates_)[ic].setPFElectronExtraRef(PFCandidateElectronExtraRef());
3685  }
3686  }
3687  else // else save the mva and the extra as well !
3688  {
3689  if((*pfCandidates_)[ic].trackRef().isNonnull()) {
3690  PFElectronExtraKfEqual myExtraEqual((*pfCandidates_)[ic].trackRef());
3691  std::vector<PFCandidateElectronExtra>::const_iterator it=find_if(pfElectronExtra_.begin(),pfElectronExtra_.end(),myExtraEqual);
3692  if(it!=pfElectronExtra_.end()) {
3693  (*pfCandidates_)[ic].set_mva_e_pi(it->mvaVariable(PFCandidateElectronExtra::MVA_MVA));
3694  reco::PFCandidateElectronExtraRef theRef(extrah,it-pfElectronExtra_.begin());
3695  (*pfCandidates_)[ic].setPFElectronExtraRef(theRef);
3696  (*pfCandidates_)[ic].setGsfTrackRef(it->gsfTrackRef());
3697  }
3698  }
3699  }
3700 
3701  }
3702 
3703  size=pfElectronCandidates_->size();
3704  for(unsigned ic=0;ic<size;++ic) {
3705  // select the electrons - this test is actually not needed for this collection
3706  if((*pfElectronCandidates_)[ic].particleId()==PFCandidate::e) {
3707  // find the corresponding extra
3708  PFElectronExtraEqual myExtraEqual((*pfElectronCandidates_)[ic].gsfTrackRef());
3709  std::vector<PFCandidateElectronExtra>::const_iterator it=find_if(pfElectronExtra_.begin(),pfElectronExtra_.end(),myExtraEqual);
3710  if(it!=pfElectronExtra_.end()) {
3711  reco::PFCandidateElectronExtraRef theRef(extrah,it-pfElectronExtra_.begin());
3712  (*pfElectronCandidates_)[ic].setPFElectronExtraRef(theRef);
3713 
3714  }
3715  }
3716  }
3717 
3718 }
3720  if(!usePFPhotons_) return;
3721  unsigned int size=pfCandidates_->size();
3722  unsigned int sizePhExtra = pfPhotonExtra_.size();
3723  for(unsigned ic=0;ic<size;++ic) {
3724  // select the electrons and add the extra
3725  if((*pfCandidates_)[ic].particleId()==PFCandidate::gamma && (*pfCandidates_)[ic].mva_nothing_gamma() > 0.99) {
3726  if((*pfCandidates_)[ic].superClusterRef().isNonnull()) {
3727  bool found = false;
3728  for(unsigned pcextra=0;pcextra<sizePhExtra;++pcextra) {
3729  if((*pfCandidates_)[ic].superClusterRef() == pfPhotonExtra_[pcextra].superClusterRef()) {
3730  reco::PFCandidatePhotonExtraRef theRef(ph_extrah,pcextra);
3731  (*pfCandidates_)[ic].setPFPhotonExtraRef(theRef);
3732  found = true;
3733  break;
3734  }
3735  }
3736  if(!found)
3737  (*pfCandidates_)[ic].setPFPhotonExtraRef((PFCandidatePhotonExtraRef())); // null ref
3738  }
3739  else {
3740  (*pfCandidates_)[ic].setPFPhotonExtraRef((PFCandidatePhotonExtraRef())); // null ref
3741  }
3742  }
3743  }
3744 }
PFLayer::Layer layer() const
cluster layer, see PFLayer.h in this directory
Definition: PFCluster.cc:128
size
Write out results.
double p() const
momentum vector magnitude
Definition: TrackBase.h:615
type
Definition: HCALResponse.h:21
T getParameter(std::string const &) const
unsigned int nTrackIsoForEgammaSC_
Definition: PFAlgo.h:354
edm::Ref< PFBlockCollection > PFBlockRef
persistent reference to PFCluster objects
Definition: PFBlockFwd.h:20
Abstract base class for a PFBlock element (track, cluster...)
static bool isIsolatedMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:227
const math::XYZPoint & position() const
cluster centroid position
Definition: CaloCluster.h:129
double ptError_
Definition: PFAlgo.h:395
bool isFromSecInt(const reco::PFBlockElement &eTrack, std::string order) const
Definition: PFAlgo.cc:3419
bool usePFConversions_
Definition: PFAlgo.h:378
std::vector< double > muonHCAL_
Variables for muons and fakes.
Definition: PFAlgo.h:391
ParticleType
particle types
Definition: PFCandidate.h:44
bool isNonnull() const
Checks for non-null.
Definition: Ref.h:253
T y() const
Cartesian y coordinate.
double eta() const final
momentum pseudorapidity
double maxDeltaPhiPt_
Definition: PFAlgo.h:405
void setPFMuonAndFakeParameters(const edm::ParameterSet &pset)
Definition: PFAlgo.cc:302
T x() const
Cartesian x coordinate.
void addMissingMuons(edm::Handle< reco::MuonCollection >, reco::PFCandidateCollection *cands)
Definition: PFMuonAlgo.cc:953
double maxSignificance_
Definition: PFAlgo.h:403
double sumEtEcalIsoForEgammaSC_endcap_
Definition: PFAlgo.h:349
bool isElectronSafeForJetMET(const reco::GsfElectron &, const reco::PFCandidate &, const reco::Vertex &, bool &lockTracks)
Definition: CLHEP.h:16
double mvaEleCut_
Definition: PFAlgo.h:341
void set_mva_nothing_gamma(float mva)
set mva for gamma detection
Definition: PFCandidate.h:329
double minHFCleaningPt_
Definition: PFAlgo.h:401
bool isMuon(const Candidate &part)
Definition: pdgIdUtils.h:11
Particle flow cluster, see clustering algorithm in PFClusterAlgo.
Definition: PFCluster.h:47
bool isPhotonValidCandidate(const reco::PFBlockRef &blockRef, std::vector< bool > &active, std::unique_ptr< reco::PFCandidateCollection > &pfPhotonCandidates, std::vector< reco::PFCandidatePhotonExtra > &pfPhotonExtraCandidates, std::vector< reco::PFCandidate > &tempElectronCandidates)
Definition: PFPhotonAlgo.h:82
edm::Ref< PFCandidatePhotonExtraCollection > PFCandidatePhotonExtraRef
persistent reference to a PFCandidatePhotonExtra
double coneEcalIsoForEgammaSC_
Definition: PFAlgo.h:350
static bool isMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:155
double minDeltaMet_
Definition: PFAlgo.h:406
const std::vector< reco::PFCandidate > & getAllElectronCandidates()
float time() const
timing for cleaned hits
Definition: PFRecHit.h:118
double minSignificance_
Definition: PFAlgo.h:402
float time() const
double errorScale(const reco::TrackBase::TrackAlgorithm &, const std::vector< double > &)
std::unique_ptr< reco::PFCandidateCollection > pfCandidates_
Definition: PFAlgo.h:284
unsigned reconstructCluster(const reco::PFCluster &cluster, double particleEnergy, bool useDirection=false, double particleX=0., double particleY=0., double particleZ=0.)
Definition: PFAlgo.cc:3186
void reconstructParticles(const reco::PFBlockHandle &blockHandle)
Definition: PFAlgo.cc:415
const std::unique_ptr< reco::PFCandidateCollection > & pfCandidates() const
Definition: PFAlgo.h:196
double y() const
y coordinate
Definition: Vertex.h:113
bool useProtectionsForJetMET_
Definition: PFAlgo.h:363
double coneTrackIsoForEgammaSC_
Definition: PFAlgo.h:353
void setParameters(const edm::ParameterSet &)
Definition: PFMuonAlgo.cc:29
const reco::TrackRef & trackRef() const override
double px() const final
x coordinate of momentum vector
double nSigmaHCAL_
number of sigma to judge energy excess in HCAL
Definition: PFAlgo.h:328
std::map< unsigned int, Link > LinkData
Definition: PFBlock.h:46
size_type size() const
Definition: OwnVector.h:264
void setnPU(int nVtx)
Definition: PFPhotonAlgo.h:75
virtual void processBlock(const reco::PFBlockRef &blockref, std::list< reco::PFBlockRef > &hcalBlockRefs, std::list< reco::PFBlockRef > &ecalBlockRefs)
Definition: PFAlgo.cc:538
void setMuonHandle(const edm::Handle< reco::MuonCollection > &)
Definition: PFAlgo.cc:331
#define X(str)
Definition: MuonsGrabber.cc:48
bool trackType(TrackType trType) const override
math::Error< dimension >::type Error
covariance error matrix (3x3)
Definition: Vertex.h:43
void setVertex(const math::XYZPoint &p) override
set vertex
Definition: PFCandidate.h:408
size_type size() const
double pt() const final
transverse momentum
std::vector< Vertex > VertexCollection
collection of Vertex objects
Definition: VertexFwd.h:9
const edm::OwnVector< reco::PFBlockElement > & elements() const
Definition: PFBlock.h:107
int charge() const final
electric charge
Definition: LeafCandidate.h:91
std::vector< PFRecHit > PFRecHitCollection
collection of PFRecHit objects
Definition: PFRecHitFwd.h:9
const edm::ValueMap< reco::PhotonRef > * valueMapGedPhotons_
Definition: PFAlgo.h:366
void checkCleaning(const reco::PFRecHitCollection &cleanedHF)
Check HF Cleaning.
Definition: PFAlgo.cc:3562
edm::Ref< PFCandidateElectronExtraCollection > PFCandidateElectronExtraRef
persistent reference to a PFCandidateElectronExtra
bool passElectronSelection(const reco::GsfElectron &, const reco::PFCandidate &, const int &)
ROOT::Math::PositionVector3D< ROOT::Math::Cartesian3D< float > > XYZPointF
point in space with cartesian internal representation
Definition: Point3D.h:10
double px() const
x coordinate of momentum vector
Definition: TrackBase.h:627
void setDisplacedVerticesParameters(bool rejectTracks_Bad, bool rejectTracks_Step45, bool usePFNuclearInteractions, bool usePFConversions, bool usePFDecays, double dptRel_DispVtx)
Definition: PFAlgo.cc:354
PFCandidateCollection::const_iterator PFCandidateConstIterator
iterator
#define nullptr
double sumEtEcalIsoForEgammaSC_barrel_
Definition: PFAlgo.h:348
PFElectronAlgo * pfele_
Definition: PFAlgo.h:355
void setPFEleParameters(double mvaEleCut, std::string mvaWeightFileEleID, bool usePFElectrons, const boost::shared_ptr< PFSCEnergyCalibration > &thePFSCEnergyCalibration, const boost::shared_ptr< PFEnergyCalibration > &thePFEnergyCalibration, double sumEtEcalIsoForEgammaSC_barrel, double sumEtEcalIsoForEgammaSC_endcap, double coneEcalIsoForEgammaSC, double sumPtTrackIsoForEgammaSC_barrel, double sumPtTrackIsoForEgammaSC_endcap, unsigned int nTrackIsoForEgammaSC, double coneTrackIsoForEgammaSC, bool applyCrackCorrections=false, bool usePFSCEleCalib=true, bool useEGElectrons=false, bool useEGammaSupercluster=true)
Definition: PFAlgo.cc:99
PFMuonAlgo * pfmu_
Definition: PFAlgo.h:357
void setPFVertexParameters(bool useVertex, const reco::VertexCollection *primaryVertices)
Definition: PFAlgo.cc:372
void setEGElectronCollection(const reco::GsfElectronCollection &egelectrons)
Definition: PFAlgo.cc:3450
std::vector< GsfElectron > GsfElectronCollection
collection of GsfElectron objects
int nVtx_
Definition: PFAlgo.h:384
bool rejectTracks_Step45_
Definition: PFAlgo.h:375
const math::XYZPointF & positionAtECALEntrance() const
PositionType const & position() const
rechit cell centre x, y, z
Definition: PFRecHit.h:129
std::vector< ElementInBlock > ElementsInBlocks
Definition: PFCandidate.h:386
double minSignificanceReduction_
Definition: PFAlgo.h:404
void setPFPhotonParameters(bool usePFPhoton, std::string mvaWeightFileConvID, double mvaConvCut, bool useReg, std::string X0_Map, const boost::shared_ptr< PFEnergyCalibration > &thePFEnergyCalibration, double sumPtTrackIsoForPhoton, double sumPtTrackIsoSlopeForPhoton)
Definition: PFAlgo.cc:161
std::vector< double > factors45_
Definition: PFAlgo.h:396
bool useHO_
Definition: PFAlgo.h:334
iterator begin()
Definition: OwnVector.h:244
PFLayer::Layer layer() const
rechit layer
Definition: PFRecHit.h:111
RefToBase< value_type > refAt(size_type i) const
bool useEGammaSupercluster_
Definition: PFAlgo.h:347
U second(std::pair< T, U > const &p)
void setCharge(Charge q) final
set electric charge
Definition: LeafCandidate.h:93
std::unique_ptr< reco::PFCandidateCollection > pfCleanedCandidates_
Definition: PFAlgo.h:290
XYZTLorentzVectorD XYZTLorentzVector
Lorentz vector with cylindrical internal representation using pseudorapidity.
Definition: LorentzVector.h:29
bool isElectron(const reco::GsfElectron &)
void set_mva_e_pi(float mvaNI)
Definition: PFCandidate.h:311
void push_back(D *&d)
Definition: OwnVector.h:290
bool isTimeValid() const
do we have a valid time information
bool usePFNuclearInteractions_
Definition: PFAlgo.h:377
bool postHFCleaning_
Definition: PFAlgo.h:399
void setEGammaCollections(const edm::View< reco::PFCandidate > &pfEgammaCandidates, const edm::ValueMap< reco::GsfElectronRef > &valueMapGedElectrons, const edm::ValueMap< reco::PhotonRef > &valueMapGedPhotons)
Definition: PFAlgo.cc:267
Particle flow rechit (rechit + geometry and topology information). See clustering algorithm in PFClus...
Definition: PFRecHit.h:31
void set_mva_Isolated(float mvaI)
Definition: PFCandidate.h:307
boost::shared_ptr< PFEnergyCalibration > thePFEnergyCalibration()
return the pointer to the calibration function
Definition: PFAlgo.h:234
void setParameters(double nSigmaECAL, double nSigmaHCAL, const boost::shared_ptr< PFEnergyCalibration > &calibration, const boost::shared_ptr< PFEnergyCalibrationHF > &thepfEnergyCalibrationHF)
Definition: PFAlgo.cc:79
T z() const
Cartesian z coordinate.
const edm::View< reco::PFCandidate > * pfEgammaCandidates_
Definition: PFAlgo.h:364
bool useEGElectrons_
Definition: PFAlgo.h:346
void associatePSClusters(unsigned iEcal, reco::PFBlockElement::Type psElementType, const reco::PFBlock &block, const edm::OwnVector< reco::PFBlockElement > &elements, const reco::PFBlock::LinkData &linkData, std::vector< bool > &active, std::vector< double > &psEne)
Associate PS clusters to a given ECAL cluster, and return their energy.
Definition: PFAlgo.cc:3364
std::string mvaWeightFileEleID_
Variables for PFElectrons.
Definition: PFAlgo.h:339
void setParticleType(ParticleType type)
set Particle Type
Definition: PFCandidate.cc:261
bool passPhotonSelection(const reco::Photon &)
T sqrt(T t)
Definition: SSEVec.h:18
bool empty() const
Definition: OwnVector.h:269
const std::vector< reco::PFCandidateElectronExtra > & getElectronExtra()
bool step45(const reco::TrackBase::TrackAlgorithm &)
PFPhotonAlgo * pfpho_
Definition: PFAlgo.h:356
double energy() const final
energy
void setPFPhotonRegWeights(const GBRForest *LCorrForestEB, const GBRForest *LCorrForestEE, const GBRForest *GCorrForestBarrel, const GBRForest *GCorrForestEndcapHr9, const GBRForest *GCorrForestEndcapLr9, const GBRForest *PFEcalResolution)
Definition: PFAlgo.cc:289
def pv(vc)
Definition: MetAnalyzer.py:6
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
double z() const
z coordinate
Definition: Vertex.h:115
reco::Vertex primaryVertex_
Definition: PFAlgo.h:410
double nSigmaHCAL(double clusterEnergy, double clusterEta) const
Definition: PFAlgo.cc:3315
edm::Handle< reco::MuonCollection > muonHandle_
Definition: PFAlgo.h:413
bool usePFSCEleCalib_
Definition: PFAlgo.h:345
std::vector< double > muonECAL_
Definition: PFAlgo.h:392
void setPositionAtECALEntrance(float x, float y, float z)
set position at ECAL entrance
math::XYZPoint Point
point in the space
Definition: Vertex.h:39
T min(T a, T b)
Definition: MathUtil.h:58
float energy() const
rechit energy
Definition: PFRecHit.h:114
std::vector< LinkConnSpec >::const_iterator IT
void setPostHFCleaningParameters(bool postHFCleaning, double minHFCleaningPt, double minSignificance, double maxSignificance, double minSignificanceReduction, double maxDeltaPhiPt, double minDeltaMet)
Definition: PFAlgo.cc:337
bool isValid() const
Definition: HandleBase.h:74
std::vector< PFBlock > PFBlockCollection
collection of PFBlock objects
Definition: PFBlockFwd.h:11
PFEGammaFilters * pfegamma_
Definition: PFAlgo.h:362
bool isNull() const
Checks for null.
Definition: Ref.h:250
reco::PFBlockRef createBlockRef(const reco::PFBlockCollection &blocks, unsigned bi)
Definition: PFAlgo.cc:3352
reco::PFCandidatePhotonExtraCollection pfPhotonExtra_
the extra photon collection
Definition: PFAlgo.h:295
ii
Definition: cuy.py:588
double pz() const
z coordinate of momentum vector
Definition: TrackBase.h:639
void setEcalEnergy(float eeRaw, float eeCorr)
set corrected Ecal energy
Definition: PFCandidate.h:217
float mva_e_pi() const
mva for electron-pion discrimination
Definition: PFCandidate.h:313
std::unique_ptr< reco::PFCandidateCollection > pfPhotonCandidates_
the unfiltered photon collection
Definition: PFAlgo.h:288
const PFDisplacedTrackerVertexRef & displacedVertexRef(TrackType trType) const override
const std::vector< reco::PFCandidate > & getElectronCandidates()
std::vector< reco::PFCandidate > PFCandidateCollection
collection of PFCandidates
double x() const
x coordinate
Definition: Vertex.h:111
std::list< reco::PFBlockRef >::iterator IBR
Definition: PFAlgo.cc:55
unsigned reconstructTrack(const reco::PFBlockElement &elt, bool allowLoose=false)
Definition: PFAlgo.cc:3109
std::vector< double > muonHO_
Definition: PFAlgo.h:393
bool useVertices_
Definition: PFAlgo.h:411
primaryVertices
Definition: jets_cff.py:73
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:30
void setGBRForest(const GBRForest *LCorrForest, const GBRForest *GCorrForest, const GBRForest *ResForest)
Definition: PFPhotonAlgo.h:49
double dptRel_DispVtx_
Definition: PFAlgo.h:383
void associatedElements(unsigned i, const LinkData &linkData, std::multimap< double, unsigned > &sortedAssociates, reco::PFBlockElement::Type type=PFBlockElement::NONE, LinkTest test=LINKTEST_RECHIT) const
Definition: PFBlock.cc:75
static bool isLooseMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:168
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
boost::shared_ptr< PFEnergyCalibration > calibration_
Definition: PFAlgo.h:330
reco::PFBlockHandle blockHandle_
input block handle (full framework case)
Definition: PFAlgo.h:322
double b
Definition: hdecay.h:120
double py() const final
y coordinate of momentum vector
virtual bool trackType(TrackType trType) const
boost::shared_ptr< PFSCEnergyCalibration > thePFSCEnergyCalibration_
Definition: PFAlgo.h:332
virtual ~PFAlgo()
destructor
Definition: PFAlgo.cc:71
significance
Definition: met_cff.py:30
void setHoEnergy(float eoRaw, float eoCorr)
set corrected Hcal energy
Definition: PFCandidate.h:237
std::vector< std::vector< double > > tmp
Definition: MVATrainer.cc:100
math::XYZVector XYZPoint
bool isElectronValidCandidate(const reco::PFBlockRef &blockRef, std::vector< bool > &active, const reco::Vertex &primaryVertex)
Particle reconstructed by the particle flow algorithm.
Definition: PFCandidate.h:39
fixed size matrix
boost::shared_ptr< PFEnergyCalibrationHF > thepfEnergyCalibrationHF_
Definition: PFAlgo.h:331
double a
Definition: hdecay.h:121
reco::PFCandidateEGammaExtraRef egammaExtraRef() const
return a reference to the EGamma extra
Definition: PFCandidate.cc:601
bool rejectTracks_Bad_
Definition: PFAlgo.h:374
PFAlgo()
constructor
Definition: PFAlgo.cc:59
PFMuonAlgo * getPFMuonAlgo()
Definition: PFAlgo.cc:93
bool useEGammaFilters_
Variables for NEW EGAMMA selection.
Definition: PFAlgo.h:361
bool debug_
Definition: PFAlgo.h:336
void setPhotonExtraRef(const edm::OrphanHandle< reco::PFCandidatePhotonExtraCollection > &pf_extrah)
Definition: PFAlgo.cc:3719
bool applyCrackCorrectionsElectrons_
Definition: PFAlgo.h:344
int charge() const
track electric charge
Definition: TrackBase.h:567
bool step5(const reco::TrackBase::TrackAlgorithm &)
double sumPtTrackIsoForEgammaSC_endcap_
Definition: PFAlgo.h:352
std::unique_ptr< reco::PFCandidateCollection > pfElectronCandidates_
the unfiltered electron collection
Definition: PFAlgo.h:286
void setPhotonPrimaryVtx(const reco::Vertex &primary)
Definition: PFPhotonAlgo.h:78
const reco::MuonRef & muonRef() const override
double nSigmaTRACK_
Definition: PFAlgo.h:394
virtual ParticleType particleId() const
Definition: PFCandidate.h:373
double neutralHadronEnergyResolution(double clusterEnergy, double clusterEta) const
todo: use PFClusterTools for this
Definition: PFAlgo.cc:3300
void postCleaning()
Definition: PFAlgo.cc:3455
void postClean(reco::PFCandidateCollection *)
Definition: PFMuonAlgo.cc:849
def check(config)
Definition: trackerTree.py:14
Definition: PFAlgo.h:52
reco::PFCandidateElectronExtraCollection pfElectronExtra_
the unfiltered electron collection
Definition: PFAlgo.h:293
bool usePFPhotons_
Definition: PFAlgo.h:343
const ElementsInBlocks & elementsInBlocks() const
Definition: PFCandidate.cc:687
bool usePFDecays_
Definition: PFAlgo.h:379
void setInputsForCleaning(const reco::VertexCollection *)
Definition: PFMuonAlgo.cc:1168
double phi() const final
momentum azimuthal angle
bool isPhotonSafeForJetMET(const reco::Photon &, const reco::PFCandidate &)
void setP4(const LorentzVector &p4) final
set 4-momentum
double sumPtTrackIsoForEgammaSC_barrel_
Definition: PFAlgo.h:351
void setHcalEnergy(float ehRaw, float ehCorr)
set corrected Hcal energy
Definition: PFCandidate.h:227
double py() const
y coordinate of momentum vector
Definition: TrackBase.h:633
void setEGammaParameters(bool use_EGammaFilters, std::string ele_iso_path_mvaWeightFile, double ele_iso_pt, double ele_iso_mva_barrel, double ele_iso_mva_endcap, double ele_iso_combIso_barrel, double ele_iso_combIso_endcap, double ele_noniso_mva, unsigned int ele_missinghits, bool useProtectionsForJetMET, const edm::ParameterSet &ele_protectionsForJetMET, double ph_MinEt, double ph_combIso, double ph_HoE, double ph_sietaieta_eb, double ph_sietaieta_ee, const edm::ParameterSet &ph_protectionsForJetMET)
Definition: PFAlgo.cc:212
const edm::ValueMap< reco::GsfElectronRef > * valueMapGedElectrons_
Definition: PFAlgo.h:365
float timeError() const
friend std::ostream & operator<<(std::ostream &out, const PFAlgo &algo)
void setElectronExtraRef(const edm::OrphanHandle< reco::PFCandidateElectronExtraCollection > &extrah)
Definition: PFAlgo.cc:3667
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
void setEGElectronCollection(const reco::GsfElectronCollection &egelectrons)
bool reconstructMuon(reco::PFCandidate &, const reco::MuonRef &, bool allowLoose=false)
Definition: PFMuonAlgo.cc:717
double nSigmaECAL_
number of sigma to judge energy excess in ECAL
Definition: PFAlgo.h:325
Block of elements.
Definition: PFBlock.h:30
bool usePFElectrons_
Definition: PFAlgo.h:342