CMS 3D CMS Logo

List of all members | Public Member Functions | Private Attributes
CMSEmStandardPhysicsLPM Class Reference

#include <CMSEmStandardPhysicsLPM.h>

Inheritance diagram for CMSEmStandardPhysicsLPM:

Public Member Functions

 CMSEmStandardPhysicsLPM (G4int ver)
 
void ConstructParticle () override
 
void ConstructProcess () override
 
 ~CMSEmStandardPhysicsLPM () override
 

Private Attributes

G4int verbose
 

Detailed Description

Definition at line 8 of file CMSEmStandardPhysicsLPM.h.

Constructor & Destructor Documentation

CMSEmStandardPhysicsLPM::CMSEmStandardPhysicsLPM ( G4int  ver)

Definition at line 77 of file CMSEmStandardPhysicsLPM.cc.

77  :
78  G4VPhysicsConstructor("CMSEmStandard_emm"), verbose(ver) {
79  G4EmParameters* param = G4EmParameters::Instance();
80  param->SetDefaults();
81  param->SetVerbose(verbose);
82  param->SetApplyCuts(true);
83  param->SetMscRangeFactor(0.2);
84  param->SetMscStepLimitType(fMinimal);
85  SetPhysicsType(bElectromagnetic);
86 }
CMSEmStandardPhysicsLPM::~CMSEmStandardPhysicsLPM ( )
override

Definition at line 88 of file CMSEmStandardPhysicsLPM.cc.

88 {}

Member Function Documentation

void CMSEmStandardPhysicsLPM::ConstructParticle ( )
override

Definition at line 90 of file CMSEmStandardPhysicsLPM.cc.

References nanoDQM_cfi::Electron, and Gamma.

90  {
91  // gamma
93 
94  // leptons
96  G4Positron::Positron();
97  G4MuonPlus::MuonPlus();
98  G4MuonMinus::MuonMinus();
99  G4TauMinus::TauMinusDefinition();
100  G4TauPlus::TauPlusDefinition();
101 
102  // mesons
103  G4PionPlus::PionPlusDefinition();
104  G4PionMinus::PionMinusDefinition();
105  G4KaonPlus::KaonPlusDefinition();
106  G4KaonMinus::KaonMinusDefinition();
107  G4DMesonMinus::DMesonMinusDefinition();
108  G4DMesonPlus::DMesonPlusDefinition();
109  G4BMesonMinus::BMesonMinusDefinition();
110  G4BMesonPlus::BMesonPlusDefinition();
111 
112  // barions
113  G4Proton::Proton();
114  G4AntiProton::AntiProton();
115  G4SigmaMinus::SigmaMinusDefinition();
116  G4AntiSigmaMinus::AntiSigmaMinusDefinition();
117  G4SigmaPlus::SigmaPlusDefinition();
118  G4AntiSigmaPlus::AntiSigmaPlusDefinition();
119  G4XiMinus::XiMinusDefinition();
120  G4AntiXiMinus::AntiXiMinusDefinition();
121  G4OmegaMinus::OmegaMinusDefinition();
122  G4AntiOmegaMinus::AntiOmegaMinusDefinition();
123  G4LambdacPlus::LambdacPlusDefinition();
124  G4AntiLambdacPlus::AntiLambdacPlusDefinition();
125  G4XicPlus::XicPlusDefinition();
126  G4AntiXicPlus::AntiXicPlusDefinition();
127 
128  // ions
129  G4Deuteron::Deuteron();
130  G4Triton::Triton();
131  G4He3::He3();
132  G4Alpha::Alpha();
133  G4GenericIon::GenericIonDefinition();
134 }
dbl * Gamma
Definition: mlp_gen.cc:38
void CMSEmStandardPhysicsLPM::ConstructProcess ( )
override

Definition at line 136 of file CMSEmStandardPhysicsLPM.cc.

References ecalTB2006H4_GenSimDigiReco_cfg::G4cout, kp, MeV, AnalysisDataFormats_SUSYBSMObjects::msc, HiggsValidation_cfi::particleName, EmParticleList::PartNames(), and createTree::pp.

136  {
137 
138  if(verbose > 0) {
139  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
140  }
141 
142  // This EM builder takes default models of Geant4 10 EMV.
143  // Multiple scattering by Urban for all particles
144  // except e+e- below 100 MeV for which the Urban model is used
145 
146  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
147 
148  // muon & hadron bremsstrahlung and pair production
149  G4MuBremsstrahlung* mub = nullptr;
150  G4MuPairProduction* mup = nullptr;
151  G4hBremsstrahlung* pib = nullptr;
152  G4hPairProduction* pip = nullptr;
153  G4hBremsstrahlung* kb = nullptr;
154  G4hPairProduction* kp = nullptr;
155  G4hBremsstrahlung* pb = nullptr;
156  G4hPairProduction* pp = nullptr;
157 
158  // muon & hadron multiple scattering
159  G4MuMultipleScattering* mumsc = nullptr;
160  G4MuMultipleScattering* pimsc = nullptr;
161  G4MuMultipleScattering* kmsc = nullptr;
162  G4MuMultipleScattering* pmsc = nullptr;
163  G4hMultipleScattering* hmsc = nullptr;
164 
165  // high energy limit for e+- scattering models and bremsstrahlung
166  G4double highEnergyLimit = 100*MeV;
167 
168  G4Region* aRegion =
169  G4RegionStore::GetInstance()->GetRegion("HcalRegion",false);
170  G4Region* bRegion =
171  G4RegionStore::GetInstance()->GetRegion("HGCalRegion",false);
172 
173  G4ParticleTable* table = G4ParticleTable::GetParticleTable();
174  EmParticleList emList;
175  for(const auto& particleName : emList.PartNames()) {
176  G4ParticleDefinition* particle = table->FindParticle(particleName);
177 
178  if (particleName == "gamma") {
179 
180  ph->RegisterProcess(new G4PhotoElectricEffect(), particle);
181  ph->RegisterProcess(new G4ComptonScattering(), particle);
182  ph->RegisterProcess(new G4GammaConversion(), particle);
183 
184  } else if (particleName == "e-") {
185 
186  G4eIonisation* eioni = new G4eIonisation();
187  eioni->SetStepFunction(0.8, 1.0*mm);
188 
189  G4eMultipleScattering* msc = new G4eMultipleScattering;
190  msc->SetStepLimitType(fMinimal);
191  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
192  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
193  G4UrbanMscModel* msc3 = new G4UrbanMscModel();
194  msc3->SetLocked(true);
195  msc1->SetHighEnergyLimit(highEnergyLimit);
196  msc2->SetLowEnergyLimit(highEnergyLimit);
197  msc3->SetHighEnergyLimit(highEnergyLimit);
198  msc->AddEmModel(0, msc1);
199  msc->AddEmModel(0, msc2);
200  msc->AddEmModel(-1, msc3, aRegion);
201  if (bRegion) msc->AddEmModel(-1, msc3, bRegion);
202 
203  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
204  G4CoulombScattering* ss = new G4CoulombScattering();
205  ss->SetEmModel(ssm, 1);
206  ss->SetMinKinEnergy(highEnergyLimit);
207  ssm->SetLowEnergyLimit(highEnergyLimit);
208  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
209 
210  ph->RegisterProcess(msc, particle);
211  ph->RegisterProcess(eioni, particle);
212  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
213  ph->RegisterProcess(ss, particle);
214 
215  } else if (particleName == "e+") {
216 
217  G4eIonisation* eioni = new G4eIonisation();
218  eioni->SetStepFunction(0.8, 1.0*mm);
219 
220  G4eMultipleScattering* msc = new G4eMultipleScattering;
221  msc->SetStepLimitType(fMinimal);
222  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
223  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
224  G4UrbanMscModel* msc3 = new G4UrbanMscModel();
225  msc1->SetHighEnergyLimit(highEnergyLimit);
226  msc2->SetLowEnergyLimit(highEnergyLimit);
227  msc3->SetHighEnergyLimit(highEnergyLimit);
228  msc3->SetLocked(true);
229  msc->AddEmModel(0, msc1);
230  msc->AddEmModel(0, msc2);
231  msc->AddEmModel(-1, msc3, aRegion);
232  if (bRegion) msc->AddEmModel(-1, msc3, bRegion);
233 
234  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
235  G4CoulombScattering* ss = new G4CoulombScattering();
236  ss->SetEmModel(ssm, 1);
237  ss->SetMinKinEnergy(highEnergyLimit);
238  ssm->SetLowEnergyLimit(highEnergyLimit);
239  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
240 
241  ph->RegisterProcess(msc, particle);
242  ph->RegisterProcess(eioni, particle);
243  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
244  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
245  ph->RegisterProcess(ss, particle);
246 
247  } else if (particleName == "mu+" ||
248  particleName == "mu-" ) {
249 
250  if(nullptr == mub) {
251  mub = new G4MuBremsstrahlung();
252  mup = new G4MuPairProduction();
253  mumsc = new G4MuMultipleScattering();
254  mumsc->AddEmModel(0, new G4WentzelVIModel());
255  }
256  ph->RegisterProcess(mumsc, particle);
257  ph->RegisterProcess(new G4MuIonisation(), particle);
258  ph->RegisterProcess(mub, particle);
259  ph->RegisterProcess(mup, particle);
260  ph->RegisterProcess(new G4CoulombScattering(), particle);
261 
262  } else if (particleName == "alpha" ||
263  particleName == "He3" ) {
264 
265  ph->RegisterProcess(new G4hMultipleScattering(), particle);
266  ph->RegisterProcess(new G4ionIonisation(), particle);
267 
268  } else if (particleName == "GenericIon") {
269 
270  if(nullptr == hmsc) {
271  hmsc = new G4hMultipleScattering("ionmsc");
272  }
273  ph->RegisterProcess(hmsc, particle);
274  ph->RegisterProcess(new G4ionIonisation(), particle);
275 
276  } else if (particleName == "pi+" ||
277  particleName == "pi-" ) {
278 
279  if(nullptr == pib) {
280  pib = new G4hBremsstrahlung();
281  pip = new G4hPairProduction();
282  pimsc = new G4MuMultipleScattering();
283  pimsc->AddEmModel(0, new G4WentzelVIModel());
284  }
285  ph->RegisterProcess(pimsc, particle);
286  ph->RegisterProcess(new G4hIonisation(), particle);
287  ph->RegisterProcess(pib, particle);
288  ph->RegisterProcess(pip, particle);
289  ph->RegisterProcess(new G4CoulombScattering(), particle);
290 
291  } else if (particleName == "kaon+" ||
292  particleName == "kaon-" ) {
293 
294  if(nullptr == kb) {
295  kb = new G4hBremsstrahlung();
296  kp = new G4hPairProduction();
297  kmsc = new G4MuMultipleScattering();
298  kmsc->AddEmModel(0, new G4WentzelVIModel());
299  }
300  ph->RegisterProcess(kmsc, particle);
301  ph->RegisterProcess(new G4hIonisation(), particle);
302  ph->RegisterProcess(kb, particle);
303  ph->RegisterProcess(kp, particle);
304  ph->RegisterProcess(new G4CoulombScattering(), particle);
305 
306  } else if (particleName == "proton" ||
307  particleName == "anti_proton") {
308 
309  if(nullptr == pb) {
310  pb = new G4hBremsstrahlung();
311  pp = new G4hPairProduction();
312  pmsc = new G4MuMultipleScattering();
313  pmsc->AddEmModel(0, new G4WentzelVIModel());
314  }
315  ph->RegisterProcess(pmsc, particle);
316  ph->RegisterProcess(new G4hIonisation(), particle);
317  ph->RegisterProcess(pb, particle);
318  ph->RegisterProcess(pp, particle);
319  ph->RegisterProcess(new G4CoulombScattering(), particle);
320 
321  } else if (particleName == "B+" ||
322  particleName == "B-" ||
323  particleName == "D+" ||
324  particleName == "D-" ||
325  particleName == "Ds+" ||
326  particleName == "Ds-" ||
327  particleName == "anti_He3" ||
328  particleName == "anti_alpha" ||
329  particleName == "anti_deuteron" ||
330  particleName == "anti_lambda_c+" ||
331  particleName == "anti_omega-" ||
332  particleName == "anti_sigma_c+" ||
333  particleName == "anti_sigma_c++" ||
334  particleName == "anti_sigma+" ||
335  particleName == "anti_sigma-" ||
336  particleName == "anti_triton" ||
337  particleName == "anti_xi_c+" ||
338  particleName == "anti_xi-" ||
339  particleName == "deuteron" ||
340  particleName == "lambda_c+" ||
341  particleName == "omega-" ||
342  particleName == "sigma_c+" ||
343  particleName == "sigma_c++" ||
344  particleName == "sigma+" ||
345  particleName == "sigma-" ||
346  particleName == "tau+" ||
347  particleName == "tau-" ||
348  particleName == "triton" ||
349  particleName == "xi_c+" ||
350  particleName == "xi-" ) {
351 
352  if(nullptr == hmsc) {
353  hmsc = new G4hMultipleScattering("ionmsc");
354  }
355  ph->RegisterProcess(hmsc, particle);
356  ph->RegisterProcess(new G4hIonisation(), particle);
357  }
358  }
359  G4VAtomDeexcitation* de = new G4UAtomicDeexcitation();
360  G4LossTableManager::Instance()->SetAtomDeexcitation(de);
361 }
const std::vector< G4String > & PartNames() const
int kp
susybsm::MuonSegmentCollection msc
Definition: classes.h:32
const double MeV

Member Data Documentation

G4int CMSEmStandardPhysicsLPM::verbose
private

Definition at line 18 of file CMSEmStandardPhysicsLPM.h.