CMS 3D CMS Logo

List of all members | Public Types | Public Member Functions | Public Attributes | Private Attributes
Basic3DVector< T > Class Template Reference

#include <extBasic3DVector.h>

Public Types

typedef Geom::Cylindrical2Cartesian< TCylindrical
 
typedef Geom::Cylindrical2Cartesian< TCylindrical
 
typedef Geom::Cylindrical2Cartesian< TCylindrical
 
typedef Vec4< TMathVector
 
typedef mathSSE::Vec4< TMathVector
 
typedef Basic3DVector< TMathVector
 
typedef Spherical Polar
 
typedef Spherical Polar
 
typedef Spherical Polar
 
typedef T ScalarType
 
typedef T ScalarType
 
typedef T ScalarType
 
typedef Geom::Spherical2Cartesian< TSpherical
 
typedef Geom::Spherical2Cartesian< TSpherical
 
typedef Geom::Spherical2Cartesian< TSpherical
 
typedef Vec4< TVectorType
 
typedef mathSSE::Vec4< TVectorType
 

Public Member Functions

T barePhi () const
 
T barePhi () const
 
T barePhi () const
 
T bareTheta () const
 
T bareTheta () const
 
T bareTheta () const
 
 Basic3DVector ()
 
 Basic3DVector ()
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
 Basic3DVector ()
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
 Basic3DVector (MathVector const &iv)
 
template<class U >
 Basic3DVector (mathSSE::Vec4< U > const &iv)
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
template<class U >
 Basic3DVector (Vec4< U > const &iv)
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
Basic3DVector cross (const Basic3DVector &lh) const
 Vector product, or "cross" product, with a vector of same type. More...
 
Basic3DVector cross (const Basic3DVector &lh) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross (const Basic3DVector< U > &lh) const
 
template<class U >
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross (const Basic3DVector< U > &lh) const
 
Basic3DVector cross (const Basic3DVector &v) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename PreciseFloatType< T, U >::Type > cross (const Basic3DVector< U > &v) const
 
T dot (const Basic3DVector &rh) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
T dot (const Basic3DVector &rh) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &lh) const
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &lh) const
 
T dot (const Basic3DVector &v) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &v) const
 
T eta () const
 
T eta () const
 
T eta () const
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
MathVector const & mathVector () const
 
MathVectormathVector ()
 
MathVector const & mathVector () const
 
MathVectormathVector ()
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
bool operator== (const Basic3DVector &rh) const
 
bool operator== (const Basic3DVector &rh) const
 
bool operator== (const Basic3DVector &rh) const
 
T operator[] (int i) const
 
Toperator[] (int i)
 
T operator[] (int i) const
 
Toperator[] (int i)
 
T operator[] (int i) const
 
Toperator[] (int i)
 
T perp () const
 Magnitude of transverse component. More...
 
T perp () const
 Magnitude of transverse component. More...
 
T perp () const
 Magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
Geom::Phi< Tphi () const
 
Geom::Phi< Tphi () const
 
Geom::Phi< Tphi () const
 
Geom::Theta< Ttheta () const
 
Geom::Theta< Ttheta () const
 
Geom::Theta< Ttheta () const
 
T transverse () const
 Another name for perp() More...
 
T transverse () const
 Another name for perp() More...
 
T transverse () const
 Another name for perp() More...
 
Basic3DVector unit () const
 
Basic3DVector unit () const
 
Basic3DVector unit () const
 
T w () const
 
T w () const
 
T w () const
 
T x () const
 Cartesian x coordinate. More...
 
T x () const
 Cartesian x coordinate. More...
 
T x () const
 Cartesian x coordinate. More...
 
Basic2DVector< Txy () const
 
Basic2DVector< Txy () const
 
Basic2DVector< Txy () const
 
T y () const
 Cartesian y coordinate. More...
 
T y () const
 Cartesian y coordinate. More...
 
T y () const
 Cartesian y coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 

Public Attributes

mathSSE::Vec4< Tv
 
Vec4< Tv
 

Private Attributes

T theW
 
T theX
 
T theY
 
T theZ
 

Detailed Description

template<typename T>
class Basic3DVector< T >

Definition at line 24 of file extBasic3DVector.h.

Member Typedef Documentation

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 30 of file extBasic3DVector.h.

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 30 of file sseBasic3DVector.h.

template<typename T>
typedef Geom::Cylindrical2Cartesian<T> Basic3DVector< T >::Cylindrical

Definition at line 35 of file oldBasic3DVector.h.

template<typename T>
typedef Vec4<T> Basic3DVector< T >::MathVector

Definition at line 29 of file extBasic3DVector.h.

template<typename T>
typedef mathSSE::Vec4<T> Basic3DVector< T >::MathVector

Definition at line 29 of file sseBasic3DVector.h.

template<typename T>
typedef Basic3DVector<T> Basic3DVector< T >::MathVector

Definition at line 31 of file oldBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 32 of file sseBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 32 of file extBasic3DVector.h.

template<typename T>
typedef Spherical Basic3DVector< T >::Polar

Definition at line 37 of file oldBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 27 of file sseBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 27 of file extBasic3DVector.h.

template<typename T>
typedef T Basic3DVector< T >::ScalarType

Definition at line 34 of file oldBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 31 of file sseBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 31 of file extBasic3DVector.h.

template<typename T>
typedef Geom::Spherical2Cartesian<T> Basic3DVector< T >::Spherical

Definition at line 36 of file oldBasic3DVector.h.

template<typename T>
typedef Vec4<T> Basic3DVector< T >::VectorType

Definition at line 28 of file extBasic3DVector.h.

template<typename T>
typedef mathSSE::Vec4<T> Basic3DVector< T >::VectorType

Definition at line 28 of file sseBasic3DVector.h.

Constructor & Destructor Documentation

template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 38 of file extBasic3DVector.h.

Referenced by Basic3DVector< long double >::cross(), and theta().

38 : v{0,0,0,0} {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 41 of file extBasic3DVector.h.

41  :
42  v(p.v) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 46 of file extBasic3DVector.h.

46  :
47  v{T(p.v[0]),T(p.v[1]),T(p.v[2]),T(p.v[3])} {}
long double T
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 51 of file extBasic3DVector.h.

51  :
52  v{p.x(),p.y(),0} {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 64 of file extBasic3DVector.h.

64  :
65  v{T(p.x()),T(p.y()),T(p.z())} {}
long double T
template<typename T>
Basic3DVector< T >::Basic3DVector ( MathVector const &  iv)
inline

Definition at line 69 of file extBasic3DVector.h.

69  :
70  v(iv) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( Vec4< U > const &  iv)
inline

Definition at line 73 of file extBasic3DVector.h.

73  :
74  v{T(iv[0]),T(iv[1]),T(iv[2]),T(iv[3])} {}
long double T
template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)
inline

construct from cartesian coordinates

Definition at line 77 of file extBasic3DVector.h.

77  :
78  v{x,y,z,w}{}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 85 of file extBasic3DVector.h.

86  {
87  Polar p( theta.value(), phi.value(), r);
88  v[0] = p.x(); v[1] = p.y(); v[2] = p.z();
89  }
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38
template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 43 of file oldBasic3DVector.h.

template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 46 of file oldBasic3DVector.h.

46  :
47  theX(p.x()), theY(p.y()), theZ(p.z()), theW(p.w()) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 51 of file oldBasic3DVector.h.

51  :
52  theX(p.x()), theY(p.y()), theZ(p.z()), theW(p.w()) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 55 of file oldBasic3DVector.h.

55  :
56  theX(p.x()), theY(p.y()), theZ(0), theW(0) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 67 of file oldBasic3DVector.h.

template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)
inline

construct from cartesian coordinates

Definition at line 84 of file oldBasic3DVector.h.

84  :
85  theX(x), theY(y), theZ(z), theW(w) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 101 of file oldBasic3DVector.h.

102  {
103  Polar p( theta.value(), phi.value(), r);
104  theX = p.x(); theY = p.y(); theZ = p.z();
105  }
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38
template<typename T>
Basic3DVector< T >::Basic3DVector ( )
inline

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 38 of file sseBasic3DVector.h.

38 {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< T > &  p)
inline

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 41 of file sseBasic3DVector.h.

41  :
42  v(p.v) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( const Basic3DVector< U > &  p)
inline

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 46 of file sseBasic3DVector.h.

46  :
47  v(p.v) {}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const Basic2DVector< T > &  p)
inline

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 51 of file sseBasic3DVector.h.

51  :
52  v(p.x(),p.y(),0) {}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
template<class OtherPoint >
Basic3DVector< T >::Basic3DVector ( const OtherPoint &  p)
inlineexplicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 64 of file sseBasic3DVector.h.

64  :
65  v(p.x(),p.y(),p.z()) {}
template<typename T>
template<class U >
Basic3DVector< T >::Basic3DVector ( mathSSE::Vec4< U > const &  iv)
inline

Definition at line 70 of file sseBasic3DVector.h.

70 : v(iv){}
template<typename T>
Basic3DVector< T >::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)
inline

construct from cartesian coordinates

Definition at line 73 of file sseBasic3DVector.h.

73  :
74  v(x,y,z,w){}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<typename U >
Basic3DVector< T >::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)
inline

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 81 of file sseBasic3DVector.h.

82  {
83  Polar p( theta.value(), phi.value(), r);
84  v.o.theX = p.x(); v.o.theY = p.y(); v.o.theZ = p.z();
85  }
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Theta.h:25
T value() const
Explicit access to value in case implicit conversion not OK.
Definition: Phi.h:38

Member Function Documentation

template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 130 of file sseBasic3DVector.h.

130 {return std::atan2(y(),x());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 136 of file extBasic3DVector.h.

Referenced by PV3DBase< T, PointTag, FrameTag >::barePhi(), and Basic3DVector< long double >::phi().

136 {return std::atan2(y(),x());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
T Basic3DVector< T >::barePhi ( ) const
inline

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 152 of file oldBasic3DVector.h.

152 {return std::atan2(y(),x());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 137 of file sseBasic3DVector.h.

137 {return std::atan2(perp(),z());}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 143 of file extBasic3DVector.h.

Referenced by PV3DBase< T, PointTag, FrameTag >::bareTheta().

143 {return std::atan2(perp(),z());}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::bareTheta ( ) const
inline

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 159 of file oldBasic3DVector.h.

159 {return std::atan2(perp(),z());}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  lh) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 204 of file sseBasic3DVector.h.

204  {
205  return ::cross(v,lh.v);
206  }
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  lh) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 210 of file extBasic3DVector.h.

Referenced by Vector3DBase< float, MeasurementTag >::cross(), CartesianLorentzForce::operator()(), and TkRotation< align::Scalar >::TkRotation().

210  {
211  return ::cross3(v,lh.v);
212  }
Vec cross3(Vec x, Vec y)
Definition: ExtVec.h:94
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  lh) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 216 of file sseBasic3DVector.h.

216  {
219  }
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  lh) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 222 of file extBasic3DVector.h.

222  {
225  }
Basic3DVector cross(const Basic3DVector &lh) const
Vector product, or "cross" product, with a vector of same type.
template<typename T>
Basic3DVector Basic3DVector< T >::cross ( const Basic3DVector< T > &  v) const
inline

Vector product, or "cross" product, with a vector of same type.

Definition at line 239 of file oldBasic3DVector.h.

239  {
240  return Basic3DVector( y()*v.z() - v.y()*z(),
241  z()*v.x() - v.z()*x(),
242  x()*v.y() - v.x()*y());
243  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> Basic3DVector< T >::cross ( const Basic3DVector< U > &  v) const
inline

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 253 of file oldBasic3DVector.h.

253  {
254  return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(),
255  z()*v.x() - v.z()*x(),
256  x()*v.y() - v.x()*y());
257  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  rh) const
inline

Scalar product, or "dot" product, with a vector of same type.

Definition at line 188 of file sseBasic3DVector.h.

188  {
189  return ::dot(v,rh.v);
190  }
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  rh) const
inline
template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  lh) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 198 of file sseBasic3DVector.h.

198  {
201  }
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  lh) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 204 of file extBasic3DVector.h.

204  {
207  }
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
template<typename T>
T Basic3DVector< T >::dot ( const Basic3DVector< T > &  v) const
inline

Scalar product, or "dot" product, with a vector of same type.

Definition at line 224 of file oldBasic3DVector.h.

224  {
225  return x()*v.x() + y()*v.y() + z()*v.z();
226  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
PreciseFloatType<T,U>::Type Basic3DVector< T >::dot ( const Basic3DVector< U > &  v) const
inline

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 234 of file oldBasic3DVector.h.

234  {
235  return x()*v.x() + y()*v.y() + z()*v.z();
236  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 145 of file sseBasic3DVector.h.

Referenced by Particle.Particle::__str__(), Jet.Jet::jetID(), and Jet.Jet::puJetId().

145 { return detailsBasic3DVector::eta(x(),y(),z());} // correct
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T eta() const
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 151 of file extBasic3DVector.h.

Referenced by Particle.Particle::__str__(), CosmicMuonTrajectoryBuilder::build(), RBXAndHPDCleaner::clean(), PV3DBase< T, PointTag, FrameTag >::eta(), Jet.Jet::jetID(), and Jet.Jet::puJetId().

151 { return detailsBasic3DVector::eta(x(),y(),z());} // correct
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
T eta() const
template<typename T>
T Basic3DVector< T >::eta ( ) const
inline

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 167 of file oldBasic3DVector.h.

Referenced by Particle.Particle::__str__(), Jet.Jet::jetID(), and Jet.Jet::puJetId().

167 { return detailsBasic3DVector::eta(x(),y(),z());} // correct
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
T eta() const
template<typename T>
T Basic3DVector< T >::mag ( ) const
inline

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 115 of file sseBasic3DVector.h.

115 { return std::sqrt( mag2());}
T sqrt(T t)
Definition: SSEVec.h:18
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
T Basic3DVector< T >::mag ( ) const
inline
template<typename T>
T Basic3DVector< T >::mag ( ) const
inline

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 137 of file oldBasic3DVector.h.

137 { return std::sqrt( mag2());}
T sqrt(T t)
Definition: SSEVec.h:18
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 112 of file sseBasic3DVector.h.

112 { return ::dot(v,v);}
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 118 of file extBasic3DVector.h.

Referenced by PFAlgo::checkCleaning(), PFDisplacedVertexFinder::getTransvLongDiff(), Basic3DVector< long double >::mag(), PV3DBase< T, PointTag, FrameTag >::mag2(), HelixExtrapolatorToLine2Order::pathLength(), reco::PFRecHit::pt2(), TkRotation< align::Scalar >::rotateAxes(), and Basic3DVector< long double >::unit().

118 { return ::dot(v,v);}
T dot(const Basic3DVector &rh) const
Scalar product, or "dot" product, with a vector of same type.
template<typename T>
T Basic3DVector< T >::mag2 ( ) const
inline

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 134 of file oldBasic3DVector.h.

134 { return x()*x() + y()*y()+z()*z();}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
MathVector const& Basic3DVector< T >::mathVector ( ) const
inline

Definition at line 87 of file sseBasic3DVector.h.

87 { return v;}
template<typename T>
MathVector& Basic3DVector< T >::mathVector ( )
inline

Definition at line 88 of file sseBasic3DVector.h.

88 { return v;}
template<typename T>
MathVector const& Basic3DVector< T >::mathVector ( ) const
inline

Definition at line 91 of file extBasic3DVector.h.

91 { return v;}
template<typename T>
MathVector& Basic3DVector< T >::mathVector ( )
inline

Definition at line 92 of file extBasic3DVector.h.

92 { return v;}
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 175 of file sseBasic3DVector.h.

175  {
176  v = t*v;
177  return *this;
178  }
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 181 of file extBasic3DVector.h.

181  {
182  v = t*v;
183  return *this;
184  }
template<typename T>
Basic3DVector& Basic3DVector< T >::operator*= ( T  t)
inline

Scaling by a scalar value (multiplication)

Definition at line 205 of file oldBasic3DVector.h.

205  {
206  theX *= t;
207  theY *= t;
208  theZ *= t;
209  theW *= t;;
210  return *this;
211  }
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 158 of file sseBasic3DVector.h.

158  {
159  v = v + p.v;
160  return *this;
161  }
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 164 of file extBasic3DVector.h.

164  {
165  v = v + p.v;
166  return *this;
167  }
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator+= ( const Basic3DVector< U > &  p)
inline

Operator += with a Basic3DVector of possibly different precision.

Definition at line 182 of file oldBasic3DVector.h.

182  {
183  theX += p.x();
184  theY += p.y();
185  theZ += p.z();
186  theW += p.w();
187  return *this;
188  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 172 of file sseBasic3DVector.h.

172 { return Basic3DVector(-v);}
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 178 of file extBasic3DVector.h.

178 { return Basic3DVector(-v);}
template<typename T>
Basic3DVector Basic3DVector< T >::operator- ( ) const
inline

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 202 of file oldBasic3DVector.h.

202 { return Basic3DVector(-x(),-y(),-z());}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 166 of file sseBasic3DVector.h.

166  {
167  v = v - p.v;
168  return *this;
169  }
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 172 of file extBasic3DVector.h.

172  {
173  v = v - p.v;
174  return *this;
175  }
template<typename T>
template<class U >
Basic3DVector& Basic3DVector< T >::operator-= ( const Basic3DVector< U > &  p)
inline

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 193 of file oldBasic3DVector.h.

193  {
194  theX -= p.x();
195  theY -= p.y();
196  theZ -= p.z();
197  theW -= p.w();
198  return *this;
199  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 181 of file sseBasic3DVector.h.

181  {
182  //t = T(1)/t;
183  v = v/t;
184  return *this;
185  }
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 187 of file extBasic3DVector.h.

187  {
188  //t = T(1)/t;
189  v = v/t;
190  return *this;
191  }
template<typename T>
Basic3DVector& Basic3DVector< T >::operator/= ( T  t)
inline

Scaling by a scalar value (division)

Definition at line 214 of file oldBasic3DVector.h.

214  {
215  t = T(1)/t;
216  theX *= t;
217  theY *= t;
218  theZ *= t;
219  theW *= t;;
220  return *this;
221  }
long double T
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 107 of file sseBasic3DVector.h.

107  {
108  return v==rh.v;
109  }
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 112 of file extBasic3DVector.h.

112  {
113  auto res = v==rh.v;
114  return res[0]&res[1]&res[2]&res[3];
115  }
Definition: Electron.h:4
template<typename T>
bool Basic3DVector< T >::operator== ( const Basic3DVector< T > &  rh) const
inline

Definition at line 129 of file oldBasic3DVector.h.

129  {
130  return x()==rh.x() && y()==rh.y() && z()==rh.z();
131  }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<typename T>
T Basic3DVector< T >::operator[] ( int  i) const
inline

Definition at line 90 of file sseBasic3DVector.h.

90 { return v[i];}
template<typename T>
T& Basic3DVector< T >::operator[] ( int  i)
inline

Definition at line 91 of file sseBasic3DVector.h.

91 { return v[i];}
template<typename T>
T Basic3DVector< T >::operator[] ( int  i) const
inline

Definition at line 94 of file extBasic3DVector.h.

94 { return v[i];}
template<typename T>
T& Basic3DVector< T >::operator[] ( int  i)
inline

Definition at line 95 of file extBasic3DVector.h.

95 { return v[i];}
template<typename T>
T Basic3DVector< T >::operator[] ( int  i) const
inline

Definition at line 108 of file oldBasic3DVector.h.

108 { return *((&theX)+i) ;}
template<typename T>
T& Basic3DVector< T >::operator[] ( int  i)
inline

Definition at line 109 of file oldBasic3DVector.h.

109 { return *((&theX)+i);}
template<typename T>
T Basic3DVector< T >::perp ( ) const
inline

Magnitude of transverse component.

Definition at line 121 of file sseBasic3DVector.h.

121 { return std::sqrt( perp2());}
T perp2() const
Squared magnitude of transverse component.
T sqrt(T t)
Definition: SSEVec.h:18
template<typename T>
T Basic3DVector< T >::perp ( ) const
inline
template<typename T>
T Basic3DVector< T >::perp ( ) const
inline

Magnitude of transverse component.

Definition at line 143 of file oldBasic3DVector.h.

143 { return std::sqrt( perp2());}
T perp2() const
Squared magnitude of transverse component.
T sqrt(T t)
Definition: SSEVec.h:18
template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 118 of file sseBasic3DVector.h.

118 { return ::dotxy(v,v);}
template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 124 of file extBasic3DVector.h.

Referenced by Basic3DVector< long double >::perp(), PV3DBase< T, PointTag, FrameTag >::perp2(), and reco::PFRecHit::pt2().

124 { return ::dot2(v,v);}
auto dot2(V1 x, V2 y) -> typename std::remove_reference< decltype(x[0])>::type
Definition: ExtVec.h:150
template<typename T>
T Basic3DVector< T >::perp2 ( ) const
inline

Squared magnitude of transverse component.

Definition at line 140 of file oldBasic3DVector.h.

140 { return x()*x() + y()*y();}
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline

Definition at line 131 of file sseBasic3DVector.h.

Referenced by Particle.Particle::__str__(), and ntupleDataFormat.Track::phiPull().

131 {return Geom::Phi<T>(barePhi());}
T barePhi() const
Definition: Phi.h:20
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline
template<typename T>
Geom::Phi<T> Basic3DVector< T >::phi ( ) const
inline

Definition at line 153 of file oldBasic3DVector.h.

Referenced by Particle.Particle::__str__(), and ntupleDataFormat.Track::phiPull().

153 {return Geom::Phi<T>(barePhi());}
T barePhi() const
Definition: Phi.h:20
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 138 of file sseBasic3DVector.h.

Referenced by Tau.Tau::zImpact().

138 {return Geom::Theta<T>(std::atan2(perp(),z()));}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 144 of file extBasic3DVector.h.

Referenced by AlCaHOCalibProducer::fillHOStore(), PV3DBase< T, PointTag, FrameTag >::theta(), TkRotation< align::Scalar >::TkRotation(), and Tau.Tau::zImpact().

144 {return Geom::Theta<T>(std::atan2(perp(),z()));}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
Geom::Theta<T> Basic3DVector< T >::theta ( ) const
inline

Definition at line 160 of file oldBasic3DVector.h.

Referenced by Tau.Tau::zImpact().

160 {return Geom::Theta<T>(std::atan2(perp(),z()));}
T z() const
Cartesian z coordinate.
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 124 of file sseBasic3DVector.h.

124 { return perp();}
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 130 of file extBasic3DVector.h.

Referenced by PV3DBase< T, PointTag, FrameTag >::transverse().

130 { return perp();}
T perp() const
Magnitude of transverse component.
template<typename T>
T Basic3DVector< T >::transverse ( ) const
inline

Another name for perp()

Definition at line 146 of file oldBasic3DVector.h.

146 { return perp();}
T perp() const
Magnitude of transverse component.
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 150 of file sseBasic3DVector.h.

150  {
151  T my_mag = mag2();
152  return (0!=my_mag) ? (*this)*(T(1)/std::sqrt(my_mag)) : *this;
153  }
T sqrt(T t)
Definition: SSEVec.h:18
long double T
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 156 of file extBasic3DVector.h.

Referenced by CaloTowersCreationAlgo::convert(), HybridClusterAlgo::makeClusters(), CartesianLorentzForce::operator()(), PathToPlane2Order::operator()(), HelixBarrelPlaneCrossingByCircle::position(), and TkRotation< align::Scalar >::TkRotation().

156  {
157  T my_mag = mag2();
158  return (0!=my_mag) ? (*this)*(T(1)/std::sqrt(my_mag)) : *this;
159  }
T sqrt(T t)
Definition: SSEVec.h:18
long double T
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
Basic3DVector Basic3DVector< T >::unit ( ) const
inline

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 172 of file oldBasic3DVector.h.

172  {
173  T my_mag = mag2();
174  if (my_mag==0) return *this;
175  my_mag = T(1)/std::sqrt(my_mag);
176  return *this * my_mag;
177  }
T sqrt(T t)
Definition: SSEVec.h:18
long double T
T mag2() const
The vector magnitude squared. Equivalent to vec.dot(vec)
template<typename T>
T Basic3DVector< T >::w ( ) const
inline

Definition at line 102 of file sseBasic3DVector.h.

102 { return v.o.theW;}
template<typename T>
T Basic3DVector< T >::w ( ) const
inline

Definition at line 107 of file extBasic3DVector.h.

Referenced by operator*().

107 { return v[3];}
template<typename T>
T Basic3DVector< T >::w ( ) const
inline

Definition at line 122 of file oldBasic3DVector.h.

122 { return theW;}
template<typename T>
T Basic3DVector< T >::x ( ) const
inline
template<typename T>
T Basic3DVector< T >::x ( ) const
inline

Cartesian x coordinate.

Definition at line 99 of file extBasic3DVector.h.

Referenced by svgfig.Curve.Sample::__repr__(), svgfig.Ellipse::__repr__(), LinearEquation3< T >::Array3< U >::Array3(), Vispa.Gui.WidgetContainer.WidgetContainer::autosize(), Basic3DVector(), Vispa.Gui.VispaWidget.VispaWidget::boundingRect(), PFAlgo::checkCleaning(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< long double >::cross(), Basic3DVector< float >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< float >::dot(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), PhiInterval::inside(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), TkRotation< align::Scalar >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), PathToPlane2Order::operator()(), operator*(), operator+(), Basic3DVector< float >::operator+=(), operator-(), Basic3DVector< float >::operator-=(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< long double >::operator==(), Basic3DVector< float >::operator==(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), Basic3DVector< long double >::perp2(), geometryXMLparser.Alignable::pos(), HelixBarrelPlaneCrossingByCircle::position(), HelixArbitraryPlaneCrossing::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixExtrapolatorToLine2Order::positionInDouble(), Vispa.Gui.ConnectableWidget.ConnectableWidget::positionizeMenuWidget(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), ntupleDataFormat._HitObject::r(), ntupleDataFormat._HitObject::r3D(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotate(), TkRotation< align::Scalar >::rotateAxes(), TkRotation< align::Scalar >::rotateBack(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), theta(), reco::trackingParametersAtClosestApproachToBeamSpot(), ThirdHitPredictionFromInvLine::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), reco::PFDisplacedVertexSeed::updateSeedPoint(), PV3DBase< T, PointTag, FrameTag >::x(), and xy().

99 { return v[0];}
template<typename T>
T Basic3DVector< T >::x ( ) const
inline
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline

Definition at line 104 of file sseBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::covariance().

104 { return v.xy();}
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline

Definition at line 109 of file extBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::covariance(), and LinkByRecHit::testECALAndPSByRecHit().

109 { return ::xy(v);}
Basic2DVector< T > xy() const
template<typename T>
Basic2DVector<T> Basic3DVector< T >::xy ( ) const
inline
template<typename T>
T Basic3DVector< T >::y ( ) const
inline
template<typename T>
T Basic3DVector< T >::y ( ) const
inline

Cartesian y coordinate.

Definition at line 102 of file extBasic3DVector.h.

Referenced by svgfig.Ellipse::__repr__(), AlignmentParameterStore::acquireRelativeParameters(), LinearEquation3< T >::Array3< U >::Array3(), Vispa.Gui.WidgetContainer.WidgetContainer::autosize(), Basic3DVector(), Vispa.Gui.VispaWidget.VispaWidget::boundingRect(), PFAlgo::checkCleaning(), HelixBarrelPlaneCrossingByCircle::chooseSolution(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< long double >::cross(), Basic3DVector< float >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< float >::dot(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), PhiInterval::inside(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), ThirdHitPredictionFromInvLine::MappedPoint< T >::MappedPoint(), ConformalMappingFit::MappedPoint< T >::MappedPoint(), reco::PFDisplacedVertexSeed::mergeWith(), TkRotation< align::Scalar >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), PathToPlane2Order::operator()(), operator*(), operator+(), operator-(), Basic3DVector< float >::operator-=(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< long double >::operator==(), Basic3DVector< float >::operator==(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixExtrapolatorToLine2Order::pathLength(), Basic3DVector< long double >::perp2(), geometryXMLparser.Alignable::pos(), HelixBarrelPlaneCrossingByCircle::position(), HelixArbitraryPlaneCrossing::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixExtrapolatorToLine2Order::positionInDouble(), Vispa.Gui.ConnectableWidget.ConnectableWidget::positionizeMenuWidget(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), ntupleDataFormat._HitObject::r(), ntupleDataFormat._HitObject::r3D(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotate(), TkRotation< align::Scalar >::rotateAxes(), TkRotation< align::Scalar >::rotateBack(), VertexDistanceXY::signedDistance(), VertexDistance3D::signedDistance(), theta(), reco::trackingParametersAtClosestApproachToBeamSpot(), ThirdHitPredictionFromInvLine::MappedPoint< T >::unmap(), ConformalMappingFit::MappedPoint< T >::unmap(), reco::PFDisplacedVertexSeed::updateSeedPoint(), xy(), and PV3DBase< T, PointTag, FrameTag >::y().

102 { return v[1];}
template<typename T>
T Basic3DVector< T >::y ( ) const
inline
template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 100 of file sseBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::pos(), and ntupleDataFormat._HitObject::r3D().

100 { return v.o.theZ;}
template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 105 of file extBasic3DVector.h.

Referenced by l1t::HGCalClusterT< l1t::HGCalCluster >::addConstituent(), LinearEquation3< T >::Array3< U >::Array3(), PFAlgo::checkCleaning(), TSCPBuilderNoMaterial::createFTSatTransverseImpactPointCharged(), Basic3DVector< long double >::cross(), Basic3DVector< float >::cross(), HelixBarrelPlaneCrossingByCircle::direction(), HelixArbitraryPlaneCrossing::direction(), HelixArbitraryPlaneCrossing2Order::direction(), HelixExtrapolatorToLine2Order::directionInDouble(), Basic3DVector< long double >::dot(), Basic3DVector< float >::dot(), IterativeHelixExtrapolatorToLine::genericPathLength(), HelixArbitraryPlaneCrossing::HelixArbitraryPlaneCrossing(), HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order(), HelixExtrapolatorToLine2Order::HelixExtrapolatorToLine2Order(), HelixForwardPlaneCrossing::HelixForwardPlaneCrossing(), HelixBarrelPlaneCrossingByCircle::init(), EtaInterval::inside(), IterativeHelixExtrapolatorToLine::IterativeHelixExtrapolatorToLine(), Basic3DVector< long double >::mag2(), reco::PFDisplacedVertexSeed::mergeWith(), TkRotation< align::Scalar >::multiplyInverse(), HelixArbitraryPlaneCrossing::notAtSurface(), RK4PreciseStep::operator()(), PathToPlane2Order::operator()(), operator*(), operator+(), operator-(), LinearEquation3< T >::Array3< U >::operator=(), Basic3DVector< long double >::operator==(), Basic3DVector< float >::operator==(), HelixForwardPlaneCrossing::pathLength(), geometryXMLparser.Alignable::pos(), HelixBarrelPlaneCrossingByCircle::position(), HelixArbitraryPlaneCrossing::position(), HelixArbitraryPlaneCrossing2Order::position(), HelixExtrapolatorToLine2Order::positionInDouble(), RKPropagatorInS::propagateParametersOnCylinder(), TrackKinematicStatePropagator::propagateToTheTransversePCACharged(), ntupleDataFormat._HitObject::r3D(), CartesianStateAdaptor::rkstate(), TkRotation< align::Scalar >::rotate(), TkRotation< align::Scalar >::rotateAxes(), TkRotation< align::Scalar >::rotateBack(), VertexDistance3D::signedDistance(), Basic3DVector< long double >::theta(), theta(), reco::trackingParametersAtClosestApproachToBeamSpot(), reco::PFDisplacedVertexSeed::updateSeedPoint(), x(), xy(), and PV3DBase< T, PointTag, FrameTag >::z().

105 { return v[2];}
template<typename T>
T Basic3DVector< T >::z ( ) const
inline

Cartesian z coordinate.

Definition at line 120 of file oldBasic3DVector.h.

Referenced by geometryXMLparser.Alignable::pos(), and ntupleDataFormat._HitObject::r3D().

120 { return theZ;}

Member Data Documentation

template<typename T>
T Basic3DVector< T >::theW
private

Definition at line 263 of file oldBasic3DVector.h.

template<typename T>
T Basic3DVector< T >::theX
private
template<typename T>
T Basic3DVector< T >::theY
private
template<typename T>
T Basic3DVector< T >::theZ
private
template<typename T>
mathSSE::Vec4<T> Basic3DVector< T >::v

Definition at line 222 of file sseBasic3DVector.h.

template<typename T>
Vec4<T> Basic3DVector< T >::v