CMS 3D CMS Logo

PixelThresholdClusterizer.cc
Go to the documentation of this file.
1 //----------------------------------------------------------------------------
20 //----------------------------------------------------------------------------
21 
22 // Our own includes
24 #include "SiPixelArrayBuffer.h"
26 // Geometry
29 //#include "Geometry/CommonTopologies/RectangularPixelTopology.h"
30 
31 // STL
32 #include <stack>
33 #include <vector>
34 #include <iostream>
35 #include <atomic>
36 using namespace std;
37 
38 //----------------------------------------------------------------------------
42 //----------------------------------------------------------------------------
44  (edm::ParameterSet const& conf) :
45  bufferAlreadySet(false),
46  // Get thresholds in electrons
47  thePixelThreshold( conf.getParameter<int>("ChannelThreshold") ),
48  theSeedThreshold( conf.getParameter<int>("SeedThreshold") ),
49  theClusterThreshold( conf.getParameter<int>("ClusterThreshold") ),
50  theClusterThreshold_L1( conf.getParameter<int>("ClusterThreshold_L1") ),
51  theConversionFactor( conf.getParameter<int>("VCaltoElectronGain") ),
52  theConversionFactor_L1( conf.getParameter<int>("VCaltoElectronGain_L1") ),
53  theOffset( conf.getParameter<int>("VCaltoElectronOffset") ),
54  theOffset_L1( conf.getParameter<int>("VCaltoElectronOffset_L1") ),
55  theStackADC_( conf.exists("AdcFullScaleStack") ? conf.getParameter<int>("AdcFullScaleStack") : 255 ),
56  theFirstStack_( conf.exists("FirstStackLayer") ? conf.getParameter<int>("FirstStackLayer") : 5 ),
57  theElectronPerADCGain_( conf.exists("ElectronPerADCGain") ? conf.getParameter<double>("ElectronPerADCGain") : 135. ),
58  theNumOfRows(0), theNumOfCols(0), detid_(0),
59  // Get the constants for the miss-calibration studies
60  doMissCalibrate( conf.getUntrackedParameter<bool>("MissCalibrate",true) ),
61  doSplitClusters( conf.getParameter<bool>("SplitClusters") )
62 {
63  theBuffer.setSize( theNumOfRows, theNumOfCols );
64 }
67 
68 
69 // Configuration descriptions
70 void
72  // siPixelClusters
74  desc.add<edm::InputTag>("src", edm::InputTag("siPixelDigis"));
75  desc.add<int>("ChannelThreshold", 1000);
76  desc.addUntracked<bool>("MissCalibrate", true);
77  desc.add<bool>("SplitClusters", false);
78  desc.add<int>("VCaltoElectronGain", 65);
79  desc.add<int>("VCaltoElectronGain_L1", 65);
80  desc.add<int>("VCaltoElectronOffset", -414);
81  desc.add<int>("VCaltoElectronOffset_L1", -414);
82  desc.add<std::string>("payloadType", "Offline");
83  desc.add<int>("SeedThreshold", 1000);
84  desc.add<int>("ClusterThreshold_L1", 4000);
85  desc.add<int>("ClusterThreshold", 4000);
86  desc.add<int>("maxNumberOfClusters", -1);
87  descriptions.add("siPixelClusters", desc);
88 }
89 
90 //----------------------------------------------------------------------------
93 //----------------------------------------------------------------------------
95 {
96  // Cache the topology.
97  const PixelTopology & topol = pixDet->specificTopology();
98 
99  // Get the new sizes.
100  int nrows = topol.nrows(); // rows in x
101  int ncols = topol.ncolumns(); // cols in y
102 
103  theNumOfRows = nrows; // Set new sizes
104  theNumOfCols = ncols;
105 
106  if ( nrows > theBuffer.rows() ||
107  ncols > theBuffer.columns() )
108  { // change only when a larger is needed
109  //if( nrows != theNumOfRows || ncols != theNumOfCols ) {
110  //cout << " PixelThresholdClusterizer: pixel buffer redefined to "
111  // << nrows << " * " << ncols << endl;
112  //theNumOfRows = nrows; // Set new sizes
113  //theNumOfCols = ncols;
114  // Resize the buffer
115  theBuffer.setSize(nrows,ncols); // Modify
116  bufferAlreadySet = true;
117  }
118 
119  return true;
120 }
121 //----------------------------------------------------------------------------
127 //----------------------------------------------------------------------------
128 template<typename T>
130  const PixelGeomDetUnit * pixDet,
131  const TrackerTopology* tTopo,
132  const std::vector<short>& badChannels,
134 
135  typename T::const_iterator begin = input.begin();
136  typename T::const_iterator end = input.end();
137 
138  // Do not bother for empty detectors
139  //if (begin == end) cout << " PixelThresholdClusterizer::clusterizeDetUnit - No digis to clusterize";
140 
141  // Set up the clusterization on this DetId.
142  if ( !setup(pixDet) )
143  return;
144 
145  detid_ = input.detId();
146 
147  // Set separate cluster threshold for L1 (needed for phase1)
148  auto clusterThreshold = theClusterThreshold;
149  layer_ = (DetId(detid_).subdetId()==1) ? tTopo->pxbLayer(detid_) : 0;
150  if (layer_==1) clusterThreshold = theClusterThreshold_L1;
151 
152  // Copy PixelDigis to the buffer array; select the seed pixels
153  // on the way, and store them in theSeeds.
154  copy_to_buffer(begin, end);
155 
156  assert(output.empty());
157  // Loop over all seeds. TO DO: wouldn't using iterators be faster?
158  // edm::LogError("PixelThresholdClusterizer") << "Starting clusterizing" << endl;
159  for (unsigned int i = 0; i < theSeeds.size(); i++)
160  {
161 
162  // Gavril : The charge of seeds that were already inlcuded in clusters is set to 1 electron
163  // so we don't want to call "make_cluster" for these cases
164  if ( theBuffer(theSeeds[i]) >= theSeedThreshold )
165  { // Is this seed still valid?
166  // Make a cluster around this seed
167  SiPixelCluster && cluster = make_cluster( theSeeds[i] , output);
168 
169  // Check if the cluster is above threshold
170  // (TO DO: one is signed, other unsigned, gcc warns...)
171  if ( cluster.charge() >= clusterThreshold)
172  {
173  // std::cout << "putting in this cluster " << i << " " << cluster.charge() << " " << cluster.pixelADC().size() << endl;
174  // sort by row (x)
175  output.push_back( std::move(cluster) );
176  std::push_heap(output.begin(),output.end(),[](SiPixelCluster const & cl1,SiPixelCluster const & cl2) { return cl1.minPixelRow() < cl2.minPixelRow();});
177  }
178  }
179  }
180  // sort by row (x) maybe sorting the seed would suffice....
181  std::sort_heap(output.begin(),output.end(),[](SiPixelCluster const & cl1,SiPixelCluster const & cl2) { return cl1.minPixelRow() < cl2.minPixelRow();});
182 
183  // Erase the seeds.
184  theSeeds.clear();
185 
186  // Need to clean unused pixels from the buffer array.
187  clear_buffer(begin, end);
188 
189 }
190 
191 //----------------------------------------------------------------------------
199 //----------------------------------------------------------------------------
201 {
202  for(DigiIterator di = begin; di != end; ++di )
203  {
204  theBuffer.set_adc( di->row(), di->column(), 0 ); // reset pixel adc to 0
205  }
206 }
207 
209 {
210  for(ClusterIterator ci = begin; ci != end; ++ci )
211  {
212  for(int i = 0; i < ci->size(); ++i)
213  {
214  const SiPixelCluster::Pixel pixel = ci->pixel(i);
215 
216  theBuffer.set_adc( pixel.x, pixel.y, 0 ); // reset pixel adc to 0
217  }
218  }
219 }
220 
221 //----------------------------------------------------------------------------
223 //----------------------------------------------------------------------------
225 {
226 #ifdef PIXELREGRESSION
227  static std::atomic<int> s_ic=0;
228  in ic = ++s_ic;
229  if (ic==1) {
230  // std::cout << (doMissCalibrate ? "VI from db" : "VI linear") << std::endl;
231  }
232 #endif
233  int electron[end-begin];
234  memset(electron, 0, sizeof(electron));
235  if ( doMissCalibrate ) {
236  if (layer_==1) {
237  (*theSiPixelGainCalibrationService_).calibrate(detid_,begin,end,theConversionFactor_L1, theOffset_L1,electron);
238  } else {
239  (*theSiPixelGainCalibrationService_).calibrate(detid_,begin,end,theConversionFactor, theOffset, electron);
240  }
241  } else {
242  int i=0;
243  for(DigiIterator di = begin; di != end; ++di) {
244  auto adc = di->adc();
245  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
246  const float pedestal = 0.; //
247  electron[i] = int(adc * gain + pedestal);
248  if (layer_>=theFirstStack_) {
249  if (theStackADC_==1&&adc==1) {
250  electron[i] = int(255*135); // Arbitrarily use overflow value.
251  }
252  if (theStackADC_>1&&theStackADC_!=255&&adc>=1){
253  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
254  electron[i] = int((adc-1) * gain * 255/float(theStackADC_-1));
255  }
256  }
257  ++i;
258  }
259  assert(i==(end-begin));
260  }
261 
262  int i=0;
263 #ifdef PIXELREGRESSION
264  static std::atomic<int> eqD=0;
265 #endif
266  for(DigiIterator di = begin; di != end; ++di) {
267  int row = di->row();
268  int col = di->column();
269  int adc = electron[i++];
270 #ifdef PIXELREGRESSION
271  int adcOld = calibrate(di->adc(),col,row);
272  //assert(adc==adcOld);
273  if (adc!=adcOld) std::cout << "VI " << eqD <<' '<< ic <<' '<< end-begin <<' '<< i <<' '<< di->adc() <<' ' << adc <<' '<< adcOld << std::endl; else ++eqD;
274 #endif
275  if ( adc >= thePixelThreshold) {
276  theBuffer.set_adc( row, col, adc);
277  if ( adc >= theSeedThreshold) theSeeds.push_back( SiPixelCluster::PixelPos(row,col) );
278  }
279  }
280  assert(i==(end-begin));
281 
282 }
283 
285 {
286  // loop over clusters
287  for(ClusterIterator ci = begin; ci != end; ++ci) {
288  // loop over pixels
289  for(int i = 0; i < ci->size(); ++i) {
290  const SiPixelCluster::Pixel pixel = ci->pixel(i);
291 
292  int row = pixel.x;
293  int col = pixel.y;
294  int adc = pixel.adc;
295  if ( adc >= thePixelThreshold) {
296  theBuffer.add_adc( row, col, adc);
297  if ( adc >= theSeedThreshold) theSeeds.push_back( SiPixelCluster::PixelPos(row,col) );
298  }
299  }
300  }
301 }
302 
303 //----------------------------------------------------------------------------
304 // Calibrate adc counts to electrons
305 //-----------------------------------------------------------------
307 {
308  int electrons = 0;
309 
310  if ( doMissCalibrate )
311  {
312  // do not perform calibration if pixel is dead!
313 
314  if ( !theSiPixelGainCalibrationService_->isDead(detid_,col,row) &&
315  !theSiPixelGainCalibrationService_->isNoisy(detid_,col,row) )
316  {
317 
318  // Linear approximation of the TANH response
319  // Pixel(0,0,0)
320  //const float gain = 2.95; // 1 ADC = 2.95 VCALs (1/0.339)
321  //const float pedestal = -83.; // -28/0.339
322  // Roc-0 average
323  //const float gain = 1./0.357; // 1 ADC = 2.80 VCALs
324  //const float pedestal = -28.2 * gain; // -79.
325 
326  float DBgain = theSiPixelGainCalibrationService_->getGain(detid_, col, row);
327  float DBpedestal = theSiPixelGainCalibrationService_->getPedestal(detid_, col, row) * DBgain;
328 
329 
330  // Roc-6 average
331  //const float gain = 1./0.313; // 1 ADC = 3.19 VCALs
332  //const float pedestal = -6.2 * gain; // -19.8
333  //
334  float vcal = adc * DBgain - DBpedestal;
335 
336  // atanh calibration
337  // Roc-6 average
338  //const float p0 = 0.00492;
339  //const float p1 = 1.998;
340  //const float p2 = 90.6;
341  //const float p3 = 134.1;
342  // Roc-6 average
343  //const float p0 = 0.00382;
344  //const float p1 = 0.886;
345  //const float p2 = 112.7;
346  //const float p3 = 113.0;
347  //float vcal = ( atanh( (adc-p3)/p2) + p1)/p0;
348 
349  if (layer_==1) {
350  electrons = int( vcal * theConversionFactor_L1 + theOffset_L1);
351  } else {
352  electrons = int( vcal * theConversionFactor + theOffset);
353  }
354  }
355  }
356  else
357  { // No misscalibration in the digitizer
358  // Simple (default) linear gain
359  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
360  const float pedestal = 0.; //
361  electrons = int(adc * gain + pedestal);
362  if (layer_>=theFirstStack_) {
363  if (theStackADC_==1&&adc==1)
364  {
365  electrons = int(255*135); // Arbitrarily use overflow value.
366  }
367  if (theStackADC_>1&&theStackADC_!=255&&adc>=1)
368  {
369  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
370  electrons = int((adc-1) * gain * 255/float(theStackADC_-1));
371  }
372  }
373  }
374 
375  return electrons;
376 }
377 
378 //----------------------------------------------------------------------------
380 //----------------------------------------------------------------------------
384 {
385 
386  //First we acquire the seeds for the clusters
387  int seed_adc;
388  stack<SiPixelCluster::PixelPos, vector<SiPixelCluster::PixelPos> > dead_pixel_stack;
389 
390  //The individual modules have been loaded into a buffer.
391  //After each pixel has been considered by the clusterizer, we set the adc count to 1
392  //to mark that we have already considered it.
393  //The only difference between dead/noisy pixels and standard ones is that for dead/noisy pixels,
394  //We consider the charge of the pixel to always be zero.
395 
396  /* this is not possible as dead and noisy pixel cannot make it into a seed...
397  if ( doMissCalibrate &&
398  (theSiPixelGainCalibrationService_->isDead(detid_,pix.col(),pix.row()) ||
399  theSiPixelGainCalibrationService_->isNoisy(detid_,pix.col(),pix.row())) )
400  {
401  std::cout << "IMPOSSIBLE" << std::endl;
402  seed_adc = 0;
403  theBuffer.set_adc(pix, 1);
404  }
405  else {
406  */
407  seed_adc = theBuffer(pix.row(), pix.col());
408  theBuffer.set_adc( pix, 1);
409  // }
410 
411  AccretionCluster acluster;
412  acluster.add(pix, seed_adc);
413 
414  //Here we search all pixels adjacent to all pixels in the cluster.
415  bool dead_flag = false;
416  while ( ! acluster.empty())
417  {
418  //This is the standard algorithm to find and add a pixel
419  auto curInd = acluster.top(); acluster.pop();
420  for ( auto c = std::max(0,int(acluster.y[curInd])-1); c < std::min(int(acluster.y[curInd])+2,theBuffer.columns()) ; ++c) {
421  for ( auto r = std::max(0,int(acluster.x[curInd])-1); r < std::min(int(acluster.x[curInd])+2,theBuffer.rows()); ++r) {
422  if ( theBuffer(r,c) >= thePixelThreshold) {
423  SiPixelCluster::PixelPos newpix(r,c);
424  if (!acluster.add( newpix, theBuffer(r,c))) goto endClus;
425  theBuffer.set_adc( newpix, 1);
426  }
427 
428 
429  /* //Commenting out the addition of dead pixels to the cluster until further testing -- dfehling 06/09
430  //Check on the bounds of the module; this is to keep the isDead and isNoisy modules from returning errors
431  else if(r>= 0 && c >= 0 && (r <= (theNumOfRows-1.)) && (c <= (theNumOfCols-1.))){
432  //Check for dead/noisy pixels check that the buffer is not -1 (already considered). Check whether we want to split clusters separated by dead pixels or not.
433  if((theSiPixelGainCalibrationService_->isDead(detid_,c,r) || theSiPixelGainCalibrationService_->isNoisy(detid_,c,r)) && theBuffer(r,c) != 1){
434 
435  //If a pixel is dead or noisy, check to see if we want to split the clusters or not.
436  //Push it into a dead pixel stack in case we want to split the clusters. Otherwise add it to the cluster.
437  //If we are splitting the clusters, we will iterate over the dead pixel stack later.
438 
439  SiPixelCluster::PixelPos newpix(r,c);
440  if(!doSplitClusters){
441 
442  cluster.add(newpix, theBuffer(r,c));}
443  else if(doSplitClusters){
444  dead_pixel_stack.push(newpix);
445  dead_flag = true;}
446 
447  theBuffer.set_adc(newpix, 1);
448  }
449 
450  }
451  */
452 
453 
454 
455  }
456  }
457 
458  } // while accretion
459  endClus:
460  SiPixelCluster cluster(acluster.isize,acluster.adc, acluster.x,acluster.y, acluster.xmin,acluster.ymin);
461  //Here we split the cluster, if the flag to do so is set and we have found a dead or noisy pixel.
462 
463  if (dead_flag && doSplitClusters)
464  {
465  // Set separate cluster threshold for L1 (needed for phase1)
466  auto clusterThreshold = theClusterThreshold;
467  if (layer_==1) clusterThreshold = theClusterThreshold_L1;
468 
469  //Set the first cluster equal to the existing cluster.
470  SiPixelCluster first_cluster = cluster;
471  bool have_second_cluster = false;
472  while ( !dead_pixel_stack.empty() )
473  {
474  //consider each found dead pixel
475  SiPixelCluster::PixelPos deadpix = dead_pixel_stack.top(); dead_pixel_stack.pop();
476  theBuffer.set_adc(deadpix, 1);
477 
478  //Clusterize the split cluster using the dead pixel as a seed
479  SiPixelCluster second_cluster = make_cluster(deadpix, output);
480 
481  //If both clusters would normally have been found by the clusterizer, put them into output
482  if ( second_cluster.charge() >= clusterThreshold &&
483  first_cluster.charge() >= clusterThreshold )
484  {
485  output.push_back( second_cluster );
486  have_second_cluster = true;
487  }
488 
489  //We also want to keep the merged cluster in data and let the RecHit algorithm decide which set to keep
490  //This loop adds the second cluster to the first.
491  const std::vector<SiPixelCluster::Pixel>& branch_pixels = second_cluster.pixels();
492  for ( unsigned int i = 0; i<branch_pixels.size(); i++)
493  {
494  int temp_x = branch_pixels[i].x;
495  int temp_y = branch_pixels[i].y;
496  int temp_adc = branch_pixels[i].adc;
497  SiPixelCluster::PixelPos newpix(temp_x, temp_y);
498  cluster.add(newpix, temp_adc);}
499  }
500 
501  //Remember to also add the first cluster if we added the second one.
502  if ( first_cluster.charge() >= clusterThreshold && have_second_cluster)
503  {
504  output.push_back( first_cluster );
505  std::push_heap(output.begin(),output.end(),[](SiPixelCluster const & cl1,SiPixelCluster const & cl2) { return cl1.minPixelRow() < cl2.minPixelRow();});
506  }
507  }
508 
509  return cluster;
510 }
511 
int adc(sample_type sample)
get the ADC sample (12 bits)
void clusterizeDetUnitT(const T &input, const PixelGeomDetUnit *pixDet, const TrackerTopology *tTopo, const std::vector< short > &badChannels, edmNew::DetSetVector< SiPixelCluster >::FastFiller &output)
Cluster pixels. This method operates on a matrix of pixels and finds the largest contiguous cluster a...
T getParameter(std::string const &) const
T getUntrackedParameter(std::string const &, T const &) const
void push_back(data_type const &d)
virtual int nrows() const =0
static const char layer_[]
ParameterDescriptionBase * addUntracked(U const &iLabel, T const &value)
PixelThresholdClusterizer(edm::ParameterSet const &conf)
SiPixelCluster make_cluster(const SiPixelCluster::PixelPos &pix, edmNew::DetSetVector< SiPixelCluster >::FastFiller &output)
The actual clustering algorithm: group the neighboring pixels around the seed.
bool exists(std::string const &parameterName) const
checks if a parameter exists
def setup(process, global_tag, zero_tesla=False)
Definition: GeneralSetup.py:1
int charge() const
static void fillDescriptions(edm::ConfigurationDescriptions &descriptions)
static std::string const input
Definition: EdmProvDump.cc:44
int minPixelRow() const
edm::DetSet< PixelDigi >::const_iterator DigiIterator
#define end
Definition: vmac.h:37
void add(const PixelPos &pix, int adc)
T min(T a, T b)
Definition: MathUtil.h:58
ParameterDescriptionBase * add(U const &iLabel, T const &value)
int subdetId() const
get the contents of the subdetector field (not cast into any detector&#39;s numbering enum) ...
Definition: DetId.h:37
bool add(SiPixelCluster::PixelPos const &p, UShort const iadc)
constexpr int col() const
unsigned int pxbLayer(const DetId &id) const
Definition: DetId.h:18
edmNew::DetSet< SiPixelCluster >::const_iterator ClusterIterator
void clear_buffer(DigiIterator begin, DigiIterator end)
Clear the internal buffer array.
virtual const PixelTopology & specificTopology() const
Returns a reference to the pixel proxy topology.
void add(std::string const &label, ParameterSetDescription const &psetDescription)
Pixel cluster – collection of neighboring pixels above threshold.
#define begin
Definition: vmac.h:30
virtual int ncolumns() const =0
col
Definition: cuy.py:1008
bool setup(const PixelGeomDetUnit *pixDet)
Private helper methods:
int calibrate(int adc, int col, int row)
long double T
constexpr int row() const
def move(src, dest)
Definition: eostools.py:510
const std::vector< Pixel > pixels() const
void copy_to_buffer(DigiIterator begin, DigiIterator end)
Copy adc counts from PixelDigis into the buffer, identify seeds.