CMS 3D CMS Logo

CSCSegAlgoRU.cc
Go to the documentation of this file.
1 
8 #include "CSCSegAlgoRU.h"
9 #include "CSCSegFit.h"
15 #include <algorithm>
16 #include <cmath>
17 #include <iostream>
18 #include <string>
19 
21  : CSCSegmentAlgorithm(ps), myName("CSCSegAlgoRU"){
22  doCollisions = ps.getParameter<bool>("doCollisions");
23  chi2_str_ = ps.getParameter<double>("chi2_str");
24  chi2Norm_2D_ = ps.getParameter<double>("chi2Norm_2D_");
25  dRMax = ps.getParameter<double>("dRMax");
26  dPhiMax = ps.getParameter<double>("dPhiMax");
27  dRIntMax = ps.getParameter<double>("dRIntMax");
28  dPhiIntMax = ps.getParameter<double>("dPhiIntMax");
29  chi2Max = ps.getParameter<double>("chi2Max");
30  wideSeg = ps.getParameter<double>("wideSeg");
31  minLayersApart = ps.getParameter<int>("minLayersApart");
32 
33  LogDebug("CSC") << myName << " has algorithm cuts set to: \n"
34  << "--------------------------------------------------------------------\n"
35  << "dRMax = " << dRMax << '\n'
36  << "dPhiMax = " << dPhiMax << '\n'
37  << "dRIntMax = " << dRIntMax << '\n'
38  << "dPhiIntMax = " << dPhiIntMax << '\n'
39  << "chi2Max = " << chi2Max << '\n'
40  << "wideSeg = " << wideSeg << '\n'
41  << "minLayersApart = " << minLayersApart << std::endl;
42 
43  //reset the thresholds for non-collision data
44  if(!doCollisions){
45  dRMax = 2.0;
46  dPhiMax = 2*dPhiMax;
47  dRIntMax = 2*dRIntMax;
48  dPhiIntMax = 2*dPhiIntMax;
49  chi2Norm_2D_ = 5*chi2Norm_2D_;
50  chi2_str_ = 100;
51  chi2Max = 2*chi2Max;
52  }
53 }
54 
55 std::vector<CSCSegment> CSCSegAlgoRU::buildSegments(const CSCChamber* aChamber, const ChamberHitContainer& urechits) const {
56  ChamberHitContainer rechits = urechits;
57  LayerIndex layerIndex(rechits.size());
58  int recHits_per_layer[6] = {0,0,0,0,0,0};
59  //skip events with high multiplicity of hits
60  if (rechits.size()>150){
61  return std::vector<CSCSegment>();
62  }
63  int iadd = 0;
64  for(unsigned int i = 0; i < rechits.size(); i++) {
65  recHits_per_layer[rechits[i]->cscDetId().layer()-1]++;//count rh per chamber
66  layerIndex[i] = rechits[i]->cscDetId().layer();
67  }
68  double z1 = aChamber->layer(1)->position().z();
69  double z6 = aChamber->layer(6)->position().z();
70  if (std::abs(z1) > std::abs(z6)){
71  reverse(layerIndex.begin(), layerIndex.end());
72  reverse(rechits.begin(), rechits.end());
73  }
74  if (rechits.size() < 2) {
75  return std::vector<CSCSegment>();
76  }
77  // We have at least 2 hits. We intend to try all possible pairs of hits to start
78  // segment building. 'All possible' means each hit lies on different layers in the chamber.
79  // after all same size segs are build we get rid of the overcrossed segments using the chi2 criteria
80  // the hits from the segs that are left are marked as used and are not added to segs in future iterations
81  // the hits from 3p segs are marked as used separately in order to try to assamble them in longer segments
82  // in case there is a second pass
83  // Choose first hit (as close to IP as possible) h1 and second hit
84  // (as far from IP as possible) h2 To do this we iterate over hits
85  // in the chamber by layer - pick two layers. Then we
86  // iterate over hits within each of these layers and pick h1 and h2
87  // these. If they are 'close enough' we build an empty
88  // segment. Then try adding hits to this segment.
89  // Initialize flags that a given hit has been allocated to a segment
90  BoolContainer used(rechits.size(), false);
91  BoolContainer used3p(rechits.size(), false);
92  // This is going to point to fits to hits, and its content will be used to create a CSCSegment
93  AlgoState aState;
94  aState.aChamber = aChamber;
95  aState.doCollisions = doCollisions;
96  aState.dRMax = dRMax;
97  aState.dPhiMax = dPhiMax;
98  aState.dRIntMax = dRIntMax;
99  aState.dPhiIntMax = dPhiIntMax;
100  aState.chi2Norm_2D_ = chi2Norm_2D_;
101  aState.chi2_str_ = chi2_str_;
102  aState.chi2Max = chi2Max;
103 
104  // Define buffer for segments we build
105  std::vector<CSCSegment> segments;
106  ChamberHitContainerCIt ib = rechits.begin();
107  ChamberHitContainerCIt ie = rechits.end();
108  // Possibly allow 3 passes, second widening scale factor for cuts, third for segments from displaced vertices
109  aState.windowScale = 1.; // scale factor for cuts
110  bool search_disp = false;
111  aState.strip_iadd = 1;
112  aState.chi2D_iadd = 1;
113  int npass = (wideSeg > 1.)? 3 : 2;
114  for (int ipass = 0; ipass < npass; ++ipass) {
115  if(aState.windowScale >1.){
116  iadd = 1;
117  aState.strip_iadd = 2;
118  aState.chi2D_iadd = 2;
119  }
120  int used_rh = 0;
121  for (ChamberHitContainerCIt i1 = ib; i1 != ie; ++i1) {
122  if(used[i1-ib])used_rh++;
123  }
124 
125  //change the tresholds if it's time to look for displaced mu segments
126  if(aState.doCollisions && search_disp && int(rechits.size()-used_rh)>2){//check if there are enough recHits left to build a segment from displaced vertices
127  aState.doCollisions = false;
128  aState.windowScale = 1.; // scale factor for cuts
129  aState.dRMax = 2.0;
130  aState.dPhiMax = 2*aState.dPhiMax;
131  aState.dRIntMax = 2*aState.dRIntMax;
132  aState.dPhiIntMax = 2*aState.dPhiIntMax;
133  aState.chi2Norm_2D_ = 5*aState.chi2Norm_2D_;
134  aState.chi2_str_ = 100;
135  aState.chi2Max = 2*aState.chi2Max;
136  }else{
137  search_disp = false;//make sure the flag is off
138  }
139 
140  for(unsigned int n_seg_min = 6u; n_seg_min > 2u + iadd; --n_seg_min){
141  BoolContainer common_used(rechits.size(),false);
142  std::array<BoolContainer, 120> common_used_it = {};
143  for (unsigned int i = 0; i < common_used_it.size(); i++) {
144  common_used_it[i] = common_used;
145  }
146  ChamberHitContainer best_proto_segment[120];
147  float min_chi[120] = {9999};
148  int common_it = 0;
149  bool first_proto_segment = true;
150  for (ChamberHitContainerCIt i1 = ib; i1 != ie; ++i1) {
151  bool segok = false;
152  //skip if rh is used and the layer tat has big rh multiplicity(>25RHs)
153  if(used[i1-ib] || recHits_per_layer[int(layerIndex[i1-ib])-1]>25 || (n_seg_min == 3 && used3p[i1-ib])) continue;
154  int layer1 = layerIndex[i1-ib];
155  const CSCRecHit2D* h1 = *i1;
156  for (ChamberHitContainerCIt i2 = ie-1; i2 != i1; --i2) {
157  if(used[i2-ib] || recHits_per_layer[int(layerIndex[i2-ib])-1]>25 || (n_seg_min == 3 && used3p[i2-ib])) continue;
158  int layer2 = layerIndex[i2-ib];
159  if((abs(layer2 - layer1) + 1) < int(n_seg_min)) break;//decrease n_seg_min
160  const CSCRecHit2D* h2 = *i2;
161  if (areHitsCloseInR(aState, h1, h2) && areHitsCloseInGlobalPhi(aState, h1, h2)) {
162  aState.proto_segment.clear();
163  if (!addHit(aState, h1, layer1))continue;
164  if (!addHit(aState, h2, layer2))continue;
165  // Can only add hits if already have a segment
166  if ( aState.sfit )tryAddingHitsToSegment(aState, rechits, used, layerIndex, i1, i2);
167  segok = isSegmentGood(aState, rechits);
168  if (segok) {
169  if(aState.proto_segment.size() > n_seg_min){
170  baseline(aState, n_seg_min);
171  updateParameters(aState);
172  }
173  if(aState.sfit->chi2() > aState.chi2Norm_2D_*aState.chi2D_iadd || aState.proto_segment.size() < n_seg_min) aState.proto_segment.clear();
174  if (!aState.proto_segment.empty()) {
175  updateParameters(aState);
176  //add same-size overcrossed protosegments to the collection
177  if(first_proto_segment){
178  flagHitsAsUsed(aState, rechits, common_used_it[0]);
179  min_chi[0] = aState.sfit->chi2();
180  best_proto_segment[0] = aState.proto_segment;
181  first_proto_segment = false;
182  }else{ //for the rest of found proto_segments
183  common_it++;
184  flagHitsAsUsed(aState, rechits, common_used_it[common_it]);
185  min_chi[common_it] = aState.sfit->chi2();
186  best_proto_segment[common_it] = aState.proto_segment;
187  ChamberHitContainerCIt hi, iu, ik;
188  int iter = common_it;
189  for(iu = ib; iu != ie; ++iu) {
190  for(hi = aState.proto_segment.begin(); hi != aState.proto_segment.end(); ++hi) {
191  if(*hi == *iu) {
192  int merge_nr = -1;
193  for(int k = 0; k < iter+1; k++){
194  if(common_used_it[k][iu-ib] == true){
195  if(merge_nr != -1){
196  //merge the k and merge_nr collections of flaged hits into the merge_nr collection and unmark the k collection hits
197  for(ik = ib; ik != ie; ++ik) {
198  if(common_used_it[k][ik-ib] == true){
199  common_used_it[merge_nr][ik-ib] = true;
200  common_used_it[k][ik-ib] = false;
201  }
202  }
203  //change best_protoseg if min_chi_2 is smaller
204  if(min_chi[k] < min_chi[merge_nr]){
205  min_chi[merge_nr] = min_chi[k];
206  best_proto_segment[merge_nr] = best_proto_segment[k];
207  best_proto_segment[k].clear();
208  min_chi[k] = 9999;
209  }
210  common_it--;
211  }
212  else{
213  merge_nr = k;
214  }
215  }//if(common_used[k][iu-ib] == true)
216  }//for k
217  }//if
218  }//for proto_seg
219  }//for rec_hits
220  }//else
221  }//proto seg not empty
222  }
223  } // h1 & h2 close
224  if (segok)
225  break;
226  } // i2
227  } // i1
228 
229 
230  //add the reconstructed segments
231  for(int j = 0;j < common_it+1; j++){
232  aState.proto_segment = best_proto_segment[j];
233  best_proto_segment[j].clear();
234  //SKIP empty proto-segments
235  if(aState.proto_segment.size() == 0) continue;
236  updateParameters(aState);
237  // Create an actual CSCSegment - retrieve all info from the fit
238  CSCSegment temp(aState.sfit->hits(), aState.sfit->intercept(),
239  aState.sfit->localdir(), aState.sfit->covarianceMatrix(), aState.sfit->chi2());
240  aState.sfit = 0;
241  segments.push_back(temp);
242  //if the segment has 3 hits flag them as used in a particular way
243  if(aState.proto_segment.size() == 3){
244  flagHitsAsUsed(aState, rechits, used3p);
245  }
246  else{
247  flagHitsAsUsed(aState, rechits, used);
248  }
249  aState.proto_segment.clear();
250  }
251  }//for n_seg_min
252 
253  if(search_disp){
254  //reset params and flags for the next chamber
255  search_disp = false;
256  aState.doCollisions = true;
257  aState.dRMax = 2.0;
258  aState.dPhiMax = aState.dPhiMax/2;
259  aState.dRIntMax = aState.dRIntMax/2;
260  aState.dPhiIntMax = aState.dPhiIntMax/2;
261  aState.chi2Norm_2D_ = aState.chi2Norm_2D_/5;
262  aState.chi2_str_ = 100;
263  aState.chi2Max = aState.chi2Max/2;
264  }
265 
266  std::vector<CSCSegment>::iterator it =segments.begin();
267  bool good_segs = false;
268  while(it != segments.end()) {
269  if ((*it).nRecHits() > 3){
270  good_segs = true;
271  break;
272  }
273  ++it;
274  }
275  if (good_segs && aState.doCollisions) { // only change window if not enough good segments were found (bool can be changed to int if a >0 number of good segs is required)
276  search_disp = true;
277  continue;//proceed to search the segs from displaced vertices
278  }
279 
280  // Increase cut windows by factor of wideSeg only for collisions
281  if(!aState.doCollisions && !search_disp) break;
282  aState.windowScale = wideSeg;
283  } // ipass
284 
285  //get rid of enchansed 3p segments
286  std::vector<CSCSegment>::iterator it =segments.begin();
287  while(it != segments.end()) {
288  if((*it).nRecHits() == 3){
289  bool found_common = false;
290  const std::vector<CSCRecHit2D>& theseRH = (*it).specificRecHits();
291  for (ChamberHitContainerCIt i1 = ib; i1 != ie; ++i1) {
292  if(used[i1-ib] && used3p[i1-ib]){
293  const CSCRecHit2D* sh1 = *i1;
294  CSCDetId id = sh1->cscDetId();
295  int sh1layer = id.layer();
296  int RH_centerid = sh1->nStrips()/2;
297  int RH_centerStrip = sh1->channels(RH_centerid);
298  int RH_wg = sh1->hitWire();
299  std::vector<CSCRecHit2D>::const_iterator sh;
300  for(sh = theseRH.begin(); sh != theseRH.end(); ++sh){
301  CSCDetId idRH = sh->cscDetId();
302  //find segment hit coord
303  int shlayer = idRH.layer();
304  int SegRH_centerid = sh->nStrips()/2;
305  int SegRH_centerStrip = sh->channels(SegRH_centerid);
306  int SegRH_wg = sh->hitWire();
307  if(sh1layer == shlayer && SegRH_centerStrip == RH_centerStrip && SegRH_wg == RH_wg){
308  //remove the enchansed 3p segment
309  segments.erase(it,(it+1));
310  found_common = true;
311  break;
312  }
313  }//theserh
314  }
315  if(found_common) break;//current seg has already been erased
316  }//camber hits
317  if(!found_common)++it;
318  }//its a 3p seg
319  else{
320  ++it;//go to the next seg
321  }
322  }//while
323  // Give the segments to the CSCChamber
324  return segments;
325 }//build segments
326 
328  const BoolContainer& used, const LayerIndex& layerIndex,
329  const ChamberHitContainerCIt i1, const ChamberHitContainerCIt i2) const {
330  // Iterate over the layers with hits in the chamber
331  // Skip the layers containing the segment endpoints
332  // Test each hit on the other layers to see if it is near the segment
333  // If it is, see whether there is already a hit on the segment from the same layer
334  // - if so, and there are more than 2 hits on the segment, copy the segment,
335  // replace the old hit with the new hit. If the new segment chi2 is better
336  // then replace the original segment with the new one (by swap)
337  // - if not, copy the segment, add the hit. If the new chi2/dof is still satisfactory
338  // then replace the original segment with the new one (by swap)
339  ChamberHitContainerCIt ib = rechits.begin();
340  ChamberHitContainerCIt ie = rechits.end();
341  for (ChamberHitContainerCIt i = ib; i != ie; ++i) {
342  int layer = layerIndex[i-ib];
343  if (hasHitOnLayer(aState, layer) && aState.proto_segment.size() <= 2)continue;
344  if (layerIndex[i-ib] == layerIndex[i1-ib] || layerIndex[i-ib] == layerIndex[i2-ib] || used[i-ib])continue;
345 
346  const CSCRecHit2D* h = *i;
347  if (isHitNearSegment(aState, h)) {
348  // Don't consider alternate hits on layers holding the two starting points
349  if (hasHitOnLayer(aState, layer)) {
350  if (aState.proto_segment.size() <= 2)continue;
351  compareProtoSegment(aState, h, layer);
352  }
353  else{
354  increaseProtoSegment(aState, h, layer, aState.chi2D_iadd);
355  }
356  } // h & seg close
357  } // i
358 }
359 
360 bool CSCSegAlgoRU::areHitsCloseInR(const AlgoState& aState, const CSCRecHit2D* h1, const CSCRecHit2D* h2) const {
361  float maxWG_width[10] = {0, 0, 4.1, 5.69, 2.49, 5.06, 2.49, 5.06, 1.87, 5.06};
362  CSCDetId id = h1->cscDetId();
363  int iStn = id.iChamberType()-1;
364  //find maxWG_width for ME11 (tilt = 29deg)
365  int wg_num = h2->hitWire();
366  if(iStn == 0 || iStn == 1){
367  if (wg_num == 1){
368  maxWG_width[0] = 9.25;
369  maxWG_width[1] = 9.25;
370  }
371  if (wg_num > 1 && wg_num < 48){
372  maxWG_width[0] = 3.14;
373  maxWG_width[1] = 3.14;
374  }
375  if (wg_num == 48){
376  maxWG_width[0] = 10.75;
377  maxWG_width[1] = 10.75;
378  }
379  }
380  const CSCLayer* l1 = aState.aChamber->layer(h1->cscDetId().layer());
381  GlobalPoint gp1 = l1->toGlobal(h1->localPosition());
382  const CSCLayer* l2 = aState.aChamber->layer(h2->cscDetId().layer());
383  GlobalPoint gp2 = l2->toGlobal(h2->localPosition());
384  //find z to understand the direction
385  float h1z = gp1.z();
386  float h2z = gp2.z();
387  //switch off the IP check for non collisions case
388  if (!aState.doCollisions){
389  h1z = 1;
390  h2z = 1;
391  }
392  if (gp2.perp() > ((gp1.perp() - aState.dRMax*maxWG_width[iStn])*h2z)/h1z && gp2.perp() < ((gp1.perp() + aState.dRMax*maxWG_width[iStn])*h2z)/h1z){
393  return true;
394  }
395  else{
396  return false;
397  }
398 }
399 
400 bool CSCSegAlgoRU::areHitsCloseInGlobalPhi(const AlgoState& aState, const CSCRecHit2D* h1, const CSCRecHit2D* h2) const {
401  float strip_width[10] = {0.003878509, 0.002958185, 0.002327105, 0.00152552, 0.00465421, 0.002327105, 0.00465421, 0.002327105, 0.00465421, 0.002327105};//in rad
402  const CSCLayer* l1 = aState.aChamber->layer(h1->cscDetId().layer());
403  GlobalPoint gp1 = l1->toGlobal(h1->localPosition());
404  const CSCLayer* l2 = aState.aChamber->layer(h2->cscDetId().layer());
405  GlobalPoint gp2 = l2->toGlobal(h2->localPosition());
406  float err_stpos_h1 = h1->errorWithinStrip();
407  float err_stpos_h2 = h2->errorWithinStrip();
408  CSCDetId id = h1->cscDetId();
409  int iStn = id.iChamberType()-1;
410  float dphi_incr = 0;
411  if(err_stpos_h1>0.25*strip_width[iStn] || err_stpos_h2>0.25*strip_width[iStn])dphi_incr = 0.5*strip_width[iStn];
412  float dphi12 = deltaPhi(gp1.barePhi(),gp2.barePhi());
413  return (fabs(dphi12) < (aState.dPhiMax*aState.strip_iadd+dphi_incr))? true:false; // +v
414 }
415 
416 bool CSCSegAlgoRU::isHitNearSegment(const AlgoState& aState, const CSCRecHit2D* h) const {
417  // Is hit near segment?
418  // Requires deltaphi and deltaR within ranges specified in parameter set.
419  // Note that to make intuitive cuts on delta(phi) one must work in
420  // phi range (-pi, +pi] not [0, 2pi)
421  float strip_width[10] = {0.003878509, 0.002958185, 0.002327105, 0.00152552, 0.00465421, 0.002327105, 0.00465421, 0.002327105, 0.00465421, 0.002327105};//in rad
422  const CSCLayer* l1 = aState.aChamber->layer((*(aState.proto_segment.begin()))->cscDetId().layer());
423  GlobalPoint gp1 = l1->toGlobal((*(aState.proto_segment.begin()))->localPosition());
424  const CSCLayer* l2 = aState.aChamber->layer((*(aState.proto_segment.begin()+1))->cscDetId().layer());
425  GlobalPoint gp2 = l2->toGlobal((*(aState.proto_segment.begin()+1))->localPosition());
426  float err_stpos_h1 = (*(aState.proto_segment.begin()))->errorWithinStrip();
427  float err_stpos_h2 = (*(aState.proto_segment.begin()+1))->errorWithinStrip();
428  const CSCLayer* l = aState.aChamber->layer(h->cscDetId().layer());
430  float err_stpos_h = h->errorWithinStrip();
431  float hphi = hp.phi(); // in (-pi, +pi]
432  if (hphi < 0.)
433  hphi += 2.*M_PI; // into range [0, 2pi)
434  float sphi = phiAtZ(aState, hp.z()); // in [0, 2*pi)
435  float phidif = sphi-hphi;
436  if (phidif < 0.)
437  phidif += 2.*M_PI; // into range [0, 2pi)
438  if (phidif > M_PI)
439  phidif -= 2.*M_PI; // into range (-pi, pi]
440  SVector6 r_glob;
441  CSCDetId id = h->cscDetId();
442  int iStn = id.iChamberType()-1;
443  float dphi_incr = 0;
444  float pos_str = 1;
445  //increase dPhi cut if the hit is on the edge of the strip
446  float stpos = (*h).positionWithinStrip();
447  bool centr_str = false;
448  if(iStn != 0 && iStn != 1){
449  if (stpos > -0.25 && stpos < 0.25) centr_str = true;
450  }
451  if(err_stpos_h1<0.25*strip_width[iStn] || err_stpos_h2<0.25*strip_width[iStn] || err_stpos_h < 0.25*strip_width[iStn]){
452  dphi_incr = 0.5*strip_width[iStn];
453  }else{
454  if(centr_str) pos_str = 1.3;
455  }
456  r_glob((*(aState.proto_segment.begin()))->cscDetId().layer()-1) = gp1.perp();
457  r_glob((*(aState.proto_segment.begin()+1))->cscDetId().layer()-1) = gp2.perp();
458  float R = hp.perp();
459  int layer = h->cscDetId().layer();
460  float r_interpolated = fit_r_phi(aState, r_glob,layer);
461  float dr = fabs(r_interpolated - R);
462  float maxWG_width[10] = {0, 0, 4.1, 5.69, 2.49, 5.06, 2.49, 5.06, 1.87, 5.06};
463  //find maxWG_width for ME11 (tilt = 29deg)
464  int wg_num = h->hitWire();
465  if(iStn == 0 || iStn == 1){
466  if (wg_num == 1){
467  maxWG_width[0] = 9.25;
468  maxWG_width[1] = 9.25;
469  }
470  if (wg_num > 1 && wg_num < 48){
471  maxWG_width[0] = 3.14;
472  maxWG_width[1] = 3.14;
473  }
474  if (wg_num == 48){
475  maxWG_width[0] = 10.75;
476  maxWG_width[1] = 10.75;
477  }
478  }
479  return (fabs(phidif) < aState.dPhiIntMax*aState.strip_iadd*pos_str+dphi_incr && fabs(dr) < aState.dRIntMax*maxWG_width[iStn])? true:false;
480 }
481 
482 float CSCSegAlgoRU::phiAtZ(const AlgoState& aState, float z) const {
483  if ( !aState.sfit ) return 0.;
484  // Returns a phi in [ 0, 2*pi )
485  const CSCLayer* l1 = aState.aChamber->layer((*(aState.proto_segment.begin()))->cscDetId().layer());
486  GlobalPoint gp = l1->toGlobal(aState.sfit->intercept());
487  GlobalVector gv = l1->toGlobal(aState.sfit->localdir());
488  float x = gp.x() + (gv.x()/gv.z())*(z - gp.z());
489  float y = gp.y() + (gv.y()/gv.z())*(z - gp.z());
490  float phi = atan2(y, x);
491  if (phi < 0.f ) phi += 2. * M_PI;
492  return phi ;
493 }
494 
495 bool CSCSegAlgoRU::isSegmentGood(const AlgoState& aState, const ChamberHitContainer& rechitsInChamber) const {
496  // If the chamber has 20 hits or fewer, require at least 3 hits on segment
497  // If the chamber has >20 hits require at least 4 hits
498  //@@ THESE VALUES SHOULD BECOME PARAMETERS?
499  bool ok = false;
500  unsigned int iadd = ( rechitsInChamber.size() > 20)? 1 : 0;
501  if (aState.windowScale > 1.)
502  iadd = 1;
503  if (aState.proto_segment.size() >= 3+iadd)
504  ok = true;
505  return ok;
506 }
507 
508 void CSCSegAlgoRU::flagHitsAsUsed(const AlgoState& aState, const ChamberHitContainer& rechitsInChamber,
509  BoolContainer& used ) const {
510  // Flag hits on segment as used
511  ChamberHitContainerCIt ib = rechitsInChamber.begin();
513  for(hi = aState.proto_segment.begin(); hi != aState.proto_segment.end(); ++hi) {
514  for(iu = ib; iu != rechitsInChamber.end(); ++iu) {
515  if(*hi == *iu)
516  used[iu-ib] = true;
517  }
518  }
519 }
520 
521 bool CSCSegAlgoRU::addHit(AlgoState& aState, const CSCRecHit2D* aHit, int layer) const {
522  // Return true if hit was added successfully
523  // (and then parameters are updated).
524  // Return false if there is already a hit on the same layer, or insert failed.
525  ChamberHitContainer::const_iterator it;
526  for(it = aState.proto_segment.begin(); it != aState.proto_segment.end(); it++)
527  if (((*it)->cscDetId().layer() == layer) && (aHit != (*it)))
528  return false;
529  aState.proto_segment.push_back(aHit);
530  // make a fit
531  updateParameters(aState);
532  return true;
533 }
534 
536  // Delete input CSCSegFit, create a new one and make the fit
537  // delete sfit;
538  aState.sfit.reset(new CSCSegFit( aState.aChamber, aState.proto_segment ));
539  aState.sfit->fit();
540 }
541 
542 float CSCSegAlgoRU::fit_r_phi(const AlgoState& aState, const SVector6& points, int layer) const{
543  //find R or Phi on the given layer using the given points for the interpolation
544  float Sx = 0;
545  float Sy = 0;
546  float Sxx = 0;
547  float Sxy = 0;
548  for (int i=1;i<7;i++){
549  if (points(i-1)== 0.) continue;
550  Sy = Sy + (points(i-1));
551  Sx = Sx + i;
552  Sxx = Sxx + (i*i);
553  Sxy = Sxy + ((i)*points(i-1));
554  }
555  float delta = 2*Sxx - Sx*Sx;
556  float intercept = (Sxx*Sy - Sx*Sxy)/delta;
557  float slope = (2*Sxy - Sx*Sy)/delta;
558  return (intercept + slope*layer);
559 }
560 
561 void CSCSegAlgoRU::baseline(AlgoState& aState, int n_seg_min) const {
562  int nhits = aState.proto_segment.size();
563  ChamberHitContainer::const_iterator iRH_worst;
564  //initialise vectors for strip position and error within strip
565  SVector6 sp;
566  SVector6 se;
567  unsigned int init_size = aState.proto_segment.size();
569  buffer.clear();
570  buffer.reserve(init_size);
571  while (buffer.size()< init_size){
572  ChamberHitContainer::iterator min;
573  int min_layer = 10;
574  for(ChamberHitContainer::iterator k = aState.proto_segment.begin(); k != aState.proto_segment.end(); k++){
575  const CSCRecHit2D* iRHk = *k;
576  CSCDetId idRHk = iRHk->cscDetId();
577  int kLayer = idRHk.layer();
578  if(kLayer < min_layer){
579  min_layer = kLayer;
580  min = k;
581  }
582  }
583  buffer.push_back(*min);
584  aState.proto_segment.erase(min);
585  }//while
586 
587  aState.proto_segment.clear();
588  for (ChamberHitContainer::const_iterator cand = buffer.begin(); cand != buffer.end(); cand++) {
589  aState.proto_segment.push_back(*cand);
590  }
591 
592  for(ChamberHitContainer::const_iterator iRH = aState.proto_segment.begin(); iRH != aState.proto_segment.end(); iRH++){
593  const CSCRecHit2D* iRHp = *iRH;
594  CSCDetId idRH = iRHp->cscDetId();
595  int kRing = idRH.ring();
596  int kStation = idRH.station();
597  int kLayer = idRH.layer();
598  // Find the strip containing this hit
599  int centerid = iRHp->nStrips()/2;
600  int centerStrip = iRHp->channels(centerid);
601  float stpos = (*iRHp).positionWithinStrip();
602  se(kLayer-1) = (*iRHp).errorWithinStrip();
603  // Take into account half-strip staggering of layers (ME1/1 has no staggering)
604  if (kStation == 1 && (kRing == 1 || kRing == 4)) sp(kLayer-1) = stpos + centerStrip;
605  else{
606  if (kLayer == 1 || kLayer == 3 || kLayer == 5) sp(kLayer-1) = stpos + centerStrip;
607  if (kLayer == 2 || kLayer == 4 || kLayer == 6) sp(kLayer-1) = stpos - 0.5 + centerStrip;
608  }
609  }
610  float chi2_str;
611  fitX(aState, sp, se, -1, -1, chi2_str);
612 
613  //-----------------------------------------------------
614  // Optimal point rejection method
615  //-----------------------------------------------------
616  float minSum = 1000;
617  int i1b = 0;
618  int i2b = 0;
619  int iworst = -1;
620  int bad_layer = -1;
621  ChamberHitContainer::const_iterator rh_to_be_deleted_1;
622  ChamberHitContainer::const_iterator rh_to_be_deleted_2;
623  if ( (chi2_str) > aState.chi2_str_*aState.chi2D_iadd){
624  for (ChamberHitContainer::const_iterator i1 = aState.proto_segment.begin(); i1 != aState.proto_segment.end();++i1) {
625  ++i1b;
626  const CSCRecHit2D* i1_1 = *i1;
627  CSCDetId idRH1 = i1_1->cscDetId();
628  int z1 = idRH1.layer();
629  i2b = i1b;
630  for (ChamberHitContainer::const_iterator i2 = i1+1; i2 != aState.proto_segment.end(); ++i2) {
631  ++i2b;
632  const CSCRecHit2D* i2_1 = *i2;
633  CSCDetId idRH2 = i2_1->cscDetId();
634  int z2 = idRH2.layer();
635  int irej = 0;
636  for ( ChamberHitContainer::const_iterator ir = aState.proto_segment.begin(); ir != aState.proto_segment.end(); ++ir) {
637  ++irej;
638  if (ir == i1 || ir == i2) continue;
639  float dsum = 0;
640  int hit_nr = 0;
641  const CSCRecHit2D* ir_1 = *ir;
642  CSCDetId idRH = ir_1->cscDetId();
643  int worst_layer = idRH.layer();
644  for (ChamberHitContainer::const_iterator i = aState.proto_segment.begin(); i != aState.proto_segment.end(); ++i) {
645  ++hit_nr;
646  const CSCRecHit2D* i_1 = *i;
647  if (i == i1 || i == i2 || i == ir) continue;
648  float slope = (sp(z2-1)-sp(z1-1))/(z2-z1);
649  float intersept = sp(z1-1) - slope*z1;
650  CSCDetId idRH = i_1->cscDetId();
651  int z = idRH.layer();
652  float di = fabs(sp(z-1) - intersept - slope*z);
653  dsum = dsum + di;
654  }//i
655  if (dsum < minSum){
656  minSum = dsum;
657  bad_layer = worst_layer;
658  iworst = irej;
659  rh_to_be_deleted_1 = ir;
660  }
661  }//ir
662  }//i2
663  }//i1
664  fitX(aState, sp, se, bad_layer, -1, chi2_str);
665  }//if chi2prob<1.0e-4
666 
667  //find worst from n-1 hits
668  int iworst2 = -1;
669  int bad_layer2 = -1;
670  if (iworst > -1 && (nhits-1) > n_seg_min && (chi2_str) > aState.chi2_str_*aState.chi2D_iadd){
671  iworst = -1;
672  float minSum = 1000;
673  int i1b = 0;
674  int i2b = 0;
675  for (ChamberHitContainer::const_iterator i1 = aState.proto_segment.begin(); i1 != aState.proto_segment.end();++i1) {
676  ++i1b;
677  const CSCRecHit2D* i1_1 = *i1;
678  CSCDetId idRH1 = i1_1->cscDetId();
679  int z1 = idRH1.layer();
680  i2b = i1b;
681  for ( ChamberHitContainer::const_iterator i2 = i1+1; i2 != aState.proto_segment.end(); ++i2) {
682  ++i2b;
683  const CSCRecHit2D* i2_1 = *i2;
684  CSCDetId idRH2 = i2_1->cscDetId();
685  int z2 = idRH2.layer();
686  int irej = 0;
687  for ( ChamberHitContainer::const_iterator ir = aState.proto_segment.begin(); ir != aState.proto_segment.end(); ++ir) {
688  ++irej;
689  int irej2 = 0;
690  if (ir == i1 || ir == i2 ) continue;
691  const CSCRecHit2D* ir_1 = *ir;
692  CSCDetId idRH = ir_1->cscDetId();
693  int worst_layer = idRH.layer();
694  for ( ChamberHitContainer::const_iterator ir2 = aState.proto_segment.begin(); ir2 != aState.proto_segment.end(); ++ir2) {
695  ++irej2;
696  if (ir2 == i1 || ir2 == i2 || ir2 ==ir ) continue;
697  float dsum = 0;
698  int hit_nr = 0;
699  const CSCRecHit2D* ir2_1 = *ir2;
700  CSCDetId idRH = ir2_1->cscDetId();
701  int worst_layer2 = idRH.layer();
702  for ( ChamberHitContainer::const_iterator i = aState.proto_segment.begin(); i != aState.proto_segment.end(); ++i) {
703  ++hit_nr;
704  const CSCRecHit2D* i_1 = *i;
705  if (i == i1 || i == i2 || i == ir|| i == ir2 ) continue;
706  float slope = (sp(z2-1)-sp(z1-1))/(z2-z1);
707  float intersept = sp(z1-1) - slope*z1;
708  CSCDetId idRH = i_1->cscDetId();
709  int z = idRH.layer();
710  float di = fabs(sp(z-1) - intersept - slope*z);
711  dsum = dsum + di;
712  }//i
713  if (dsum < minSum){
714  minSum = dsum;
715  iworst2 = irej2;
716  iworst = irej;
717  bad_layer = worst_layer;
718  bad_layer2 = worst_layer2;
719  rh_to_be_deleted_1 = ir;
720  rh_to_be_deleted_2 = ir2;
721  }
722  }//ir2
723  }//ir
724  }//i2
725  }//i1
726  fitX(aState, sp, se, bad_layer ,bad_layer2, chi2_str);
727  }//if prob(n-1)<e-4
728 
729  //----------------------------------
730  //erase bad_hits
731  //----------------------------------
732  if( iworst2-1 >= 0 && iworst2 <= int(aState.proto_segment.size()) ) {
733  aState.proto_segment.erase( rh_to_be_deleted_2);
734  }
735  if( iworst-1 >= 0 && iworst <= int(aState.proto_segment.size()) ){
736  aState.proto_segment.erase(rh_to_be_deleted_1);
737  }
738 }
739 
740 float CSCSegAlgoRU::fitX(const AlgoState& aState, SVector6 points, SVector6 errors, int ir, int ir2, float &chi2_str) const {
741  float S = 0;
742  float Sx = 0;
743  float Sy = 0;
744  float Sxx = 0;
745  float Sxy = 0;
746  float sigma2 = 0;
747  for (int i=1;i<7;i++){
748  if (i == ir || i == ir2 || points(i-1) == 0.) continue;
749  sigma2 = errors(i-1)*errors(i-1);
750  float i1 = i - 3.5;
751  S = S + (1/sigma2);
752  Sy = Sy + (points(i-1)/sigma2);
753  Sx = Sx + ((i1)/sigma2);
754  Sxx = Sxx + (i1*i1)/sigma2;
755  Sxy = Sxy + (((i1)*points(i-1))/sigma2);
756  }
757  float delta = S*Sxx - Sx*Sx;
758  float intercept = (Sxx*Sy - Sx*Sxy)/delta;
759  float slope = (S*Sxy - Sx*Sy)/delta;
760  float chi_str = 0;
761  chi2_str = 0;
762  // calculate chi2_str
763  for (int i=1;i<7;i++){
764  if (i == ir || i == ir2 || points(i-1) == 0.) continue;
765  chi_str = (points(i-1) - intercept - slope*(i-3.5))/(errors(i-1));
766  chi2_str = chi2_str + chi_str*chi_str;
767  }
768  return (intercept + slope*0);
769 }
770 
771 bool CSCSegAlgoRU::hasHitOnLayer(const AlgoState& aState, int layer) const {
772  // Is there is already a hit on this layer?
774  for(it = aState.proto_segment.begin(); it != aState.proto_segment.end(); it++)
775  if ((*it)->cscDetId().layer() == layer)
776  return true;
777  return false;
778 }
779 
780 bool CSCSegAlgoRU::replaceHit(AlgoState& aState, const CSCRecHit2D* h, int layer) const {
781  // replace a hit from a layer
782  ChamberHitContainer::const_iterator it;
783  for (it = aState.proto_segment.begin(); it != aState.proto_segment.end();) {
784  if ((*it)->cscDetId().layer() == layer)
785  it = aState.proto_segment.erase(it);
786  else
787  ++it;
788  }
789  return addHit(aState, h, layer);
790 }
791 
792 void CSCSegAlgoRU::compareProtoSegment(AlgoState& aState, const CSCRecHit2D* h, int layer) const {
793  // Copy the input CSCSegFit
794  std::unique_ptr<CSCSegFit> oldfit;
795  oldfit.reset(new CSCSegFit( aState.aChamber, aState.proto_segment ));
796  oldfit->fit();
797  ChamberHitContainer oldproto = aState.proto_segment;
798 
799  // May create a new fit
800  bool ok = replaceHit(aState, h, layer);
801  if ( (aState.sfit->chi2() >= oldfit->chi2() ) || !ok ) {
802  // keep original fit
803  aState.proto_segment = oldproto;
804  aState.sfit = std::move(oldfit); // reset to the original input fit
805  }
806 }
807 
808 void CSCSegAlgoRU::increaseProtoSegment(AlgoState& aState, const CSCRecHit2D* h, int layer, int chi2_factor) const {
809  // Creates a new fit
810  std::unique_ptr<CSCSegFit> oldfit;
811  ChamberHitContainer oldproto = aState.proto_segment;
812  oldfit.reset(new CSCSegFit( aState.aChamber, aState.proto_segment ));
813  oldfit->fit();
814 
815  bool ok = addHit(aState, h, layer);
816  //@@ TEST ON ndof<=0 IS JUST TO ACCEPT nhits=2 CASE??
817  if ( !ok || ( (aState.sfit->ndof() > 0) && (aState.sfit->chi2()/aState.sfit->ndof() >= aState.chi2Max)) ) {
818  // reset to original fit
819  aState.proto_segment = oldproto;
820  aState.sfit = std::move(oldfit);
821  }
822 }
#define LogDebug(id)
dbl * delta
Definition: mlp_gen.cc:36
T getParameter(std::string const &) const
bool areHitsCloseInR(const AlgoState &aState, const CSCRecHit2D *h1, const CSCRecHit2D *h2) const
Utility functions.
CSCDetId cscDetId() const
Definition: CSCRecHit2D.h:52
T perp() const
Definition: PV3DBase.h:72
ROOT::Math::SVector< double, 6 > SVector6
Typedefs.
Definition: CSCSegAlgoRU.h:52
std::vector< const CSCRecHit2D * >::const_iterator ChamberHitContainerCIt
Definition: CSCSegAlgoRU.h:56
bool areHitsCloseInGlobalPhi(const AlgoState &aState, const CSCRecHit2D *h1, const CSCRecHit2D *h2) const
float phiAtZ(const AlgoState &aState, float z) const
static const double slope[3]
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:54
bool replaceHit(AlgoState &aState, const CSCRecHit2D *h, int layer) const
Geom::Phi< T > phi() const
Definition: PV3DBase.h:69
T y() const
Definition: PV3DBase.h:63
const std::string myName
Definition: CSCSegAlgoRU.h:147
int layer() const
Definition: CSCDetId.h:61
float dPhiIntMax
Definition: CSCSegAlgoRU.h:158
ChamberHitContainer proto_segment
Definition: CSCSegAlgoRU.h:90
std::unique_ptr< CSCSegFit > sfit
Definition: CSCSegAlgoRU.h:89
void tryAddingHitsToSegment(AlgoState &aState, const ChamberHitContainer &rechitsInChamber, const BoolContainer &used, const LayerIndex &layerIndex, const ChamberHitContainerCIt i1, const ChamberHitContainerCIt i2) const
const CSCChamber * aChamber
Definition: CSCSegAlgoRU.h:85
T barePhi() const
Definition: PV3DBase.h:68
int channels(unsigned int i) const
Extracting strip channel numbers comprising the rechit - low.
Definition: CSCRecHit2D.h:55
const Surface::PositionType & position() const
The position (origin of the R.F.)
Definition: GeomDet.h:48
susybsm::HSCParticleRefProd hp
Definition: classes.h:27
T z() const
Definition: PV3DBase.h:64
unsigned int nStrips() const
Definition: CSCRecHit2D.h:56
bool isSegmentGood(const AlgoState &aState, const ChamberHitContainer &rechitsInChamber) const
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
void baseline(AlgoState &aState, int n_seg_min) const
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:39
double f[11][100]
bool isHitNearSegment(const AlgoState &aState, const CSCRecHit2D *h) const
T min(T a, T b)
Definition: MathUtil.h:58
unsigned short iChamberType() const
Definition: CSCDetId.h:107
static const std::string kLayer("layer")
void increaseProtoSegment(AlgoState &aState, const CSCRecHit2D *h, int layer, int chi2_factor) const
CSCSegAlgoRU(const edm::ParameterSet &ps)
Constructor.
Definition: CSCSegAlgoRU.cc:20
std::vector< const CSCRecHit2D * > ChamberHitContainer
Definition: CSCSegAlgoRU.h:55
std::vector< bool > BoolContainer
Definition: CSCSegAlgoRU.h:63
std::vector< int > LayerIndex
Definition: CSCSegAlgoRU.h:54
void updateParameters(AlgoState &aState) const
#define M_PI
void compareProtoSegment(AlgoState &aState, const CSCRecHit2D *h, int layer) const
int k[5][pyjets_maxn]
int ring() const
Definition: CSCDetId.h:75
float chi2Norm_2D_
Definition: CSCSegAlgoRU.h:161
bool addHit(AlgoState &aState, const CSCRecHit2D *hit, int layer) const
Utility functions.
double S(const TLorentzVector &, const TLorentzVector &)
Definition: Particle.cc:99
float fit_r_phi(const AlgoState &aState, const SVector6 &points, int layer) const
short int hitWire() const
L1A.
Definition: CSCRecHit2D.h:62
std::vector< CSCSegment > buildSegments(const CSCChamber *aChamber, const ChamberHitContainer &rechits) const
Definition: CSCSegAlgoRU.cc:55
float fitX(const AlgoState &aState, SVector6 points, SVector6 errors, int ir, int ir2, float &chi2_str) const
void flagHitsAsUsed(const AlgoState &aState, const ChamberHitContainer &rechitsInChamber, BoolContainer &used) const
const int init_size
bool hasHitOnLayer(const AlgoState &aState, int layer) const
float errorWithinStrip() const
The uncertainty of the estimated position within the strip.
Definition: CSCRecHit2D.h:79
int station() const
Definition: CSCDetId.h:86
Definition: errors.py:1
LocalPoint localPosition() const
Definition: CSCRecHit2D.h:50
T x() const
Definition: PV3DBase.h:62
def move(src, dest)
Definition: eostools.py:510
ib
Definition: cuy.py:660