55 phi[1] = 90*CLHEP::deg;
56 theta[1-
iaxis] = 90*CLHEP::deg;
59 for (
int i=0;
i<number;
i++) {
64 phi[2] = 90*
iaxis*CLHEP::deg;
67 phi[2] = 90*(2-3*
iaxis)*CLHEP::deg;
77 if (
abs(angle) > 0.01*CLHEP::deg) {
78 LogDebug(
"HCalGeom") <<
"DDHCalXtalAlgo test: Creating a new rotation " 79 << rotstr <<
"\t" << theta[0]/CLHEP::deg <<
"," 80 << phi[0]/CLHEP::deg <<
"," << theta[1]/CLHEP::deg
81 <<
"," << phi[1]/CLHEP::deg <<
"," 82 << theta[2]/CLHEP::deg <<
"," << phi[2]/CLHEP::deg;
84 phi[1], theta[2], phi[2]);
87 LogDebug(
"HCalGeom") <<
"DDHCalXtalAlgo test: " 89 <<
" positioned in " << parentName <<
" at " << tran
Sin< T >::type sin(const T &t)
Geom::Theta< T > theta() const
DDName is used to identify DDD entities uniquely.
std::vector< std::string > names
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Represents a uniquely identifyable rotation matrix.
Abs< T >::type abs(const T &t)
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string ©no, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=0)
T angle(T x1, T y1, T z1, T x2, T y2, T z2)