CMS 3D CMS Logo

Polyhedra.cc
Go to the documentation of this file.
2 
3 #include <cmath>
4 
5 #include "CLHEP/Units/GlobalSystemOfUnits.h"
6 #include "CLHEP/Units/SystemOfUnits.h"
11 
12 using DDI::Polyhedra;
13 
14 using std::fabs;
15 using std::cos;
16 using std::sin;
17 
18 Polyhedra::Polyhedra( int sides, double startPhi, double deltaPhi,
19  const std::vector<double> & z,
20  const std::vector<double> & rmin,
21  const std::vector<double> & rmax) : Solid(ddpolyhedra_rrz)
22 {
23  p_.push_back(sides);
24  p_.push_back(startPhi);
25  p_.push_back(deltaPhi);
26  if((z.size()!=rmin.size()) || (z.size()!=rmax.size()) )
27  {
28  throw cms::Exception("DDException") << "Polyhedra(..): std::vectors z,rmin,rmax not of same length";
29  }
30  else
31  {
32  for(unsigned int i=0;i<z.size(); ++i)
33  {
34  p_.push_back(z[i]);
35  p_.push_back(rmin[i]);
36  p_.push_back(rmax[i]);
37  }
38  }
39 }
40 
41 
42 Polyhedra::Polyhedra( int sides, double startPhi, double deltaPhi,
43  const std::vector<double> & z,
44  const std::vector<double> & r) : Solid(ddpolyhedra_rz)
45 {
46  p_.push_back(sides);
47  p_.push_back(startPhi);
48  p_.push_back(deltaPhi);
49  if(z.size()!=r.size())
50  {
51  throw cms::Exception("DDException") << "Polyhedra(..): std::vectors z,rmin,rmax not of same length";
52  }
53  else
54  {
55  for(unsigned int i=0;i<z.size(); ++i)
56  {
57  p_.push_back(z[i]);
58  p_.push_back(r[i]);
59  }
60  }
61 }
62 
63 double Polyhedra::volume() const
64 {
65  double volume=0;
66  /* the following assumption is made: there are at least 3 eaqual sides if there is a complete circle (this has to be done, otherwise you can not define a polygon in a circle */
67 
68  /* the calculation for the volume is similar as in the case of the polycone. However, the rotation is not defined as part of a circle, but as sides in a regular polygon (specified by parameter "sides"). The sides are defined betwee startPhi and endPhi and form triangles within the circle they are defined in. First we need to determine the aread of side. let alpha |startPhi-endPhi|. the half the angle of 1 side is beta=0.5*(alph/sides). If r is the raddius of the circle in which the regular polygon is defined, the are of such a side will be 0.5*(height side)*(base side)=0.5*(cos(beta)*r)*(2*sin(beta)*r)= cos(beta)sin(beta)*r*r. r is the radius that varies if we "walk" over the boundaries of the polygon that is described by the z and r values (this yields the same integral primitive as used with the Polycone. Read Polycone documentation in code first if you do not understand this */
69 
70  //FIXME: rz, rrz !!
71  if (shape()==ddpolyhedra_rrz)
72  {
73  int loop = (p_.size()-3)/3 -1;
74  double sec=0;
75  double a = 0.5*fabs(p_[2]/rad / p_[0]);
76  int i=3;
77  for (int j=3; j<(loop+3); ++j)
78  {
79  double dz= fabs(p_[i]-p_[i+3]);
80  /*
81  double ai, aii;
82  ai = (p_[i+2]*p_[i+2] - p_[i+1]*p_[i+1]);
83  aii = (p_[i+5]*p_[i+5] - p_[i+4]*p_[i+4]);
84  //double s = dz/3.*(ai*bi + 0.5*(ai*bii + bi*aii) + aii*bii);
85  double s = dz/3.*sin(a)*cos(a)*(ai + aii + 0.5*(ai+aii));
86  */
87  double z=dz/2.;
88 
89  double H1=(p_[i+2]-p_[i+1])*cos(a);
90  double Bl1=p_[i+1]*sin(a);
91  double Tl1=p_[i+2]*sin(a);
92 
93  double H2=(p_[i+5]-p_[i+4])*cos(a);
94  double Bl2=p_[i+4]*sin(a);
95  double Tl2=p_[i+5]*sin(a);
96 
97  double s = (2*H1*Bl1+2*H1*Tl1)*z+(H1*Bl2-2*H1*Bl1+H1*Tl2-2*H1*Tl1+H2*Bl1+H2*Tl1+H2*Tl2-H2*Tl1)*z+(2/3)*(H2*Bl2-H2*Bl1-H1*Bl2+H1*Bl1-H1*Tl2+H1*Tl1)*z;
98  s = s*p_[0];
99  sec += s;
100  i+=3;
101  }
102  volume=sec;
103  return volume;
104  }
105  int sides=int(p_[0]);
106  //double phiFrom=p_[1]/rad;
107  double phiDelta=p_[2]/rad;
108 
109  double zBegin=0;
110  double zEnd=0;
111  double rBegin=0;
112  double rEnd=0;
113  double z=0;
114  double alpha=0;
115  double beta=0;
116  unsigned int i=3;
117 
118  alpha=fabs(phiDelta);
119  beta=0.5*(alpha/sides);
120 
121  while(i<(p_.size()-2))
122  {
123  zBegin=p_[i];
124  zEnd=p_[i+2];
125  rBegin=p_[i+1];
126  rEnd=p_[i+3];
127  z=zBegin-zEnd;
128 
129  /* volume for 1 side (we multiplie by cos(beta)sin(beta)sides later*/
130  double volume1=(rEnd*rEnd+rBegin*rBegin+rBegin*rEnd)*z/3;
131 
132  volume=volume+volume1;
133 
134  i=i+2;
135  }
136 
137  /* last line (goes from last z/r value to first */
138 
139  i=p_.size()-2;
140  zBegin=p_[i];
141  zEnd=p_[3];
142  rBegin=p_[i+1];
143  rEnd=p_[4];
144  z=zBegin-zEnd;
145 
146  double volume2=(rEnd*rEnd+rBegin*rBegin+rBegin*rEnd)*z/3;
147 
148  volume=volume+volume2;
149 
150  volume=fabs(sides*cos(beta)*sin(beta)*volume);
151 
152  return volume;
153 }
154 
155 void DDI::Polyhedra::stream(std::ostream & os) const
156 {
157  os << " sides=" << p_[0]
158  << " startPhi[deg]=" << p_[1]/deg
159  << " dPhi[deg]=" << p_[2]/deg
160  << " Sizes[cm]=";
161  for (unsigned k=3; k<p_.size(); ++k)
162  os << p_[k]/cm << " ";
163 }
const double beta
float alpha
Definition: AMPTWrapper.h:95
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
float float float z
double volume() const
Definition: Polyhedra.cc:63
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
int k[5][pyjets_maxn]
void stream(std::ostream &) const
Definition: Polyhedra.cc:155
Polyhedra(int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Definition: Polyhedra.cc:18
double a
Definition: hdecay.h:121
std::vector< double > p_
Definition: Solid.h:32
DDSolidShape shape() const
Definition: Solid.h:24