CMS 3D CMS Logo

NuclearInteractionSimulator.cc
Go to the documentation of this file.
1 //Framework Headers
4 
7 
9 
10 //#include "DQMServices/Core/interface/DaqMonitorBEInterface.h"
11 //#include "FWCore/ServiceRegistry/interface/Service.h"
12 
13 #include <iostream>
14 #include <sys/stat.h>
15 #include <cmath>
16 #include "TFile.h"
17 #include "TTree.h"
18 #include "TROOT.h"
19 
20 // Internal variable and vectors with name started frm "thePion" means
21 // vectors/variable not only for pions but for all type of hadrons
22 // treated inside this code
23 
25  std::vector<double>& hadronEnergies,
26  std::vector<int>& hadronTypes,
27  std::vector<std::string>& hadronNames,
28  std::vector<double>& hadronMasses,
29  std::vector<double>& hadronPMin,
30  double pionEnergy,
31  std::vector<double>& lengthRatio,
32  std::vector< std::vector<double> >& ratios,
33  std::map<int,int >& idMap,
35  unsigned int distAlgo,
36  double distCut)
37  :
39  thePionEN(hadronEnergies),
40  thePionID(hadronTypes),
41  thePionNA(hadronNames),
42  thePionMA(hadronMasses),
43  thePionPMin(hadronPMin),
44  thePionEnergy(pionEnergy),
45  theLengthRatio(lengthRatio),
46  theRatios(ratios),
47  theIDMap(idMap),
48  theDistAlgo(distAlgo),
49  theDistCut(distCut),
50  currentValuesWereSet(false)
51 {
52  std::string fullPath;
53 
54  // Prepare the map of files
55  // Loop over the particle names
56  TFile* aVFile=0;
57  std::vector<TTree*> aVTree(thePionEN.size(),static_cast<TTree*>(0));
58  std::vector<TBranch*> aVBranch(thePionEN.size(),static_cast<TBranch*>(0));
59  std::vector<NUEvent*> aVNUEvents(thePionEN.size(),static_cast<NUEvent*>(0));
60  std::vector<unsigned> aVCurrentEntry(thePionEN.size(),static_cast<unsigned>(0));
61  std::vector<unsigned> aVCurrentInteraction(thePionEN.size(),static_cast<unsigned>(0));
62  std::vector<unsigned> aVNumberOfEntries(thePionEN.size(),static_cast<unsigned>(0));
63  std::vector<unsigned> aVNumberOfInteractions(thePionEN.size(),static_cast<unsigned>(0));
64  std::vector<std::string> aVFileName(thePionEN.size(),static_cast<std::string>(""));
65  std::vector<double> aVPionCM(thePionEN.size(),static_cast<double>(0));
66 
67  theTrees.resize(thePionNA.size());
68  theBranches.resize(thePionNA.size());
69  theNUEvents.resize(thePionNA.size());
70  theCurrentEntry.resize(thePionNA.size());
71  theCurrentInteraction.resize(thePionNA.size());
72  theNumberOfEntries.resize(thePionNA.size());
73  theNumberOfInteractions.resize(thePionNA.size());
74  theFileNames.resize(thePionNA.size());
75  thePionCM.resize(thePionNA.size());
76  theFile = aVFile;
77  for ( unsigned iname=0; iname<thePionNA.size(); ++iname ) {
78  theTrees[iname] = aVTree;
79  theBranches[iname] = aVBranch;
80  theNUEvents[iname] = aVNUEvents;
81  theCurrentEntry[iname] = aVCurrentEntry;
82  theCurrentInteraction[iname] = aVCurrentInteraction;
83  theNumberOfEntries[iname] = aVNumberOfEntries;
84  theNumberOfInteractions[iname] = aVNumberOfInteractions;
85  theFileNames[iname] = aVFileName;
86  thePionCM[iname] = aVPionCM;
87  }
88 
89  // Read the information from a previous run (to keep reproducibility)
90  currentValuesWereSet = this->read(inputFile);
92  std::cout << "***WARNING*** You are reading nuclear-interaction information from the file "
93  << inputFile << " created in an earlier run."
94  << std::endl;
95 
96  // Open the file for saving the information of the current run
97  myOutputFile.open ("NuclearInteractionOutputFile.txt");
98  myOutputBuffer = 0;
99 
100 
101  // Open the root files
102  // for ( unsigned file=0; file<theFileNames.size(); ++file ) {
103  edm::FileInPath myDataFile("FastSimulation/MaterialEffects/data/NuclearInteractions.root");
104 
105  fullPath = myDataFile.fullPath();
106  theFile = TFile::Open(fullPath.c_str());
107 
108  unsigned fileNb = 0;
109  for ( unsigned iname=0; iname<thePionNA.size(); ++iname ) {
110  for ( unsigned iene=0; iene<thePionEN.size(); ++iene ) {
111  //std::cout << "iname/iene " << iname << " " << iene << std::endl;
112  std::ostringstream filename;
113  double theEne = thePionEN[iene];
114  filename << "NuclearInteractionsVal_" << thePionNA[iname] << "_E"<< theEne << ".root";
115  theFileNames[iname][iene] = filename.str();
116  //std::cout << "thePid/theEne " << thePionID[iname] << " " << theEne << std::endl;
117 
118  ++fileNb;
119  std::string treeName="NuclearInteractions_"+thePionNA[iname]+"_E"+std::to_string(int(theEne));
120  //
121  theTrees[iname][iene] = (TTree*) theFile->Get(treeName.c_str());
122  if ( !theTrees[iname][iene] ) throw cms::Exception("FastSimulation/MaterialEffects")
123  << "Tree with name " << treeName << " not found ";
124  //
125  theBranches[iname][iene] = theTrees[iname][iene]->GetBranch("nuEvent");
126  //std::cout << "The branch = " << theBranches[iname][iene] << std::endl;
127  if ( !theBranches[iname][iene] ) throw cms::Exception("FastSimulation/MaterialEffects")
128  << "Branch with name nuEvent not found in " << theFileNames[iname][iene];
129  //
130  theNUEvents[iname][iene] = new NUEvent();
131  //std::cout << "The branch = " << theBranches[iname][iene] << std::endl;
132  theBranches[iname][iene]->SetAddress(&theNUEvents[iname][iene]);
133  //
134  theNumberOfEntries[iname][iene] = theTrees[iname][iene]->GetEntries();
135 
137  theTrees[iname][iene]->GetEntry(theCurrentEntry[iname][iene]);
138  unsigned NInteractions = theNUEvents[iname][iene]->nInteractions();
139  theNumberOfInteractions[iname][iene] = NInteractions;
140  }
141 
142  //
143  // Compute the corresponding cm energies of the nuclear interactions
144  XYZTLorentzVector Proton(0.,0.,0.,0.986);
146  Reference(0.,
147  0.,
148  std::sqrt(thePionEN[iene]*thePionEN[iene]
149  -thePionMA[iname]*thePionMA[iname]),
150  thePionEN[iene]);
151  thePionCM[iname][iene] = (Reference+Proton).M();
152 
153  }
154 
155  }
156 
157  // Find the index for which EN = 4. (or thereabout)
158  ien4 = 0;
159  while ( thePionEN[ien4] < 4.0 ) ++ien4;
160 
161  gROOT->cd();
162 
163  // Information (Should be on LogInfo)
164 // std::cout << " ---> A total of " << fileNb
165 // << " nuclear-interaction files was sucessfully open" << std::endl;
166 
167  // dbe = edm::Service<DaqMonitorBEInterface>().operator->();
168  // htot = dbe->book1D("Total", "All particles",150,0.,150.);
169  // helas = dbe->book1D("Elastic", "Elastic interactions",150,0.,150.);
170  // hinel = dbe->book1D("Inelastic", "Inelastic interactions",150,0.,150.);
171  // hscatter = dbe->book1D("Scattering","Elastic Scattering angle",200,0.,2.);
172  // hscatter2 = dbe->book2D("Scattering2","Elastic Scattering angle vs p",100,0.,10.,200,0.,2.);
173  // hAfter = dbe->book1D("eAfter","Energy after collision",200,0.,4.);
174  // hAfter2 = dbe->book2D("eAfter2","Energy after collision",100,-2.5,2.5,100,0.,4);
175  // hAfter3 = dbe->book2D("eAfter3","Energy after collision",100,0.,1000.,100,0.,4);
176 
177 }
178 
180 
181  // Close all local files
182  // Among other things, this allows the TROOT destructor to end up
183  // without crashing, while trying to close these files from outside
184  theFile->Close();
185  delete theFile;
186 
187  for(auto& vEvents: theNUEvents) {
188  for(auto evtPtr: vEvents) {
189  delete evtPtr;
190  }
191  }
192 
193  // Close the output file
194  myOutputFile.close();
195 
196  // dbe->save("test.root");
197 
198 }
199 
201 {
202  if(!currentValuesWereSet) {
203  currentValuesWereSet = true;
204  for ( unsigned iname=0; iname<thePionNA.size(); ++iname ) {
205  for ( unsigned iene=0; iene<thePionEN.size(); ++iene ) {
206  theCurrentEntry[iname][iene] = (unsigned) (theNumberOfEntries[iname][iene] * random->flatShoot());
207 
208  theTrees[iname][iene]->GetEntry(theCurrentEntry[iname][iene]);
209  unsigned NInteractions = theNUEvents[iname][iene]->nInteractions();
210  theNumberOfInteractions[iname][iene] = NInteractions;
211 
212  theCurrentInteraction[iname][iene] = (unsigned) (theNumberOfInteractions[iname][iene] * random->flatShoot());
213  }
214  }
215  }
216 
217  // Read a Nuclear Interaction in a random manner
218 
219  double pHadron = std::sqrt(Particle.Vect().Mag2());
220  // htot->Fill(pHadron);
221 
222  // The hadron has enough momentum to create some relevant final state
223  if ( pHadron > thePionEnergy ) {
224 
225  // The particle type
226  std::map<int,int>::const_iterator thePit = theIDMap.find(Particle.pid());
227 
228  int thePid = thePit != theIDMap.end() ? thePit->second : Particle.pid();
229 
230  // Is this particle type foreseen?
231  unsigned fPid = abs(thePid);
232  if ( fPid != 211 && fPid != 130 && fPid != 321 && fPid != 2112 && fPid != 2212 ) {
233  return;
234  //std::cout << "Unknown particle type = " << thePid << std::endl;
235  //thePid = 211;
236  }
237 
238  // The inelastic interaction length at p(pion) = 5 GeV/c
239  unsigned thePidIndex = index(thePid);
240  double theInelasticLength = radLengths * theLengthRatio[thePidIndex];
241 
242  // The elastic interaction length
243  // The baroque parameterization is a fit to Fig. 40.13 of the PDG
244  double ee = pHadron > 0.6 ?
245  exp(-std::sqrt((pHadron-0.6)/1.122)) : exp(std::sqrt((0.6-pHadron)/1.122));
246  double theElasticLength = ( 0.8753 * ee + 0.15 )
247  // double theElasticLength = ( 0.15 + 0.195 / log(pHadron/0.4) )
248  // double theElasticLength = ( 0.15 + 0.305 / log(pHadron/0.35) )
249  * theInelasticLength;
250 
251  // The total interaction length
252  double theTotalInteractionLength = theInelasticLength + theElasticLength;
253 
254  // Probability to interact is dl/L0 (maximum for 4 GeV pion)
255  double aNuclInteraction = -std::log(random->flatShoot());
256  if ( aNuclInteraction < theTotalInteractionLength ) {
257 
258  // The elastic part
259  double elastic = random->flatShoot();
260  if ( elastic < theElasticLength/theTotalInteractionLength ) {
261 
262  // helas->Fill(pHadron);
263 
264  // Characteristic scattering angle for the elastic part
265  double theta0 = std::sqrt(3.)/ std::pow(theA(),1./3.) * Particle.mass()/pHadron;
266 
267  // Draw an angle with theta/theta0*exp[(-theta/2theta0)**2] shape
268  double theta = theta0 * std::sqrt(-2.*std::log(random->flatShoot()));
269  double phi = 2. * 3.14159265358979323 * random->flatShoot();
270 
271  // Rotate the particle accordingly
272  RawParticle::Rotation rotation1(orthogonal(Particle.Vect()),theta);
273  RawParticle::Rotation rotation2(Particle.Vect(),phi);
274  Particle.rotate(rotation1);
275  Particle.rotate(rotation2);
276 
277  // Distance
278  double distance = std::sin(theta);
279 
280  // Create a daughter if the kink is large engough
281  if ( distance > theDistCut ) {
282  _theUpdatedState.resize(1);
283  _theUpdatedState[0].SetXYZT(Particle.Px(), Particle.Py(),
284  Particle.Pz(), Particle.E());
285  _theUpdatedState[0].setID(Particle.pid());
286  }
287 
288  // hscatter->Fill(myTheta);
289  // hscatter2->Fill(pHadron,myTheta);
290 
291  }
292 
293  // The inelastic part
294  else {
295 
296  // Avoid multiple map access
297  const std::vector<double>& aPionCM = thePionCM[thePidIndex];
298  const std::vector<double>& aRatios = theRatios[thePidIndex];
299  // Find the file with the closest c.m energy
300  // The target nucleon
301  XYZTLorentzVector Proton(0.,0.,0.,0.939);
302  // The current particle
303  const XYZTLorentzVector& Hadron = (const XYZTLorentzVector&)Particle;
304  // The smallest momentum for inelastic interactions
305  double pMin = thePionPMin[thePidIndex];
306  // The correspong smallest four vector
307  XYZTLorentzVector Hadron0(0.,0.,pMin,std::sqrt(pMin*pMin+Particle.M2()));
308 
309  // The current centre-of-mass energy
310  double ecm = (Proton+Hadron).M();
311  //std::cout << "Proton = " << Proton << std::endl;
312  //std::cout << "Hadron = " << Hadron << std::endl;
313  //std::cout << "ecm = " << ecm << std::endl;
314  // Get the files of interest (closest c.m. energies)
315  unsigned ene1=0;
316  unsigned ene2=0;
317  // The smallest centre-of-mass energy
318  // double ecm1=1.63;
319  double ecm1= (Proton+Hadron0).M();
320  //std::cout << "ecm1 = " << ecm1 << std::endl;
321  //std::cout << "ecm[0] = " << aPionCM[0] << std::endl;
322  //std::cout << "ecm[11] = " << aPionCM [ aPionCM.size()-1 ] << std::endl;
323  double ecm2=aPionCM[0];
324  double ratio1=0.;
325  double ratio2=aRatios[0];
326  if ( ecm > aPionCM[0] && ecm < aPionCM [ aPionCM.size()-1 ] ) {
327  for ( unsigned ene=1;
328  ene < aPionCM.size() && ecm > aPionCM[ene-1];
329  ++ene ) {
330  if ( ecm<aPionCM[ene] ) {
331  ene2 = ene;
332  ene1 = ene2-1;
333  ecm1 = aPionCM[ene1];
334  ecm2 = aPionCM[ene2];
335  ratio1 = aRatios[ene1];
336  ratio2 = aRatios[ene2];
337  }
338  }
339  } else if ( ecm > aPionCM[ aPionCM.size()-1 ] ) {
340  ene1 = aPionCM.size()-1;
341  ene2 = aPionCM.size()-2;
342  ecm1 = aPionCM[ene1];
343  ecm2 = aPionCM[ene2];
344  ratio1 = aRatios[ene2];
345  ratio2 = aRatios[ene2];
346  }
347 
348 
349  // The inelastic part of the cross section depends cm energy
350  double slope = (std::log10(ecm )-std::log10(ecm1))
351  / (std::log10(ecm2)-std::log10(ecm1));
352  double inelastic = ratio1 + (ratio2-ratio1) * slope;
353  double inelastic4 = pHadron < 4. ? aRatios[ien4] : 1.;
354 
355  //std::cout << "Inelastic = " << ratio1 << " " << ratio2 << " " << inelastic << std::endl;
356  // std::cout << "Energy/Inelastic : "
357  // << Hadron.e() << " " << inelastic << std::endl;
358 
359  // Simulate an inelastic interaction
360  if ( elastic > 1.- (inelastic*theInelasticLength)
361  /theTotalInteractionLength ) {
362 
363  // Avoid mutliple map access
364  std::vector<unsigned>& aCurrentInteraction = theCurrentInteraction[thePidIndex];
365  std::vector<unsigned>& aNumberOfInteractions = theNumberOfInteractions[thePidIndex];
366  std::vector<NUEvent*>& aNUEvents = theNUEvents[thePidIndex];
367  // hinel->Fill(pHadron);
368  // std::cout << "INELASTIC INTERACTION ! "
369  // << pHadron << " " << theInelasticLength << " "
370  // << inelastic * theInelasticLength << std::endl;
371  // Choice of the file to read according the the log10(ecm) distance
372  // and protection against low momentum proton and neutron that never interacts
373  // (i.e., empty files)
374  unsigned ene;
375  if ( random->flatShoot() < slope || aNumberOfInteractions[ene1] == 0 )
376  ene = ene2;
377  else
378  ene = ene1;
379 
380  //std::cout << "Ecm1/2 = " << ecm1 << " " << ecm2 << std::endl;
381  //std::cout << "Ratio1/2 = " << ratio1 << " " << ratio2 << std::endl;
382  //std::cout << "Ene = " << ene << " slope = " << slope << std::endl;
383 
384  //std::cout << "Pion energy = " << Hadron.E()
385  // << "File chosen " << theFileNames[thePidIndex][ene]
386  // << std::endl;
387 
388  // The boost characteristics
389  XYZTLorentzVector theBoost = Proton + Hadron;
390  theBoost /= theBoost.e();
391 
392  // std::cout << "File chosen : " << thePid << "/" << ene
393  // << " Current interaction = " << aCurrentInteraction[ene]
394  // << " Total interactions = " << aNumberOfInteractions[ene]
395  // << std::endl;
396  // theFiles[thePidIndex][ene]->cd();
397  // gDirectory->ls();
398 
399  // Check we are not either at the end of an interaction bunch
400  // or at the end of a file
401  if ( aCurrentInteraction[ene] == aNumberOfInteractions[ene] ) {
402  // std::cout << "End of interaction bunch ! ";
403  std::vector<unsigned>& aCurrentEntry = theCurrentEntry[thePidIndex];
404  std::vector<unsigned>& aNumberOfEntries = theNumberOfEntries[thePidIndex];
405  std::vector<TTree*>& aTrees = theTrees[thePidIndex];
406  ++aCurrentEntry[ene];
407  // std::cerr << "Read the next entry "
408  // << aCurrentEntry[ene] << std::endl;
409  aCurrentInteraction[ene] = 0;
410  if ( aCurrentEntry[ene] == aNumberOfEntries[ene] ) {
411  aCurrentEntry[ene] = 0;
412  // std::cout << "End of file - Rewind! " << std::endl;
413  }
414  unsigned myEntry = aCurrentEntry[ene];
415  // std::cout << "The new entry " << myEntry
416  // << " is read ... in TTree " << aTrees[ene] << " ";
417  aTrees[ene]->GetEntry(myEntry);
418  // std::cout << "The number of interactions in the new entry is ... ";
419  aNumberOfInteractions[ene] = aNUEvents[ene]->nInteractions();
420  // std::cout << aNumberOfInteractions[ene] << std::endl;
421  }
422 
423  // Read the interaction
424  NUEvent::NUInteraction anInteraction
425  = aNUEvents[ene]->theNUInteractions()[aCurrentInteraction[ene]];
426 
427  unsigned firstTrack = anInteraction.first;
428  unsigned lastTrack = anInteraction.last;
429  // std::cout << "First and last tracks are " << firstTrack << " " << lastTrack << std::endl;
430 
431  _theUpdatedState.resize(lastTrack-firstTrack+1);
432 
433  double distMin = 1E99;
434 
435  // Some rotation around the boost axis, for more randomness
436  XYZVector theAxis = theBoost.Vect().Unit();
437  double theAngle = random->flatShoot() * 2. * 3.14159265358979323;
438  RawParticle::Rotation axisRotation(theAxis,theAngle);
439  RawParticle::Boost axisBoost(theBoost.x(),theBoost.y(),theBoost.z());
440 
441  // A rotation to bring the particles back to the pion direction
442  XYZVector zAxis(0.,0.,1.);
443  XYZVector orthAxis = (zAxis.Cross(theBoost.Vect())).Unit();
444  double orthAngle = acos(theBoost.Vect().Unit().Z());
445  RawParticle::Rotation orthRotation(orthAxis,orthAngle);
446 
447  // A few checks
448  // double eAfter = 0.;
449 
450  // Loop on the nuclear interaction products
451  for ( unsigned iTrack=firstTrack; iTrack<=lastTrack; ++iTrack ) {
452 
453  unsigned idaugh = iTrack - firstTrack;
454  NUEvent::NUParticle aParticle = aNUEvents[ene]->theNUParticles()[iTrack];
455  // std::cout << "Track " << iTrack
456  // << " id/px/py/pz/mass "
457  // << aParticle.id << " "
458  // << aParticle.px << " "
459  // << aParticle.py << " "
460  // << aParticle.pz << " "
461  // << aParticle.mass << " " << endl;
462 
463  // Add a RawParticle with the proper energy in the c.m frame of
464  // the nuclear interaction
465  double energy = std::sqrt( aParticle.px*aParticle.px
466  + aParticle.py*aParticle.py
467  + aParticle.pz*aParticle.pz
468  + aParticle.mass*aParticle.mass/(ecm*ecm) );
469 
470  RawParticle& aDaughter = _theUpdatedState[idaugh];
471  aDaughter.SetXYZT(aParticle.px*ecm,aParticle.py*ecm,
472  aParticle.pz*ecm,energy*ecm);
473  aDaughter.setID(aParticle.id);
474 
475  // Rotate to the collision axis
476  aDaughter.rotate(orthRotation);
477 
478  // Rotate around the boost axis for more randomness
479  aDaughter.rotate(axisRotation);
480 
481  // Boost it in the lab frame
482  aDaughter.boost(axisBoost);
483 
484  // Store the closest daughter index (for later tracking purposes, so charged particles only)
485  double distance = distanceToPrimary(Particle,aDaughter);
486  // Find the closest daughter, if closer than a given upper limit.
487  if ( distance < distMin && distance < theDistCut ) {
488  distMin = distance;
490  }
491 
492  // eAfter += aDaughter.E();
493 
494  }
495 
496  /*
497  double eBefore = Particle.E();
498  double rapid = Particle.momentum().Eta();
499  if ( eBefore > 0. ) {
500  hAfter->Fill(eAfter/eBefore);
501  hAfter2->Fill(rapid,eAfter/eBefore);
502  hAfter3->Fill(eBefore,eAfter/eBefore);
503  }
504  */
505 
506  // ERROR The way this loops through the events breaks
507  // replay. Which events are retrieved depends on
508  // which previous events were processed.
509 
510  // Increment for next time
511  ++aCurrentInteraction[ene];
512 
513  // Simulate a stopping hadron (low momentum)
514  } else if ( pHadron < 4. &&
515  elastic > 1.- (inelastic4*theInelasticLength)
516  /theTotalInteractionLength ) {
517  // A fake particle with 0 momentum as a daughter!
518  _theUpdatedState.resize(1);
519  _theUpdatedState[0].SetXYZT(0.,0.,0.,0.);
520  _theUpdatedState[0].setID(22);
521  }
522 
523  }
524 
525  }
526 
527  }
528 
529 }
530 
531 double
533  const RawParticle& aDaughter) const {
534 
535  double distance = 2E99;
536 
537  // Compute the distance only for charged primaries
538  if ( fabs(Particle.charge()) > 1E-12 ) {
539 
540  // The secondary must have the same charge
541  double chargeDiff = fabs(aDaughter.charge()-Particle.charge());
542  if ( fabs(chargeDiff) < 1E-12 ) {
543 
544  // Here are two distance definitions * to be tuned *
545  switch ( theDistAlgo ) {
546 
547  case 1:
548  // sin(theta12)
549  distance = (aDaughter.Vect().Unit().Cross(Particle.Vect().Unit())).R();
550  break;
551 
552  case 2:
553  // sin(theta12) * p1/p2
554  distance = (aDaughter.Vect().Cross(Particle.Vect())).R()
555  /aDaughter.Vect().Mag2();
556  break;
557 
558  default:
559  // Should not happen
560  distance = 2E99;
561  break;
562 
563  }
564 
565  }
566 
567  }
568 
569  return distance;
570 
571 }
572 
573 void
575 
576  // Size of buffer
577  ++myOutputBuffer;
578 
579  // Periodically close the current file and open a new one
580  if ( myOutputBuffer/1000*1000 == myOutputBuffer ) {
581  myOutputFile.close();
582  myOutputFile.open ("NuclearInteractionOutputFile.txt");
583  // myOutputFile.seekp(0); // No need to rewind in that case
584  }
585  //
586  unsigned size1 =
587  theCurrentEntry.size()*
588  theCurrentEntry.begin()->size();
589  std::vector<unsigned> theCurrentEntries;
590  theCurrentEntries.resize(size1);
591  size1*=sizeof(unsigned);
592  //
593  unsigned size2 =
594  theCurrentInteraction.size()*
595  theCurrentInteraction.begin()->size();
596  std::vector<unsigned> theCurrentInteractions;
597  theCurrentInteractions.resize(size2);
598  size2 *= sizeof(unsigned);
599 
600  // Save the current entries
601  std::vector< std::vector<unsigned> >::const_iterator aCurrentEntry = theCurrentEntry.begin();
602  std::vector< std::vector<unsigned> >::const_iterator lastCurrentEntry = theCurrentEntry.end();
603  unsigned allEntries=0;
604  for ( ; aCurrentEntry!=lastCurrentEntry; ++aCurrentEntry ) {
605  unsigned size = aCurrentEntry->size();
606  for ( unsigned iene=0; iene<size; ++iene )
607  theCurrentEntries[allEntries++] = (*aCurrentEntry)[iene];
608  }
609 
610  // Save the current interactions
611  std::vector< std::vector<unsigned> >::const_iterator aCurrentInteraction = theCurrentInteraction.begin();
612  std::vector< std::vector<unsigned> >::const_iterator lastCurrentInteraction = theCurrentInteraction.end();
613  unsigned allInteractions=0;
614  for ( ; aCurrentInteraction!=lastCurrentInteraction; ++aCurrentInteraction ) {
615  unsigned size = aCurrentInteraction->size();
616  for ( unsigned iene=0; iene<size; ++iene )
617  theCurrentInteractions[allInteractions++] = (*aCurrentInteraction)[iene];
618  }
619  //
620  myOutputFile.write((const char*)(&theCurrentEntries.front()), size1);
621  myOutputFile.write((const char*)(&theCurrentInteractions.front()), size2);
622  myOutputFile.flush();
623 
624 }
625 
626 bool
628 
629  std::ifstream myInputFile;
630  struct stat results;
631  //
632  unsigned size1 =
633  theCurrentEntry.size()*
634  theCurrentEntry.begin()->size();
635  std::vector<unsigned> theCurrentEntries;
636  theCurrentEntries.resize(size1);
637  size1*=sizeof(unsigned);
638  //
639  unsigned size2 =
640  theCurrentInteraction.size()*
641  theCurrentInteraction.begin()->size();
642  std::vector<unsigned> theCurrentInteractions;
643  theCurrentInteractions.resize(size2);
644  size2 *= sizeof(unsigned);
645  //
646  unsigned size = 0;
647 
648 
649  // Open the file (if any)
650  myInputFile.open (inputFile.c_str());
651  if ( myInputFile.is_open() ) {
652 
653  // Get the size of the file
654  if ( stat(inputFile.c_str(), &results) == 0 ) size = results.st_size;
655  else return false; // Something is wrong with that file !
656 
657  // Position the pointer just before the last record
658  myInputFile.seekg(size-size1-size2);
659  myInputFile.read((char*)(&theCurrentEntries.front()),size1);
660  myInputFile.read((char*)(&theCurrentInteractions.front()),size2);
661  myInputFile.close();
662 
663  // Read the current entries
664  std::vector< std::vector<unsigned> >::iterator aCurrentEntry = theCurrentEntry.begin();
665  std::vector< std::vector<unsigned> >::iterator lastCurrentEntry = theCurrentEntry.end();
666  unsigned allEntries=0;
667  for ( ; aCurrentEntry!=lastCurrentEntry; ++aCurrentEntry ) {
668  unsigned size = aCurrentEntry->size();
669  for ( unsigned iene=0; iene<size; ++iene )
670  (*aCurrentEntry)[iene] = theCurrentEntries[allEntries++];
671  }
672 
673  // Read the current interactions
674  std::vector< std::vector<unsigned> >::iterator aCurrentInteraction = theCurrentInteraction.begin();
675  std::vector< std::vector<unsigned> >::iterator lastCurrentInteraction = theCurrentInteraction.end();
676  unsigned allInteractions=0;
677  for ( ; aCurrentInteraction!=lastCurrentInteraction; ++aCurrentInteraction ) {
678  unsigned size = aCurrentInteraction->size();
679  for ( unsigned iene=0; iene<size; ++iene )
680  (*aCurrentInteraction)[iene] = theCurrentInteractions[allInteractions++];
681  }
682 
683  return true;
684  }
685 
686  return false;
687 
688 }
689 
690 unsigned
692 
693  unsigned myIndex=0;
694  while ( thePid != thePionID[myIndex] ) ++myIndex;
695  // std::cout << "pid/index = " << thePid << " " << myIndex << std::endl;
696  return myIndex;
697 
698 }
size
Write out results.
void boost(double bx, double by, double bz)
Definition: RawParticle.cc:183
double flatShoot(double xmin=0.0, double xmax=1.0) const
static const double slope[3]
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
Geom::Theta< T > theta() const
XYZVector orthogonal(const XYZVector &) const
A vector orthogonal to another one (because it&#39;s not in XYZTLorentzVector)
std::vector< std::vector< unsigned > > theNumberOfInteractions
std::vector< std::vector< TTree * > > theTrees
int pid() const
get the HEP particle ID number
Definition: RawParticle.h:265
TRandom random
Definition: MVATrainer.cc:138
double mass() const
get the MEASURED mass
Definition: RawParticle.h:283
ROOT::Math::Boost Boost
Definition: RawParticle.h:40
std::vector< std::vector< unsigned > > theCurrentEntry
std::vector< std::vector< std::string > > theFileNames
Definition: NUEvent.h:6
void compute(ParticlePropagator &Particle, RandomEngineAndDistribution const *)
Generate a nuclear interaction according to the probability that it happens.
math::XYZVector XYZVector
std::vector< std::vector< unsigned > > theNumberOfEntries
T sqrt(T t)
Definition: SSEVec.h:18
void setID(const int id)
Definition: RawParticle.cc:102
std::vector< std::vector< double > > thePionCM
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
void rotate(double rphi, const XYZVector &raxis)
Definition: RawParticle.cc:155
bool read(std::string inputFile)
Read former nuclear interaction (from previous run)
double charge() const
get the MEASURED charge
Definition: RawParticle.h:282
unsigned index(int thePid)
Return a hashed index for a given pid.
std::vector< std::string > thePionNA
std::vector< std::vector< TBranch * > > theBranches
std::vector< std::vector< unsigned > > theCurrentInteraction
std::vector< std::vector< double > > theRatios
~NuclearInteractionSimulator()
Default Destructor.
NuclearInteractionSimulator(std::vector< double > &hadronEnergies, std::vector< int > &hadronTypes, std::vector< std::string > &hadronNames, std::vector< double > &hadronMasses, std::vector< double > &hadronPMin, double pionEnergy, std::vector< double > &lengthRatio, std::vector< std::vector< double > > &ratios, std::map< int, int > &idMap, std::string inputFile, unsigned int distAlgo, double distCut)
Constructor.
std::vector< RawParticle > _theUpdatedState
ROOT::Math::AxisAngle Rotation
Definition: RawParticle.h:35
std::vector< std::vector< NUEvent * > > theNUEvents
std::string fullPath() const
Definition: FileInPath.cc:184
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
void save()
Save current nuclear interaction (for later use)
double distanceToPrimary(const RawParticle &Particle, const RawParticle &aDaughter) const
Compute distance between secondary and primary.
math::XYZTLorentzVector XYZTLorentzVector
Definition: RawParticle.h:15