52 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
53 <<
" # of valid clusters: " <<
theClusters.size() << endl;
62 int colorMap[12] = {632, 600, 800, 400, 820, 416, 432, 880, 616, 860, 900, 920};
64 TCanvas *
canvas =
new TCanvas(canvasName.c_str(),canvasName.c_str());
66 for(vector<DTOccupancyCluster>::const_iterator cluster =
theClusters.begin();
69 stream << canvasName <<
"_" << cluster-
theClusters.begin();
70 string histoName = stream.str();
76 histo->Draw(
"box,same");
87 for(set<DTOccupancyPoint>::const_iterator pt_i =
thePoints.begin(); pt_i !=
thePoints.end();
89 for(set<DTOccupancyPoint>::const_iterator pt_j =
thePoints.begin(); pt_j !=
thePoints.end();
92 theDistances[pt_i->distance(*pt_j)] = make_pair(*pt_i, *pt_j);
109 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
110 <<
"--------- New Cluster Candidate ----------------------" << endl;
111 pair<DTOccupancyPoint, DTOccupancyPoint> initialPair =
getInitialPair();
112 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
113 <<
" Initial Pair: " << endl
114 <<
" point1: mean " << initialPair.first.mean()
115 <<
" rms " << initialPair.first.rms() << endl
116 <<
" point2: mean " << initialPair.second.mean()
117 <<
" rms " << initialPair.second.rms() << endl;
119 if(clusterCandidate.
isValid()) {
134 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
135 <<
" # of layers: " << clusterCandidate.
nPoints()
136 <<
" avrg. mean: " << clusterCandidate.
averageMean() <<
" avrg. rms: " << clusterCandidate.
averageRMS() << endl;
148 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder") <<
" sorting" << endl;
151 for(vector<DTOccupancyCluster>::const_iterator cluster = ++(
theClusters.begin());
153 set<DTLayerId> clusterLayers = (*cluster).getLayerIDs();
154 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
155 <<
" # layers in the cluster: " << clusterLayers.size() << endl;
158 LogTrace(
"DTDQM|DTMonitorClient|DTOccupancyTest|DTOccupancyClusterBuilder")
bool isValid() const
Check if the cluster candidate satisfies the quality requirements.
DTOccupancyCluster getBestCluster() const
get the cluster correspondig to "normal" cell occupancy.
std::set< DTLayerId > theProblematicLayers
std::map< double, std::pair< DTOccupancyPoint, DTOccupancyPoint > > theDistances
std::map< double, DTOccupancyPoint > theDistancesFromTheCluster
double maxMean() const
max average cell occupancy of the layers in the cluster
double averageRMS() const
average RMS of the cell occpuancy distributions of the layers in the cluster
double maxRMS() const
max RMS of the cell occpuancy distributions of the layers in the cluster
std::set< DTOccupancyPoint > thePoints
bool addPoint(const DTOccupancyPoint &anotherPoint)
void drawClusters(std::string canvasName)
draw a TH2F histograms showing the clusters
virtual ~DTOccupancyClusterBuilder()
Destructor.
double averageMean() const
average cell occupancy of the layers in the cluster
void computeDistancesToCluster(const DTOccupancyCluster &cluster)
void addPoint(const DTOccupancyPoint &point)
Add an occupancy point for a given layer.
void buildClusters()
build the clusters
DTOccupancyClusterBuilder()
Constructor.
void computePointToPointDistances()
std::pair< DTOccupancyPoint, DTOccupancyPoint > getInitialPair()
int nPoints() const
of layers belonging to the cluster
std::vector< DTOccupancyCluster > theClusters
bool isProblematic(DTLayerId layerId) const
bool clusterIsLessThan(const DTOccupancyCluster &clusterOne, const DTOccupancyCluster &clusterTwo)
for DTOccupancyCluster sorting
double distance(const DTOccupancyPoint &point) const
*vegas h *****************************************************used in the default bin number in original ***version of VEGAS is ***a higher bin number might help to derive a more precise ***grade subtle point