CMS 3D CMS Logo

SiStripHitEffFromCalibTree.cc
Go to the documentation of this file.
1 //Original Author: Christopher Edelmaier
2 // Created: Feb. 11, 2010
3 #include <memory>
4 #include <string>
5 #include <iostream>
6 #include <fstream>
7 #include <sstream>
8 
17 
43 
55 
58 
63 
64 #include "TFile.h"
65 #include "TCanvas.h"
66 #include "TObjString.h"
67 #include "TString.h"
68 #include "TH1F.h"
69 #include "TH2F.h"
70 #include "TProfile.h"
71 #include "TF1.h"
72 #include "TROOT.h"
73 #include "TTree.h"
74 #include "TStyle.h"
75 #include "TLeaf.h"
76 #include "TGaxis.h"
77 #include "TGraphAsymmErrors.h"
78 #include "TLatex.h"
79 #include "TLegend.h"
80 #include "TEfficiency.h"
81 
82 using namespace edm;
83 using namespace reco;
84 using namespace std;
85 
86 struct hit{
87  double x;
88  double y;
89  double z;
90  unsigned int id;
91 };
92 
93 class SiStripHitEffFromCalibTree : public ConditionDBWriter<SiStripBadStrip> {
94  public:
97 
98  private:
99  virtual void algoBeginJob();
100  virtual void algoEndJob() override;
101  virtual void algoAnalyze(const edm::Event& e, const edm::EventSetup& c) override;
102  void SetBadComponents(int i, int component,SiStripQuality::BadComponent& BC, std::stringstream ssV[4][19], int NBadComponent[4][19][4]);
103  void makeTKMap();
104  void makeHotColdMaps();
105  void makeSQLite();
106  void totalStatistics();
107  void makeSummary();
108  void makeSummaryVsBx();
109  void ComputeEff(vector< TH1F* > &vhfound, vector< TH1F* > &vhtotal, string name);
110  void makeSummaryVsLumi();
111  void makeSummaryVsCM();
112  TString GetLayerName(Long_t k);
113  TString GetLayerSideName(Long_t k);
114  float calcPhi(float x, float y);
115 
120  SiStripBadStrip* getNewObject() override;
121 
122  TTree* CalibTree;
123  vector<string> CalibTreeFilenames;
124  float threshold;
125  unsigned int nModsMin;
126  unsigned int doSummary;
129  float _ResXSig;
132  unsigned int _bunchx;
133  unsigned int _spaceBetweenTrains;
134  bool _useCM;
139  float _tkMapMin;
140  float _effPlotMin;
141  TString _title;
142 
143  unsigned int nTEClayers;
144 
145  vector<hit> hits[23];
146  vector<TH2F*> HotColdMaps;
147  map< unsigned int, pair< unsigned int, unsigned int> > modCounter[23];
153  int layerfound[23];
154  int layertotal[23];
155  map< unsigned int, vector<int> > layerfound_perBx;
156  map< unsigned int, vector<int> > layertotal_perBx;
157  vector< TH1F* > layerfound_vsLumi;
158  vector< TH1F* > layertotal_vsLumi;
159  vector< TH1F* > layerfound_vsPU;
160  vector< TH1F* > layertotal_vsPU;
161  vector< TH1F* > layerfound_vsCM;
162  vector< TH1F* > layertotal_vsCM;
163  int goodlayertotal[35];
164  int goodlayerfound[35];
165  int alllayertotal[35];
166  int alllayerfound[35];
167  map< unsigned int, double > BadModules;
168 };
169 
172  FileInPath_("CalibTracker/SiStripCommon/data/SiStripDetInfo.dat")
173 {
174  CalibTreeFilenames = conf.getUntrackedParameter<vector<std::string> >("CalibTreeFilenames");
175  threshold = conf.getParameter<double>("Threshold");
176  nModsMin = conf.getParameter<int>("nModsMin");
177  doSummary = conf.getParameter<int>("doSummary");
178  _badModulesFile = conf.getUntrackedParameter<std::string>("BadModulesFile", "");
179  _clusterMatchingMethod = conf.getUntrackedParameter<int>("ClusterMatchingMethod",0);
180  _ResXSig = conf.getUntrackedParameter<double>("ResXSig",-1);
181  _clusterTrajDist = conf.getUntrackedParameter<double>("ClusterTrajDist",64.0);
182  _stripsApvEdge = conf.getUntrackedParameter<double>("StripsApvEdge",10.0);
183  _bunchx = conf.getUntrackedParameter<int>("BunchCrossing",0);
184  _spaceBetweenTrains = conf.getUntrackedParameter<int>("SpaceBetweenTrains",25);
185  _useCM = conf.getUntrackedParameter<bool>("UseCommonMode",false);
186  _showEndcapSides = conf.getUntrackedParameter<bool>("ShowEndcapSides",true);
187  _showRings = conf.getUntrackedParameter<bool>("ShowRings",false);
188  _showTOB6TEC9 = conf.getUntrackedParameter<bool>("ShowTOB6TEC9",false);
189  _showOnlyGoodModules = conf.getUntrackedParameter<bool>("ShowOnlyGoodModules",false);
190  _tkMapMin = conf.getUntrackedParameter<double>("TkMapMin",0.9);
191  _effPlotMin = conf.getUntrackedParameter<double>("EffPlotMin",0.9);
192  _title = conf.getParameter<std::string>("Title");
194 
195  nTEClayers = 9; // number of wheels
196  if(_showRings) nTEClayers = 7; // number of rings
197 
198  quality_ = new SiStripQuality;
199 }
200 
202 
204  //I have no idea what goes here
205  //fs->make<TTree>("HitEffHistos","Tree of the inefficient hit histograms");
206 }
207 
209  //Still have no idea what goes here
210 
211 }
212 
214 
216  c.get<TrackerDigiGeometryRecord>().get( tracker );
217  const TrackerGeometry * tkgeom=&(* tracker);
218 
219  //Retrieve tracker topology from geometry
220  edm::ESHandle<TrackerTopology> tTopoHandle;
221  c.get<TrackerTopologyRcd>().get(tTopoHandle);
222  const TrackerTopology* const tTopo = tTopoHandle.product();
223 
224  // read bad modules to mask
225  ifstream badModules_file;
226  set<uint32_t> badModules_list;
227  if(_badModulesFile!="") {
228  badModules_file.open(_badModulesFile.c_str());
229  uint32_t badmodule_detid;
230  int mods, fiber1, fiber2, fiber3;
231  if(badModules_file.is_open()) {
232  string line;
233  while ( getline (badModules_file,line) ) {
234  if(badModules_file.eof()) continue;
235  stringstream ss(line);
236  ss >> badmodule_detid >> mods >> fiber1 >> fiber2 >> fiber3;
237  if(badmodule_detid!=0 && mods==1 && (fiber1==1 || fiber2==1 || fiber3==1) )
238  badModules_list.insert(badmodule_detid);
239  }
240  badModules_file.close();
241  }
242  }
243  if(badModules_list.size()) cout<<"Remove additionnal bad modules from the analysis: "<<endl;
244  set<uint32_t>::iterator itBadMod;
245  for (itBadMod=badModules_list.begin(); itBadMod!=badModules_list.end(); ++itBadMod)
246  cout<<" "<<*itBadMod<<endl;
247 
248 
249  // initialze counters and histos
250  for(int l=0; l < 35; l++) {
251  goodlayertotal[l] = 0;
252  goodlayerfound[l] = 0;
253  alllayertotal[l] = 0;
254  alllayerfound[l] = 0;
255  }
256 
257  TH1F* resolutionPlots[23];
258  for(Long_t ilayer = 0; ilayer <23; ilayer++) {
259  resolutionPlots[ilayer] = fs->make<TH1F>(Form("resol_layer_%i",(int)(ilayer)),GetLayerName(ilayer),125,-125,125);
260  resolutionPlots[ilayer]->GetXaxis()->SetTitle("trajX-clusX [strip unit]");
261 
262  layerfound_vsLumi.push_back( fs->make<TH1F>(Form("layerfound_vsLumi_layer_%i",(int)(ilayer)),GetLayerName(ilayer),60,0,15000));
263  layertotal_vsLumi.push_back( fs->make<TH1F>(Form("layertotal_vsLumi_layer_%i",(int)(ilayer)),GetLayerName(ilayer),60,0,15000));
264  layerfound_vsPU.push_back( fs->make<TH1F>(Form("layerfound_vsPU_layer_%i",(int)(ilayer)),GetLayerName(ilayer),30,0,60));
265  layertotal_vsPU.push_back( fs->make<TH1F>(Form("layertotal_vsPU_layer_%i",(int)(ilayer)),GetLayerName(ilayer),30,0,60));
266 
267  if(_useCM) {
268  layerfound_vsCM.push_back( fs->make<TH1F>(Form("layerfound_vsCM_layer_%i",(int)(ilayer)),GetLayerName(ilayer),20,0,400));
269  layertotal_vsCM.push_back( fs->make<TH1F>(Form("layertotal_vsCM_layer_%i",(int)(ilayer)),GetLayerName(ilayer),20,0,400));
270  }
271  }
272 
273  cout << "A module is bad if efficiency < " << threshold << " and has at least " << nModsMin << " nModsMin." << endl;
274 
275 
276  //Open the ROOT Calib Tree
277  for( unsigned int ifile=0; ifile < CalibTreeFilenames.size(); ifile++) {
278 
279  cout<<"Loading file: "<<CalibTreeFilenames[ifile]<<endl;
280  TFile* CalibTreeFile = TFile::Open(CalibTreeFilenames[ifile].c_str(),"READ");
281  CalibTreeFile->cd("anEff");
282  CalibTree = (TTree*)(gDirectory->Get("traj"));
283 
284  TLeaf* BadLf = CalibTree->GetLeaf("ModIsBad");
285  TLeaf* sistripLf = CalibTree->GetLeaf("SiStripQualBad");
286  TLeaf* idLf = CalibTree->GetLeaf("Id");
287  TLeaf* acceptLf = CalibTree->GetLeaf("withinAcceptance");
288  TLeaf* layerLf = CalibTree->GetLeaf("layer");
289  TLeaf* nHitsLf = CalibTree->GetLeaf("nHits");
290  TLeaf* xLf = CalibTree->GetLeaf("TrajGlbX");
291  TLeaf* yLf = CalibTree->GetLeaf("TrajGlbY");
292  TLeaf* zLf = CalibTree->GetLeaf("TrajGlbZ");
293  TLeaf* ResXSigLf = CalibTree->GetLeaf("ResXSig");
294  TLeaf* TrajLocXLf = CalibTree->GetLeaf("TrajLocX");
295  TLeaf* TrajLocYLf = CalibTree->GetLeaf("TrajLocY");
296  TLeaf* ClusterLocXLf = CalibTree->GetLeaf("ClusterLocX");
297  TLeaf* BunchLf = CalibTree->GetLeaf("bunchx");
298  TLeaf* InstLumiLf = CalibTree->GetLeaf("instLumi");
299  TLeaf* PULf = CalibTree->GetLeaf("PU");
300  TLeaf* CMLf = 0;
301  if(_useCM) CMLf = CalibTree->GetLeaf("commonMode");
302 
303  int nevents = CalibTree->GetEntries();
304  cout << "Successfully loaded analyze function with " << nevents << " events!\n";
305 
306 
307  //Loop through all of the events
308  for(int j =0; j < nevents; j++) {
309  CalibTree->GetEntry(j);
310  unsigned int isBad = (unsigned int)BadLf->GetValue();
311  unsigned int quality = (unsigned int)sistripLf->GetValue();
312  unsigned int id = (unsigned int)idLf->GetValue();
313  unsigned int accept = (unsigned int)acceptLf->GetValue();
314  unsigned int layer_wheel = (unsigned int)layerLf->GetValue();
315  unsigned int layer = layer_wheel;
316  if(_showRings && layer >10) { // use rings instead of wheels
317  if(layer<14) layer = 10 + ((id>>9)&0x3); //TID 3 disks and also 3 rings -> use the same container
318  else layer = 13 + ((id>>5)&0x7); //TEC
319  }
320  unsigned int nHits = (unsigned int)nHitsLf->GetValue();
321  double x = xLf->GetValue();
322  double y = yLf->GetValue();
323  double z = zLf->GetValue();
324  double resxsig = ResXSigLf->GetValue();
325  double TrajLocX = TrajLocXLf->GetValue();
326  double TrajLocY = TrajLocYLf->GetValue();
327  double ClusterLocX = ClusterLocXLf->GetValue();
328  double TrajLocXMid;
329  double stripTrajMid;
330  double stripCluster;
331  bool badquality = false;
332  unsigned int bx = (unsigned int)BunchLf->GetValue();
333  if(_bunchx > 0 && _bunchx != bx) continue;
334  double instLumi = 0;
335  if(InstLumiLf!=0) instLumi = InstLumiLf->GetValue();
336  double PU = 0;
337  if(PULf!=0) PU = PULf->GetValue();
338  int CM = -100;
339  if(_useCM) CM = CMLf->GetValue();
340 
341  //We have two things we want to do, both an XY color plot, and the efficiency measurement
342  //First, ignore anything that isn't in acceptance and isn't good quality
343 
344  //if(quality == 1 || accept != 1 || nHits < 8) continue;
345  if(accept != 1 || nHits < 8) continue;
346  if(quality == 1) badquality = true;
347 
348  // don't compute efficiencies in modules from TOB6 and TEC9
349  if(!_showTOB6TEC9 && (layer_wheel==10 || layer_wheel==22)) continue;
350 
351  // don't use bad modules given in the bad module list
352  itBadMod = badModules_list.find(id);
353  if(itBadMod!=badModules_list.end()) continue;
354 
355 
356  //Now that we have a good event, we need to look at if we expected it or not, and the location
357  //if we didn't
358  //Fill the missing hit information first
359  bool badflag = false;
360 
361  // By default uses the old matching method
362  if(_ResXSig < 0) {
363  if(isBad == 1) badflag = true; // isBad set to false in the tree when resxsig<999.0
364  }
365  else {
366  if(isBad == 1 || resxsig > _ResXSig) badflag = true;
367  }
368 
369  // Conversion of positions in strip unit
370  int nstrips = -9;
371  float Pitch = -9.0;
372 
373  if (resxsig==1000.0) { // special treatment, no GeomDetUnit associated in some cases when no cluster found
374  Pitch = 0.0205; // maximum
375  nstrips = 768; // maximum
376  stripTrajMid = TrajLocX/Pitch + nstrips/2.0 ;
377  stripCluster = ClusterLocX/Pitch + nstrips/2.0 ;
378  }
379  else {
380  DetId ClusterDetId(id);
381  const StripGeomDetUnit * stripdet=(const StripGeomDetUnit*)tkgeom->idToDetUnit(ClusterDetId);
382  const StripTopology& Topo = stripdet->specificTopology();
383  nstrips = Topo.nstrips();
384  Pitch = stripdet->surface().bounds().width() / Topo.nstrips();
385  stripTrajMid = TrajLocX/Pitch + nstrips/2.0 ; //layer01->10
386  stripCluster = ClusterLocX/Pitch + nstrips/2.0 ;
387 
388  // For trapezoidal modules: extrapolation of x trajectory position to the y middle of the module
389  // for correct comparison with cluster position
390  float hbedge = 0;
391  float htedge = 0;
392  float hapoth = 0;
393  if(layer>=11) {
394  const BoundPlane plane = stripdet->surface();
395  const TrapezoidalPlaneBounds* trapezoidalBounds( dynamic_cast<const TrapezoidalPlaneBounds*>(&(plane.bounds())));
396  std::array<const float, 4> const & parameters = (*trapezoidalBounds).parameters();
397  hbedge = parameters[0];
398  htedge = parameters[1];
399  hapoth = parameters[3];
400  TrajLocXMid = TrajLocX / (1 + (htedge-hbedge)*TrajLocY/(htedge+hbedge)/hapoth) ; // radialy extrapolated x loc position at middle
401  stripTrajMid = TrajLocXMid/Pitch + nstrips/2.0 ;
402  }
403  }
404 
405 
406  if(!badquality && layer<23) {
407  if(resxsig!=1000.0) resolutionPlots[layer]->Fill(stripTrajMid-stripCluster);
408  else resolutionPlots[layer]->Fill(1000);
409  }
410 
411 
412  // New matching methods
413  int tapv = -9;
414  int capv = -9;
415  float stripInAPV = 64.;
416 
417  if ( _clusterMatchingMethod >=1 ) {
418  badflag = false; // reset
419  if(resxsig == 1000.0) { // default value when no cluster found in the module
420  badflag = true; // consider the module inefficient in this case
421  }
422  else{
423  if (_clusterMatchingMethod==2 || _clusterMatchingMethod==4) { // check the distance between cluster and trajectory position
424  if ( abs(stripCluster - stripTrajMid) > _clusterTrajDist ) badflag = true;
425  }
426  if (_clusterMatchingMethod==3 || _clusterMatchingMethod==4) { // cluster and traj have to be in the same APV (don't take edges into accounts)
427  tapv = (int) stripTrajMid/128;
428  capv = (int) stripCluster/128;
429  stripInAPV = stripTrajMid-tapv*128;
430 
431  if(stripInAPV<_stripsApvEdge || stripInAPV>128-_stripsApvEdge) continue;
432  if(tapv != capv) badflag = true;
433  }
434  }
435  }
436 
437 
438 
439  if(badflag && !badquality) {
440  hit temphit;
441  temphit.x = x;
442  temphit.y = y;
443  temphit.z = z;
444  temphit.id = id;
445  hits[layer].push_back(temphit);
446  }
447  pair<unsigned int, unsigned int> newgoodpair (1,1);
448  pair<unsigned int, unsigned int> newbadpair (1,0);
449  //First, figure out if the module already exists in the map of maps
450  map< unsigned int, pair< unsigned int, unsigned int> >::iterator it = modCounter[layer].find(id);
451  if(!badquality) {
452  if(it == modCounter[layer].end()) {
453  if(badflag) modCounter[layer][id] = newbadpair;
454  else modCounter[layer][id] = newgoodpair;
455  }
456  else {
457  ((*it).second.first)++;
458  if(!badflag) ((*it).second.second)++;
459  }
460 
461  if(layerfound_perBx.find(bx)==layerfound_perBx.end()) {
462  layerfound_perBx[bx] = vector<int>(23, 0);
463  layertotal_perBx[bx] = vector<int>(23, 0);
464  }
465  if(!badflag) layerfound_perBx[bx][layer]++;
466  layertotal_perBx[bx][layer]++;
467 
468  if(!badflag) layerfound_vsLumi[layer]->Fill(instLumi);
469  layertotal_vsLumi[layer]->Fill(instLumi);
470  if(!badflag) layerfound_vsPU[layer]->Fill(PU);
471  layertotal_vsPU[layer]->Fill(PU);
472 
473  if(_useCM){
474  if(!badflag) layerfound_vsCM[layer]->Fill(CM);
475  layertotal_vsCM[layer]->Fill(CM);
476  }
477 
478  //Have to do the decoding for which side to go on (ugh)
479  if(layer <= 10) {
480  if(!badflag) goodlayerfound[layer]++;
481  goodlayertotal[layer]++;
482  }
483  else if(layer > 10 && layer < 14) {
484  if( ((id>>13)&0x3) == 1) {
485  if(!badflag) goodlayerfound[layer]++;
486  goodlayertotal[layer]++;
487  }
488  else if( ((id>>13)&0x3) == 2) {
489  if(!badflag) goodlayerfound[layer+3]++;
490  goodlayertotal[layer+3]++;
491  }
492  }
493  else if(layer > 13 && layer <= 22) {
494  if( ((id>>18)&0x3) == 1) {
495  if(!badflag) goodlayerfound[layer+3]++;
496  goodlayertotal[layer+3]++;
497  }
498  else if( ((id>>18)&0x3) == 2) {
499  if(!badflag) goodlayerfound[layer+3+nTEClayers]++;
500  goodlayertotal[layer+3+nTEClayers]++;
501  }
502  }
503  }
504  //Do the one where we don't exclude bad modules!
505  if(layer <= 10) {
506  if(!badflag) alllayerfound[layer]++;
507  alllayertotal[layer]++;
508  }
509  else if(layer > 10 && layer < 14) {
510  if( ((id>>13)&0x3) == 1) {
511  if(!badflag) alllayerfound[layer]++;
512  alllayertotal[layer]++;
513  }
514  else if( ((id>>13)&0x3) == 2) {
515  if(!badflag) alllayerfound[layer+3]++;
516  alllayertotal[layer+3]++;
517  }
518  }
519  else if(layer > 13 && layer <= 22) {
520  if( ((id>>18)&0x3) == 1) {
521  if(!badflag) alllayerfound[layer+3]++;
522  alllayertotal[layer+3]++;
523  }
524  else if( ((id>>18)&0x3) == 2) {
525  if(!badflag) alllayerfound[layer+3+nTEClayers]++;
526  alllayertotal[layer+3+nTEClayers]++;
527  }
528  }
529  //At this point, both of our maps are loaded with the correct information
530  }
531  }// go to next CalibTreeFile
532 
533  makeHotColdMaps();
534  makeTKMap();
535  makeSQLite();
536  totalStatistics();
537  makeSummary();
538  makeSummaryVsBx();
540  if(_useCM) makeSummaryVsCM();
541 
543  //try to write out what's in the quality record
545  int NTkBadComponent[4]; //k: 0=BadModule, 1=BadFiber, 2=BadApv, 3=BadStrips
546  int NBadComponent[4][19][4];
547  //legend: NBadComponent[i][j][k]= SubSystem i, layer/disk/wheel j, BadModule/Fiber/Apv k
548  // i: 0=TIB, 1=TID, 2=TOB, 3=TEC
549  // k: 0=BadModule, 1=BadFiber, 2=BadApv, 3=BadStrips
550  std::stringstream ssV[4][19];
551 
552  for(int i=0;i<4;++i){
553  NTkBadComponent[i]=0;
554  for(int j=0;j<19;++j){
555  ssV[i][j].str("");
556  for(int k=0;k<4;++k)
557  NBadComponent[i][j][k]=0;
558  }
559  }
560 
561 
562  std::vector<SiStripQuality::BadComponent> BC = quality_->getBadComponentList();
563 
564  for (size_t i=0;i<BC.size();++i){
565 
566  //&&&&&&&&&&&&&
567  //Full Tk
568  //&&&&&&&&&&&&&
569 
570  if (BC[i].BadModule)
571  NTkBadComponent[0]++;
572  if (BC[i].BadFibers)
573  NTkBadComponent[1]+= ( (BC[i].BadFibers>>2)&0x1 )+ ( (BC[i].BadFibers>>1)&0x1 ) + ( (BC[i].BadFibers)&0x1 );
574  if (BC[i].BadApvs)
575  NTkBadComponent[2]+= ( (BC[i].BadApvs>>5)&0x1 )+ ( (BC[i].BadApvs>>4)&0x1 ) + ( (BC[i].BadApvs>>3)&0x1 ) +
576  ( (BC[i].BadApvs>>2)&0x1 )+ ( (BC[i].BadApvs>>1)&0x1 ) + ( (BC[i].BadApvs)&0x1 );
577 
578  //&&&&&&&&&&&&&&&&&
579  //Single SubSystem
580  //&&&&&&&&&&&&&&&&&
581 
582  int component;
583  SiStripDetId a(BC[i].detid);
584  if ( a.subdetId() == SiStripDetId::TIB ){
585  //&&&&&&&&&&&&&&&&&
586  //TIB
587  //&&&&&&&&&&&&&&&&&
588 
589  component=tTopo->tibLayer(BC[i].detid);
590  SetBadComponents(0, component, BC[i], ssV, NBadComponent);
591 
592  } else if ( a.subdetId() == SiStripDetId::TID ) {
593  //&&&&&&&&&&&&&&&&&
594  //TID
595  //&&&&&&&&&&&&&&&&&
596 
597  component=tTopo->tidSide(BC[i].detid)==2?tTopo->tidWheel(BC[i].detid):tTopo->tidWheel(BC[i].detid)+3;
598  SetBadComponents(1, component, BC[i], ssV, NBadComponent);
599 
600  } else if ( a.subdetId() == SiStripDetId::TOB ) {
601  //&&&&&&&&&&&&&&&&&
602  //TOB
603  //&&&&&&&&&&&&&&&&&
604 
605  component=tTopo->tobLayer(BC[i].detid);
606  SetBadComponents(2, component, BC[i], ssV, NBadComponent);
607 
608  } else if ( a.subdetId() == SiStripDetId::TEC ) {
609  //&&&&&&&&&&&&&&&&&
610  //TEC
611  //&&&&&&&&&&&&&&&&&
612 
613  component=tTopo->tecSide(BC[i].detid)==2?tTopo->tecWheel(BC[i].detid):tTopo->tecWheel(BC[i].detid)+9;
614  SetBadComponents(3, component, BC[i], ssV, NBadComponent);
615 
616  }
617  }
618 
619  //&&&&&&&&&&&&&&&&&&
620  // Single Strip Info
621  //&&&&&&&&&&&&&&&&&&
622  float percentage=0;
623 
626 
627  for (SiStripBadStrip::RegistryIterator rp=rbegin; rp != rend; ++rp) {
628  unsigned int detid=rp->detid;
629 
630  int subdet=-999; int component=-999;
631  SiStripDetId a(detid);
632  if ( a.subdetId() == 3 ){
633  subdet=0;
634  component=tTopo->tibLayer(detid);
635  } else if ( a.subdetId() == 4 ) {
636  subdet=1;
637  component=tTopo->tidSide(detid)==2?tTopo->tidWheel(detid):tTopo->tidWheel(detid)+3;
638  } else if ( a.subdetId() == 5 ) {
639  subdet=2;
640  component=tTopo->tobLayer(detid);
641  } else if ( a.subdetId() == 6 ) {
642  subdet=3;
643  component=tTopo->tecSide(detid)==2?tTopo->tecWheel(detid):tTopo->tecWheel(detid)+9;
644  }
645 
647 
648  percentage=0;
649  for(int it=0;it<sqrange.second-sqrange.first;it++){
650  unsigned int range=quality_->decode( *(sqrange.first+it) ).range;
651  NTkBadComponent[3]+=range;
652  NBadComponent[subdet][0][3]+=range;
653  NBadComponent[subdet][component][3]+=range;
654  percentage+=range;
655  }
656  if(percentage!=0)
657  percentage/=128.*reader->getNumberOfApvsAndStripLength(detid).first;
658  if(percentage>1)
659  edm::LogError("SiStripQualityStatistics") << "PROBLEM detid " << detid << " value " << percentage<< std::endl;
660  }
661  //&&&&&&&&&&&&&&&&&&
662  // printout
663  //&&&&&&&&&&&&&&&&&&
664 
665  cout << "\n-----------------\nNew IOV starting from run " << e.id().run() << " event " << e.id().event() << " lumiBlock " << e.luminosityBlock() << " time " << e.time().value() << "\n-----------------\n";
666  cout << "\n-----------------\nGlobal Info\n-----------------";
667  cout << "\nBadComponent \t Modules \tFibers \tApvs\tStrips\n----------------------------------------------------------------";
668  cout << "\nTracker:\t\t"<<NTkBadComponent[0]<<"\t"<<NTkBadComponent[1]<<"\t"<<NTkBadComponent[2]<<"\t"<<NTkBadComponent[3];
669  cout << endl;
670  cout << "\nTIB:\t\t\t"<<NBadComponent[0][0][0]<<"\t"<<NBadComponent[0][0][1]<<"\t"<<NBadComponent[0][0][2]<<"\t"<<NBadComponent[0][0][3];
671  cout << "\nTID:\t\t\t"<<NBadComponent[1][0][0]<<"\t"<<NBadComponent[1][0][1]<<"\t"<<NBadComponent[1][0][2]<<"\t"<<NBadComponent[1][0][3];
672  cout << "\nTOB:\t\t\t"<<NBadComponent[2][0][0]<<"\t"<<NBadComponent[2][0][1]<<"\t"<<NBadComponent[2][0][2]<<"\t"<<NBadComponent[2][0][3];
673  cout << "\nTEC:\t\t\t"<<NBadComponent[3][0][0]<<"\t"<<NBadComponent[3][0][1]<<"\t"<<NBadComponent[3][0][2]<<"\t"<<NBadComponent[3][0][3];
674  cout << "\n";
675 
676  for (int i=1;i<5;++i)
677  cout << "\nTIB Layer " << i << " :\t\t"<<NBadComponent[0][i][0]<<"\t"<<NBadComponent[0][i][1]<<"\t"<<NBadComponent[0][i][2]<<"\t"<<NBadComponent[0][i][3];
678  cout << "\n";
679  for (int i=1;i<4;++i)
680  cout << "\nTID+ Disk " << i << " :\t\t"<<NBadComponent[1][i][0]<<"\t"<<NBadComponent[1][i][1]<<"\t"<<NBadComponent[1][i][2]<<"\t"<<NBadComponent[1][i][3];
681  for (int i=4;i<7;++i)
682  cout << "\nTID- Disk " << i-3 << " :\t\t"<<NBadComponent[1][i][0]<<"\t"<<NBadComponent[1][i][1]<<"\t"<<NBadComponent[1][i][2]<<"\t"<<NBadComponent[1][i][3];
683  cout << "\n";
684  for (int i=1;i<7;++i)
685  cout << "\nTOB Layer " << i << " :\t\t"<<NBadComponent[2][i][0]<<"\t"<<NBadComponent[2][i][1]<<"\t"<<NBadComponent[2][i][2]<<"\t"<<NBadComponent[2][i][3];
686  cout << "\n";
687  for (int i=1;i<10;++i)
688  cout << "\nTEC+ Disk " << i << " :\t\t"<<NBadComponent[3][i][0]<<"\t"<<NBadComponent[3][i][1]<<"\t"<<NBadComponent[3][i][2]<<"\t"<<NBadComponent[3][i][3];
689  for (int i=10;i<19;++i)
690  cout << "\nTEC- Disk " << i-9 << " :\t\t"<<NBadComponent[3][i][0]<<"\t"<<NBadComponent[3][i][1]<<"\t"<<NBadComponent[3][i][2]<<"\t"<<NBadComponent[3][i][3];
691  cout << "\n";
692 
693  cout << "\n----------------------------------------------------------------\n\t\t Detid \tModules Fibers Apvs\n----------------------------------------------------------------";
694  for (int i=1;i<5;++i)
695  cout << "\nTIB Layer " << i << " :" << ssV[0][i].str();
696  cout << "\n";
697  for (int i=1;i<4;++i)
698  cout << "\nTID+ Disk " << i << " :" << ssV[1][i].str();
699  for (int i=4;i<7;++i)
700  cout << "\nTID- Disk " << i-3 << " :" << ssV[1][i].str();
701  cout << "\n";
702  for (int i=1;i<7;++i)
703  cout << "\nTOB Layer " << i << " :" << ssV[2][i].str();
704  cout << "\n";
705  for (int i=1;i<10;++i)
706  cout << "\nTEC+ Disk " << i << " :" << ssV[3][i].str();
707  for (int i=10;i<19;++i)
708  cout << "\nTEC- Disk " << i-9 << " :" << ssV[3][i].str();
709 
710  // store also bad modules in log file
711  ofstream badModules;
712  badModules.open("BadModules.log");
713  badModules << "\n----------------------------------------------------------------\n\t\t Detid \tModules Fibers Apvs\n----------------------------------------------------------------";
714  for (int i=1;i<5;++i)
715  badModules << "\nTIB Layer " << i << " :" << ssV[0][i].str();
716  badModules << "\n";
717  for (int i=1;i<4;++i)
718  badModules << "\nTID+ Disk " << i << " :" << ssV[1][i].str();
719  for (int i=4;i<7;++i)
720  badModules << "\nTID- Disk " << i-3 << " :" << ssV[1][i].str();
721  badModules << "\n";
722  for (int i=1;i<7;++i)
723  badModules << "\nTOB Layer " << i << " :" << ssV[2][i].str();
724  badModules << "\n";
725  for (int i=1;i<10;++i)
726  badModules << "\nTEC+ Disk " << i << " :" << ssV[3][i].str();
727  for (int i=10;i<19;++i)
728  badModules << "\nTEC- Disk " << i-9 << " :" << ssV[3][i].str();
729  badModules.close();
730 
731 }
732 
734  cout << "Entering hot cold map generation!\n";
735  TStyle* gStyle = new TStyle("gStyle","myStyle");
736  gStyle->cd();
737  gStyle->SetPalette(1);
738  gStyle->SetCanvasColor(kWhite);
739  gStyle->SetOptStat(0);
740  //Here we make the hot/cold color maps that we love so very much
741  //Already have access to the data as a private variable
742  //Create all of the histograms in the TFileService
743  TH2F *temph2;
744  for(Long_t maplayer = 1; maplayer <=22; maplayer++) {
745  //Initialize all of the histograms
746  if(maplayer > 0 && maplayer <= 4) {
747  //We are in the TIB
748  temph2 = fs->make<TH2F>(Form("%s%i","TIB",(int)(maplayer)),"TIB",100,-1,361,100,-100,100);
749  temph2->GetXaxis()->SetTitle("Phi");
750  temph2->GetXaxis()->SetBinLabel(1,TString("360"));
751  temph2->GetXaxis()->SetBinLabel(50,TString("180"));
752  temph2->GetXaxis()->SetBinLabel(100,TString("0"));
753  temph2->GetYaxis()->SetTitle("Global Z");
754  temph2->SetOption("colz");
755  HotColdMaps.push_back(temph2);
756  }
757  else if(maplayer > 4 && maplayer <= 10) {
758  //We are in the TOB
759  temph2 = fs->make<TH2F>(Form("%s%i","TOB",(int)(maplayer-4)),"TOB",100,-1,361,100,-120,120);
760  temph2->GetXaxis()->SetTitle("Phi");
761  temph2->GetXaxis()->SetBinLabel(1,TString("360"));
762  temph2->GetXaxis()->SetBinLabel(50,TString("180"));
763  temph2->GetXaxis()->SetBinLabel(100,TString("0"));
764  temph2->GetYaxis()->SetTitle("Global Z");
765  temph2->SetOption("colz");
766  HotColdMaps.push_back(temph2);
767  }
768  else if(maplayer > 10 && maplayer <= 13) {
769  //We are in the TID
770  //Split by +/-
771  temph2 = fs->make<TH2F>(Form("%s%i","TID-",(int)(maplayer-10)),"TID-",100,-100,100,100,-100,100);
772  temph2->GetXaxis()->SetTitle("Global Y");
773  temph2->GetXaxis()->SetBinLabel(1,TString("+Y"));
774  temph2->GetXaxis()->SetBinLabel(50,TString("0"));
775  temph2->GetXaxis()->SetBinLabel(100,TString("-Y"));
776  temph2->GetYaxis()->SetTitle("Global X");
777  temph2->GetYaxis()->SetBinLabel(1,TString("-X"));
778  temph2->GetYaxis()->SetBinLabel(50,TString("0"));
779  temph2->GetYaxis()->SetBinLabel(100,TString("+X"));
780  temph2->SetOption("colz");
781  HotColdMaps.push_back(temph2);
782  temph2 = fs->make<TH2F>(Form("%s%i","TID+",(int)(maplayer-10)),"TID+",100,-100,100,100,-100,100);
783  temph2->GetXaxis()->SetTitle("Global Y");
784  temph2->GetXaxis()->SetBinLabel(1,TString("+Y"));
785  temph2->GetXaxis()->SetBinLabel(50,TString("0"));
786  temph2->GetXaxis()->SetBinLabel(100,TString("-Y"));
787  temph2->GetYaxis()->SetTitle("Global X");
788  temph2->GetYaxis()->SetBinLabel(1,TString("-X"));
789  temph2->GetYaxis()->SetBinLabel(50,TString("0"));
790  temph2->GetYaxis()->SetBinLabel(100,TString("+X"));
791  temph2->SetOption("colz");
792  HotColdMaps.push_back(temph2);
793  }
794  else if(maplayer > 13) {
795  //We are in the TEC
796  //Split by +/-
797  temph2 = fs->make<TH2F>(Form("%s%i","TEC-",(int)(maplayer-13)),"TEC-",100,-120,120,100,-120,120);
798  temph2->GetXaxis()->SetTitle("Global Y");
799  temph2->GetXaxis()->SetBinLabel(1,TString("+Y"));
800  temph2->GetXaxis()->SetBinLabel(50,TString("0"));
801  temph2->GetXaxis()->SetBinLabel(100,TString("-Y"));
802  temph2->GetYaxis()->SetTitle("Global X");
803  temph2->GetYaxis()->SetBinLabel(1,TString("-X"));
804  temph2->GetYaxis()->SetBinLabel(50,TString("0"));
805  temph2->GetYaxis()->SetBinLabel(100,TString("+X"));
806  temph2->SetOption("colz");
807  HotColdMaps.push_back(temph2);
808  temph2 = fs->make<TH2F>(Form("%s%i","TEC+",(int)(maplayer-13)),"TEC+",100,-120,120,100,-120,120);
809  temph2->GetXaxis()->SetTitle("Global Y");
810  temph2->GetXaxis()->SetBinLabel(1,TString("+Y"));
811  temph2->GetXaxis()->SetBinLabel(50,TString("0"));
812  temph2->GetXaxis()->SetBinLabel(100,TString("-Y"));
813  temph2->GetYaxis()->SetTitle("Global X");
814  temph2->GetYaxis()->SetBinLabel(1,TString("-X"));
815  temph2->GetYaxis()->SetBinLabel(50,TString("0"));
816  temph2->GetYaxis()->SetBinLabel(100,TString("+X"));
817  temph2->SetOption("colz");
818  HotColdMaps.push_back(temph2);
819  }
820  }
821  for(Long_t mylayer = 1; mylayer <= 22; mylayer++) {
822  //Determine what kind of plot we want to write out
823  //Loop through the entirety of each layer
824  //Create an array of the histograms
825  vector<hit>::const_iterator iter;
826  for(iter = hits[mylayer].begin(); iter != hits[mylayer].end(); iter++) {
827  //Looping over the particular layer
828  //Fill by 360-x to get the proper location to compare with TKMaps of phi
829  //Also global xy is messed up
830  if(mylayer > 0 && mylayer <= 4) {
831  //We are in the TIB
832  float phi = calcPhi(iter->x, iter->y);
833  HotColdMaps[mylayer - 1]->Fill(360.-phi,iter->z,1.);
834  }
835  else if(mylayer > 4 && mylayer <= 10) {
836  //We are in the TOB
837  float phi = calcPhi(iter->x,iter->y);
838  HotColdMaps[mylayer - 1]->Fill(360.-phi,iter->z,1.);
839  }
840  else if(mylayer > 10 && mylayer <= 13) {
841  //We are in the TID
842  //There are 2 different maps here
843  int side = (((iter->id)>>13) & 0x3);
844  if(side == 1) HotColdMaps[(mylayer - 1) + (mylayer - 11)]->Fill(-iter->y,iter->x,1.);
845  else if(side == 2) HotColdMaps[(mylayer - 1) + (mylayer - 10)]->Fill(-iter->y,iter->x,1.);
846  //if(side == 1) HotColdMaps[(mylayer - 1) + (mylayer - 11)]->Fill(iter->x,iter->y,1.);
847  //else if(side == 2) HotColdMaps[(mylayer - 1) + (mylayer - 10)]->Fill(iter->x,iter->y,1.);
848  }
849  else if(mylayer > 13) {
850  //We are in the TEC
851  //There are 2 different maps here
852  int side = (((iter->id)>>18) & 0x3);
853  if(side == 1) HotColdMaps[(mylayer + 2) + (mylayer - 14)]->Fill(-iter->y,iter->x,1.);
854  else if(side == 2) HotColdMaps[(mylayer + 2) + (mylayer - 13)]->Fill(-iter->y,iter->x,1.);
855  //if(side == 1) HotColdMaps[(mylayer + 2) + (mylayer - 14)]->Fill(iter->x,iter->y,1.);
856  //else if(side == 2) HotColdMaps[(mylayer + 2) + (mylayer - 13)]->Fill(iter->x,iter->y,1.);
857  }
858  }
859  }
860  cout << "Finished HotCold Map Generation\n";
861 }
862 
864  cout << "Entering TKMap generation!\n";
865  tkmap = new TrackerMap(" Detector Inefficiency ");
866  tkmapbad = new TrackerMap(" Inefficient Modules ");
867  tkmapeff = new TrackerMap(_title.Data());
868  tkmapnum = new TrackerMap(" Detector numerator ");
869  tkmapden = new TrackerMap(" Detector denominator ");
870 
871  double myeff, mynum, myden;
872 
873  for(Long_t i = 1; i <= 22; i++) {
874  //Loop over every layer, extracting the information from
875  //the map of the efficiencies
876  layertotal[i] = 0;
877  layerfound[i] = 0;
878  map<unsigned int, pair<unsigned int, unsigned int> >::const_iterator ih;
879  for( ih = modCounter[i].begin(); ih != modCounter[i].end(); ih++) {
880  //We should be in the layer in question, and looping over all of the modules in said layer
881  //Generate the list for the TKmap, and the bad module list
882  mynum = (double)(((*ih).second).second);
883  myden = (double)(((*ih).second).first);
884  if(myden>0) myeff = mynum/myden;
885  else myeff=0;
886  if ( (myden >= nModsMin) && (myeff < threshold) ) {
887  //We have a bad module, put it in the list!
888  BadModules[(*ih).first] = myeff;
889  tkmapbad->fillc((*ih).first,255,0,0);
890  cout << "Layer " << i << " module " << (*ih).first << " efficiency " << myeff << " " << (((*ih).second).second) << "/" << (((*ih).second).first) << endl;
891  }
892  else {
893  //Fill the bad list with empty results for every module
894  tkmapbad->fillc((*ih).first,255,255,255);
895  }
896  if(myden < 50 ) {
897  cout << "Module " << (*ih).first << " layer " << i << " is under occupancy at " << (((*ih).second).first) << endl;
898  }
899  //Put any module into the TKMap
900  //Should call module ID, and then 1- efficiency for that module
901  //if((*ih).first == 369137820) {
902  // cout << "Module 369137820 has 1-eff of " << 1.-myeff << endl;
903  //cout << "Which is " << ((*ih).second).second << "/" << ((*ih).second).first << endl;
904  //}
905  tkmap->fill((*ih).first,1.-myeff);
906  tkmapeff->fill((*ih).first,myeff);
907  tkmapnum->fill((*ih).first,mynum);
908  tkmapden->fill((*ih).first,myden);
909  //Find the total number of hits in the module
910  layertotal[i] += int(myden);
911  layerfound[i] += int(mynum);
912  }
913  }
914  tkmap->save(true, 0, 0, "SiStripHitEffTKMap.png");
915  tkmapbad->save(true, 0, 0, "SiStripHitEffTKMapBad.png");
916  tkmapeff->save(true, _tkMapMin, 1., "SiStripHitEffTKMapEff.png");
917  tkmapnum->save(true, 0, 0, "SiStripHitEffTKMapNum.png");
918  tkmapden->save(true, 0, 0, "SiStripHitEffTKMapDen.png");
919  cout << "Finished TKMap Generation\n";
920 }
921 
923  //Generate the SQLite file for use in the Database of the bad modules!
924  cout << "Entering SQLite file generation!\n";
925  std::vector<unsigned int> BadStripList;
926  unsigned short NStrips;
927  unsigned int id1;
928  SiStripQuality* pQuality = new SiStripQuality;
929  //This is the list of the bad strips, use to mask out entire APVs
930  //Now simply go through the bad hit list and mask out things that
931  //are bad!
932  map< unsigned int, double >::const_iterator it;
933  for(it = BadModules.begin(); it != BadModules.end(); it++) {
934  //We need to figure out how many strips are in this particular module
935  //To Mask correctly!
936  NStrips=reader->getNumberOfApvsAndStripLength((*it).first).first*128;
937  cout << "Number of strips module " << (*it).first << " is " << NStrips << endl;
938  BadStripList.push_back(pQuality->encode(0,NStrips,0));
939  //Now compact into a single bad module
940  id1=(unsigned int)(*it).first;
941  cout << "ID1 shoudl match list of modules above " << id1 << endl;
942  quality_->compact(id1,BadStripList);
943  SiStripQuality::Range range(BadStripList.begin(),BadStripList.end());
944  quality_->put(id1,range);
945  BadStripList.clear();
946  }
947  //Fill all the bad components now
949 }
950 
952  //Calculate the statistics by layer
953  int totalfound = 0;
954  int totaltotal = 0;
955  double layereff;
956  int subdetfound[5];
957  int subdettotal[5];
958 
959  for(Long_t i=1; i<5; i++) {subdetfound[i]=0; subdettotal[i]=0;}
960 
961  for(Long_t i=1; i<=22; i++) {
962  layereff = double(layerfound[i])/double(layertotal[i]);
963  cout << "Layer " << i << " has total efficiency " << layereff << " " << layerfound[i] << "/" << layertotal[i] << endl;
964  totalfound += layerfound[i];
965  totaltotal += layertotal[i];
966  if(i<5) {subdetfound[1]+=layerfound[i]; subdettotal[1]+=layertotal[i];}
967  if(i>=5 && i<11) {subdetfound[2]+=layerfound[i]; subdettotal[2]+=layertotal[i];}
968  if(i>=11 && i<14) {subdetfound[3]+=layerfound[i]; subdettotal[3]+=layertotal[i];}
969  if(i>=14) {subdetfound[4]+=layerfound[i]; subdettotal[4]+=layertotal[i];}
970 
971  }
972 
973  cout << "The total efficiency is " << double(totalfound)/double(totaltotal) << endl;
974  cout << " TIB: " << double(subdetfound[1])/subdettotal[1] << endl;
975  cout << " TOB: " << double(subdetfound[2])/subdettotal[2] << endl;
976  cout << " TID: " << double(subdetfound[3])/subdettotal[3] << endl;
977  cout << " TEC: " << double(subdetfound[4])/subdettotal[4] << endl;
978 }
979 
981  //setTDRStyle();
982 
983  int nLayers = 34;
984  if(_showRings) nLayers = 30;
985  if(!_showEndcapSides) {
986  if(!_showRings) nLayers=22;
987  else nLayers=20;
988  }
989 
990  TH1F *found = fs->make<TH1F>("found","found",nLayers+1,0,nLayers+1);
991  TH1F *all = fs->make<TH1F>("all","all",nLayers+1,0,nLayers+1);
992  TH1F *found2 = fs->make<TH1F>("found2","found2",nLayers+1,0,nLayers+1);
993  TH1F *all2 = fs->make<TH1F>("all2","all2",nLayers+1,0,nLayers+1);
994  // first bin only to keep real data off the y axis so set to -1
995  found->SetBinContent(0,-1);
996  all->SetBinContent(0,1);
997 
998  // new ROOT version: TGraph::Divide don't handle null or negative values
999  for (Long_t i=1; i< nLayers+2; ++i) {
1000  found->SetBinContent(i,1e-6);
1001  all->SetBinContent(i,1);
1002  found2->SetBinContent(i,1e-6);
1003  all2->SetBinContent(i,1);
1004  }
1005 
1006  TCanvas *c7 =new TCanvas("c7"," test ",10,10,800,600);
1007  c7->SetFillColor(0);
1008  c7->SetGrid();
1009 
1010  int nLayers_max=nLayers+1; // barrel+endcap
1011  if(!_showEndcapSides) nLayers_max=11; // barrel
1012  for (Long_t i=1; i< nLayers_max; ++i) {
1013  cout << "Fill only good modules layer " << i << ": S = " << goodlayerfound[i] << " B = " << goodlayertotal[i] << endl;
1014  if (goodlayertotal[i] > 5) {
1015  found->SetBinContent(i,goodlayerfound[i]);
1016  all->SetBinContent(i,goodlayertotal[i]);
1017  }
1018 
1019  cout << "Filling all modules layer " << i << ": S = " << alllayerfound[i] << " B = " << alllayertotal[i] << endl;
1020  if (alllayertotal[i] > 5) {
1021  found2->SetBinContent(i,alllayerfound[i]);
1022  all2->SetBinContent(i,alllayertotal[i]);
1023  }
1024 
1025  }
1026 
1027  // endcap - merging sides
1028  if(!_showEndcapSides) {
1029  for (Long_t i=11; i< 14; ++i) { // TID disks
1030  cout << "Fill only good modules layer " << i << ": S = " << goodlayerfound[i]+goodlayerfound[i+3] << " B = " << goodlayertotal[i]+goodlayertotal[i+3] << endl;
1031  if (goodlayertotal[i]+goodlayertotal[i+3] > 5) {
1032  found->SetBinContent(i,goodlayerfound[i]+goodlayerfound[i+3]);
1033  all->SetBinContent(i,goodlayertotal[i]+goodlayertotal[i+3]);
1034  }
1035  cout << "Filling all modules layer " << i << ": S = " << alllayerfound[i]+alllayerfound[i+3] << " B = " << alllayertotal[i]+alllayertotal[i+3] << endl;
1036  if (alllayertotal[i]+alllayertotal[i+3] > 5) {
1037  found2->SetBinContent(i,alllayerfound[i]+alllayerfound[i+3]);
1038  all2->SetBinContent(i,alllayertotal[i]+alllayertotal[i+3]);
1039  }
1040  }
1041  for (Long_t i=17; i< 17+nTEClayers; ++i) { // TEC disks
1042  cout << "Fill only good modules layer " << i-3 << ": S = " << goodlayerfound[i]+goodlayerfound[i+nTEClayers] << " B = " << goodlayertotal[i]+goodlayertotal[i+nTEClayers] << endl;
1043  if (goodlayertotal[i]+goodlayertotal[i+nTEClayers] > 5) {
1044  found->SetBinContent(i-3,goodlayerfound[i]+goodlayerfound[i+nTEClayers]);
1045  all->SetBinContent(i-3,goodlayertotal[i]+goodlayertotal[i+nTEClayers]);
1046  }
1047  cout << "Filling all modules layer " << i-3 << ": S = " << alllayerfound[i]+alllayerfound[i+nTEClayers] << " B = " << alllayertotal[i]+alllayertotal[i+nTEClayers] << endl;
1048  if (alllayertotal[i]+alllayertotal[i+nTEClayers] > 5) {
1049  found2->SetBinContent(i-3,alllayerfound[i]+alllayerfound[i+nTEClayers]);
1050  all2->SetBinContent(i-3,alllayertotal[i]+alllayertotal[i+nTEClayers]);
1051  }
1052  }
1053  }
1054 
1055  found->Sumw2();
1056  all->Sumw2();
1057 
1058  found2->Sumw2();
1059  all2->Sumw2();
1060 
1061  TGraphAsymmErrors *gr = fs->make<TGraphAsymmErrors>(nLayers+1);
1062  gr->SetName("eff_good");
1063  gr->BayesDivide(found,all);
1064 
1065  TGraphAsymmErrors *gr2 = fs->make<TGraphAsymmErrors>(nLayers+1);
1066  gr2->SetName("eff_all");
1067  gr2->BayesDivide(found2,all2);
1068 
1069  for(int j = 0; j<nLayers+1; j++){
1070  gr->SetPointError(j, 0., 0., gr->GetErrorYlow(j),gr->GetErrorYhigh(j) );
1071  gr2->SetPointError(j, 0., 0., gr2->GetErrorYlow(j),gr2->GetErrorYhigh(j) );
1072  }
1073 
1074  gr->GetXaxis()->SetLimits(0,nLayers);
1075  gr->SetMarkerColor(2);
1076  gr->SetMarkerSize(1.2);
1077  gr->SetLineColor(2);
1078  gr->SetLineWidth(4);
1079  gr->SetMarkerStyle(20);
1080  gr->SetMinimum(_effPlotMin);
1081  gr->SetMaximum(1.001);
1082  gr->GetYaxis()->SetTitle("Efficiency");
1083  gStyle->SetTitleFillColor(0);
1084  gStyle->SetTitleBorderSize(0);
1085  gr->SetTitle(_title);
1086 
1087  gr2->GetXaxis()->SetLimits(0,nLayers);
1088  gr2->SetMarkerColor(1);
1089  gr2->SetMarkerSize(1.2);
1090  gr2->SetLineColor(1);
1091  gr2->SetLineWidth(4);
1092  gr2->SetMarkerStyle(21);
1093  gr2->SetMinimum(_effPlotMin);
1094  gr2->SetMaximum(1.001);
1095  gr2->GetYaxis()->SetTitle("Efficiency");
1096  gr2->SetTitle(_title);
1097 
1098  for ( Long_t k=1; k<nLayers+1; k++) {
1099  TString label;
1100  if(_showEndcapSides) label = GetLayerSideName(k);
1101  else label = GetLayerName(k);
1102  if(!_showTOB6TEC9) {
1103  if(k==10) label="";
1104  if(!_showRings && k==nLayers) label="";
1105  if(!_showRings && _showEndcapSides && k==25) label="";
1106  }
1107  if(!_showRings) {
1108  if(_showEndcapSides) {
1109  gr->GetXaxis()->SetBinLabel(((k+1)*100+2)/(nLayers)-4,label);
1110  gr2->GetXaxis()->SetBinLabel(((k+1)*100+2)/(nLayers)-4,label);
1111  }
1112  else {
1113  gr->GetXaxis()->SetBinLabel((k+1)*100/(nLayers)-6,label);
1114  gr2->GetXaxis()->SetBinLabel((k+1)*100/(nLayers)-6,label);
1115  }
1116  }
1117  else {
1118  if(_showEndcapSides) {
1119  gr->GetXaxis()->SetBinLabel((k+1)*100/(nLayers)-4,label);
1120  gr2->GetXaxis()->SetBinLabel((k+1)*100/(nLayers)-4,label);
1121  }
1122  else {
1123  gr->GetXaxis()->SetBinLabel((k+1)*100/(nLayers)-7,label);
1124  gr2->GetXaxis()->SetBinLabel((k+1)*100/(nLayers)-7,label);
1125  }
1126  }
1127  }
1128 
1129  gr->Draw("AP");
1130  gr->GetXaxis()->SetNdivisions(36);
1131 
1132  c7->cd();
1133  TPad *overlay = new TPad("overlay","",0,0,1,1);
1134  overlay->SetFillStyle(4000);
1135  overlay->SetFillColor(0);
1136  overlay->SetFrameFillStyle(4000);
1137  overlay->Draw("same");
1138  overlay->cd();
1139  if(!_showOnlyGoodModules) gr2->Draw("AP");
1140 
1141  TLegend *leg = new TLegend(0.70,0.27,0.88,0.40);
1142  leg->AddEntry(gr,"Good Modules","p");
1143  if(!_showOnlyGoodModules) leg->AddEntry(gr2,"All Modules","p");
1144  leg->SetTextSize(0.020);
1145  leg->SetFillColor(0);
1146  leg->Draw("same");
1147 
1148  c7->SaveAs("Summary.png");
1149 }
1150 
1151 
1153  cout<<"Computing efficiency vs bx"<<endl;
1154 
1155  unsigned int nLayers = 22;
1156  if(_showRings) nLayers = 20;
1157 
1158  for(unsigned int ilayer=1; ilayer<nLayers; ilayer++) {
1159  TH1F *hfound = fs->make<TH1F>(Form("foundVsBx_layer%i", ilayer),Form("layer %i", ilayer),3565,0,3565);
1160  TH1F *htotal = fs->make<TH1F>(Form("totalVsBx_layer%i", ilayer),Form("layer %i", ilayer),3565,0,3565);
1161 
1162  for(unsigned int ibx=0; ibx<3566; ibx++){
1163  hfound->SetBinContent(ibx, 1e-6);
1164  htotal->SetBinContent(ibx, 1);
1165  }
1166  map<unsigned int, vector<int> >::iterator iterMapvsBx;
1167  for(iterMapvsBx=layerfound_perBx.begin(); iterMapvsBx!=layerfound_perBx.end(); ++iterMapvsBx)
1168  hfound->SetBinContent( iterMapvsBx->first, iterMapvsBx->second[ilayer]);
1169  for(iterMapvsBx=layertotal_perBx.begin(); iterMapvsBx!=layertotal_perBx.end(); ++iterMapvsBx)
1170  if(iterMapvsBx->second[ilayer]>0) htotal->SetBinContent( iterMapvsBx->first, iterMapvsBx->second[ilayer]);
1171 
1172  hfound->Sumw2();
1173  htotal->Sumw2();
1174 
1175  TGraphAsymmErrors *geff = fs->make<TGraphAsymmErrors>(3564);
1176  geff->SetName(Form("effVsBx_layer%i", ilayer));
1177  geff->SetTitle("Hit Efficiency vs bx - "+GetLayerName(ilayer));
1178  geff->BayesDivide(hfound,htotal);
1179 
1180  //Average over trains
1181  TGraphAsymmErrors *geff_avg = fs->make<TGraphAsymmErrors>();
1182  geff_avg->SetName(Form("effVsBxAvg_layer%i", ilayer));
1183  geff_avg->SetTitle("Hit Efficiency vs bx - "+GetLayerName(ilayer));
1184  geff_avg->SetMarkerStyle(20);
1185  int ibx=0;
1186  int previous_bx=-80;
1187  int delta_bx=0;
1188  int nbx=0;
1189  int found=0;
1190  int total=0;
1191  double sum_bx=0;
1192  int ipt=0;
1193  float low, up, eff;
1194  int firstbx=0;
1195  for(iterMapvsBx=layertotal_perBx.begin(); iterMapvsBx!=layertotal_perBx.end(); ++iterMapvsBx){
1196  ibx=iterMapvsBx->first;
1197  delta_bx=ibx-previous_bx;
1198  // consider a new train
1199  if(delta_bx>(int)_spaceBetweenTrains && nbx>0 && total>0){
1200  eff=found/(float)total;
1201  //cout<<"new train "<<ipt<<" "<<sum_bx/nbx<<" "<<eff<<endl;
1202  geff_avg->SetPoint(ipt, sum_bx/nbx, eff);
1203  low = TEfficiency::Bayesian(total, found, .683, 1, 1, false);
1204  up = TEfficiency::Bayesian(total, found, .683, 1, 1, true);
1205  geff_avg->SetPointError(ipt, sum_bx/nbx-firstbx, previous_bx-sum_bx/nbx, eff-low, up-eff);
1206  ipt++;
1207  sum_bx=0;
1208  found=0;
1209  total=0;
1210  nbx=0;
1211  firstbx=ibx;
1212  }
1213  sum_bx+=ibx;
1214  found+=hfound->GetBinContent(ibx);
1215  total+=htotal->GetBinContent(ibx);
1216  nbx++;
1217 
1218  previous_bx=ibx;
1219  }
1220  //last train
1221  eff=found/(float)total;
1222  //cout<<"new train "<<ipt<<" "<<sum_bx/nbx<<" "<<eff<<endl;
1223  geff_avg->SetPoint(ipt, sum_bx/nbx, eff);
1224  low = TEfficiency::Bayesian(total, found, .683, 1, 1, false);
1225  up = TEfficiency::Bayesian(total, found, .683, 1, 1, true);
1226  geff_avg->SetPointError(ipt, sum_bx/nbx-firstbx, previous_bx-sum_bx/nbx, eff-low, up-eff);
1227  }
1228 }
1229 
1230 
1232 
1233  TString layername="";
1234  TString ringlabel="D";
1235  if(_showRings) ringlabel="R";
1236  if (k>0 && k<5) {
1237  layername = TString("TIB L") + k;
1238  } else if (k>4 && k<11) {
1239  layername = TString("TOB L")+(k-4);
1240  } else if (k>10 && k<14) {
1241  layername = TString("TID ")+ringlabel+(k-10);
1242  } else if (k>13 && k<14+nTEClayers) {
1243  layername = TString("TEC ")+ringlabel+(k-13);
1244  }
1245 
1246  return layername;
1247 }
1248 
1249 void SiStripHitEffFromCalibTree::ComputeEff(vector< TH1F* > &vhfound, vector< TH1F* > &vhtotal, string name) {
1250 
1251  unsigned int nLayers = 22;
1252  if(_showRings) nLayers = 20;
1253 
1254  TH1F* hfound;
1255  TH1F* htotal;
1256 
1257  for(unsigned int ilayer=1; ilayer<nLayers; ilayer++) {
1258 
1259  hfound = vhfound[ilayer];
1260  htotal = vhtotal[ilayer];
1261 
1262  hfound->Sumw2();
1263  htotal->Sumw2();
1264 
1265  // new ROOT version: TGraph::Divide don't handle null or negative values
1266  for (Long_t i=0; i< hfound->GetNbinsX()+1; ++i) {
1267  if( hfound->GetBinContent(i)==0) hfound->SetBinContent(i,1e-6);
1268  if( htotal->GetBinContent(i)==0) htotal->SetBinContent(i,1);
1269  }
1270 
1271  TGraphAsymmErrors *geff = fs->make<TGraphAsymmErrors>(hfound->GetNbinsX());
1272  geff->SetName(Form("%s_layer%i", name.c_str(), ilayer));
1273  geff->BayesDivide(hfound, htotal);
1274  if(name=="effVsLumi") geff->SetTitle("Hit Efficiency vs inst. lumi. - "+GetLayerName(ilayer));
1275  if(name=="effVsPU") geff->SetTitle("Hit Efficiency vs pileup - "+GetLayerName(ilayer));
1276  if(name=="effVsCM") geff->SetTitle("Hit Efficiency vs common Mode - "+GetLayerName(ilayer));
1277  geff->SetMarkerStyle(20);
1278 
1279  }
1280 
1281 }
1282 
1284  cout<<"Computing efficiency vs lumi"<<endl;
1285 
1286  unsigned int nLayers = 22;
1287  if(_showRings) nLayers = 20;
1288  unsigned int nLayersForAvg = 0;
1289  float layerLumi = 0;
1290  float layerPU = 0;
1291  float avgLumi = 0;
1292  float avgPU = 0;
1293 
1294  cout<<"Lumi summary: (avg over trajectory measurements)"<<endl;
1295  for(unsigned int ilayer=1; ilayer<nLayers; ilayer++) {
1296  layerLumi=layertotal_vsLumi[ilayer]->GetMean();
1297  layerPU=layertotal_vsPU[ilayer]->GetMean();
1298  //cout<<" layer "<<ilayer<<" lumi: "<<layerLumi<<" pu: "<<layerPU<<endl;
1299  if(layerLumi!=0 && layerPU!=0) {
1300  avgLumi+=layerLumi;
1301  avgPU+=layerPU;
1302  nLayersForAvg++;
1303  }
1304  }
1305  avgLumi/=nLayersForAvg;
1306  avgPU/=nLayersForAvg;
1307  cout<<"Avg conditions: lumi :"<<avgLumi<<" pu: "<<avgPU<<endl;
1308 
1311 
1312 }
1313 
1315  cout<<"Computing efficiency vs CM"<<endl;
1317 }
1318 
1320 
1321  TString layername="";
1322  TString ringlabel="D";
1323  if(_showRings) ringlabel="R";
1324  if (k>0 && k<5) {
1325  layername = TString("TIB L") + k;
1326  } else if (k>4&&k<11) {
1327  layername = TString("TOB L")+(k-4);
1328  } else if (k>10&&k<14) {
1329  layername = TString("TID- ")+ringlabel+(k-10);
1330  } else if (k>13&&k<17) {
1331  layername = TString("TID+ ")+ringlabel+(k-13);
1332  } else if (k>16&&k<17+nTEClayers) {
1333  layername = TString("TEC- ")+ringlabel+(k-16);
1334  } else if (k>16+nTEClayers) {
1335  layername = TString("TEC+ ")+ringlabel+(k-16-nTEClayers);
1336  }
1337 
1338  return layername;
1339 }
1340 
1342  //Need this for a Condition DB Writer
1343  //Initialize a return variable
1345 
1348 
1349  for(;rIter!=rIterEnd;++rIter){
1350  SiStripBadStrip::Range range(quality_->getDataVectorBegin()+rIter->ibegin,quality_->getDataVectorBegin()+rIter->iend);
1351  if ( ! obj->put(rIter->detid,range) )
1352  edm::LogError("SiStripHitEffFromCalibTree")<<"[SiStripHitEffFromCalibTree::getNewObject] detid already exists"<<std::endl;
1353  }
1354 
1355  return obj;
1356 }
1357 
1359  float phi = 0;
1360  float Pi = 3.14159;
1361  if((x>=0)&&(y>=0)) phi = atan(y/x);
1362  else if((x>=0)&&(y<=0)) phi = atan(y/x) + 2*Pi;
1363  else if((x<=0)&&(y>=0)) phi = atan(y/x) + Pi;
1364  else phi = atan(y/x) + Pi;
1365  phi = phi*180.0/Pi;
1366 
1367  return phi;
1368 }
1369 
1370 void SiStripHitEffFromCalibTree::SetBadComponents(int i, int component,SiStripQuality::BadComponent& BC, std::stringstream ssV[4][19], int NBadComponent[4][19][4]){
1371 
1372  int napv=reader->getNumberOfApvsAndStripLength(BC.detid).first;
1373 
1374  ssV[i][component] << "\n\t\t "
1375  << BC.detid
1376  << " \t " << BC.BadModule << " \t "
1377  << ( (BC.BadFibers)&0x1 ) << " ";
1378  if (napv==4)
1379  ssV[i][component] << "x " <<( (BC.BadFibers>>1)&0x1 );
1380 
1381  if (napv==6)
1382  ssV[i][component] << ( (BC.BadFibers>>1)&0x1 ) << " "
1383  << ( (BC.BadFibers>>2)&0x1 );
1384  ssV[i][component] << " \t "
1385  << ( (BC.BadApvs)&0x1 ) << " "
1386  << ( (BC.BadApvs>>1)&0x1 ) << " ";
1387  if (napv==4)
1388  ssV[i][component] << "x x " << ( (BC.BadApvs>>2)&0x1 ) << " "
1389  << ( (BC.BadApvs>>3)&0x1 );
1390  if (napv==6)
1391  ssV[i][component] << ( (BC.BadApvs>>2)&0x1 ) << " "
1392  << ( (BC.BadApvs>>3)&0x1 ) << " "
1393  << ( (BC.BadApvs>>4)&0x1 ) << " "
1394  << ( (BC.BadApvs>>5)&0x1 ) << " ";
1395 
1396  if (BC.BadApvs){
1397  NBadComponent[i][0][2]+= ( (BC.BadApvs>>5)&0x1 )+ ( (BC.BadApvs>>4)&0x1 ) + ( (BC.BadApvs>>3)&0x1 ) +
1398  ( (BC.BadApvs>>2)&0x1 )+ ( (BC.BadApvs>>1)&0x1 ) + ( (BC.BadApvs)&0x1 );
1399  NBadComponent[i][component][2]+= ( (BC.BadApvs>>5)&0x1 )+ ( (BC.BadApvs>>4)&0x1 ) + ( (BC.BadApvs>>3)&0x1 ) +
1400  ( (BC.BadApvs>>2)&0x1 )+ ( (BC.BadApvs>>1)&0x1 ) + ( (BC.BadApvs)&0x1 );
1401  }
1402  if (BC.BadFibers){
1403  NBadComponent[i][0][1]+= ( (BC.BadFibers>>2)&0x1 )+ ( (BC.BadFibers>>1)&0x1 ) + ( (BC.BadFibers)&0x1 );
1404  NBadComponent[i][component][1]+= ( (BC.BadFibers>>2)&0x1 )+ ( (BC.BadFibers>>1)&0x1 ) + ( (BC.BadFibers)&0x1 );
1405  }
1406  if (BC.BadModule){
1407  NBadComponent[i][0][0]++;
1408  NBadComponent[i][component][0]++;
1409  }
1410 }
1411 
unsigned short range
RunNumber_t run() const
Definition: EventID.h:39
Definition: BitonicSort.h:8
const double Pi
T getParameter(std::string const &) const
EventNumber_t event() const
Definition: EventID.h:41
const TrackerGeomDet * idToDetUnit(DetId) const
Return the pointer to the GeomDetUnit corresponding to a given DetId.
T getUntrackedParameter(std::string const &, T const &) const
const std::vector< BadComponent > & getBadComponentList() const
unsigned int tibLayer(const DetId &id) const
const std::pair< unsigned short, double > getNumberOfApvsAndStripLength(uint32_t detId) const
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:17
edm::LuminosityBlockNumber_t luminosityBlock() const
Definition: EventBase.h:63
const Bounds & bounds() const
Definition: Surface.h:120
unsigned int tidWheel(const DetId &id) const
T * make(const Args &...args) const
make new ROOT object
Definition: TFileService.h:64
void SetBadComponents(int i, int component, SiStripQuality::BadComponent &BC, std::stringstream ssV[4][19], int NBadComponent[4][19][4])
Registry::const_iterator RegistryIterator
SiStripDetInfoFileReader * reader
bool accept(const edm::Event &event, const edm::TriggerResults &triggerTable, const std::string &triggerPath)
Definition: TopDQMHelpers.h:30
virtual const StripTopology & specificTopology() const
Returns a reference to the strip proxy topology.
const Plane & surface() const
The nominal surface of the GeomDet.
Definition: GeomDet.h:42
U second(std::pair< T, U > const &p)
virtual float width() const =0
T x() const
Cartesian x coordinate.
def overlay(hists, ytitle, header, addon)
Definition: compare.py:119
RegistryIterator getRegistryVectorEnd() const
edm::Service< TFileService > fs
map< unsigned int, vector< int > > layerfound_perBx
unsigned int tidSide(const DetId &id) const
void ComputeEff(vector< TH1F * > &vhfound, vector< TH1F * > &vhtotal, string name)
void save(bool print_total=true, float minval=0., float maxval=0., std::string s="svgmap.svg", int width=1500, int height=800)
Definition: TrackerMap.cc:698
void compact(unsigned int &, std::vector< unsigned int > &)
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
#define end
Definition: vmac.h:37
SiStripBadStrip * getNewObject() override
void fillBadComponents()
int subdetId() const
get the contents of the subdetector field (not cast into any detector&#39;s numbering enum) ...
Definition: DetId.h:37
map< unsigned int, pair< unsigned int, unsigned int > > modCounter[23]
void fillc(int idmod, int RGBcode)
Definition: TrackerMap.h:104
int k[5][pyjets_maxn]
unsigned int id
ContainerIterator getDataVectorBegin() const
Detector identifier class for the strip tracker.
Definition: SiStripDetId.h:17
Definition: DetId.h:18
virtual int nstrips() const =0
const T & get() const
Definition: EventSetup.h:56
RegistryIterator getRegistryVectorBegin() const
edm::EventID id() const
Definition: EventBase.h:60
fixed size matrix
#define begin
Definition: vmac.h:30
HLT enums.
map< unsigned int, vector< int > > layertotal_perBx
virtual void algoAnalyze(const edm::Event &e, const edm::EventSetup &c) override
double a
Definition: hdecay.h:121
std::pair< ContainerIterator, ContainerIterator > Range
map< unsigned int, double > BadModules
std::string fullPath() const
Definition: FileInPath.cc:184
bool put(const uint32_t &detID, const InputVector &vect)
unsigned int tecWheel(const DetId &id) const
T const * product() const
Definition: ESHandle.h:86
unsigned int encode(const unsigned short &first, const unsigned short &NconsecutiveBadStrips, const unsigned short &flag=0)
TimeValue_t value() const
Definition: Timestamp.h:56
SiStripHitEffFromCalibTree(const edm::ParameterSet &)
edm::Timestamp time() const
Definition: EventBase.h:61
void fill(int layer, int ring, int nmod, float x)
Definition: TrackerMap.cc:2778
data decode(const unsigned int &value) const
unsigned int tobLayer(const DetId &id) const
unsigned int tecSide(const DetId &id) const