CMS 3D CMS Logo

ApeEstimator.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 //
3 // Package: ApeEstimator
4 // Class: ApeEstimator
5 //
13 //
14 // Original Author: Johannes Hauk
15 // Created: Tue Jan 6 15:02:09 CET 2009
16 // Modified by: Christian Schomakers (RWTH Aachen)
17 // $Id: ApeEstimator.cc,v 1.27 2012/06/26 09:42:33 hauk Exp $
18 //
19 //
20 
21 
22 // system include files
23 #include <memory>
24 #include <sstream>
25 #include <fstream>
26 
27 // user include files
38 
41 
61 
69 
73 //added by Ajay 6Nov 2014
74 //.......................
77 
79 
80 //...............
81 //
82 
85 
87 
89 
94 
95 
96 #include "TH1.h"
97 #include "TH2.h"
98 #include "TProfile.h"
99 #include "TFile.h"
100 #include "TTree.h"
101 #include "TF1.h"
102 #include "TString.h"
103 #include "TMath.h"
104 
105 
108 
111 //ADDED BY LOIC QUERTENMONT
124 
125 //
126 // class decleration
127 //
128 
130  public:
131  explicit ApeEstimator(const edm::ParameterSet&);
132  ~ApeEstimator();
133 
134 
135  private:
137  PositionAndError2(): posX(-999.F), posY(-999.F), errX2(-999.F), errY2(-999.F) {};
138  PositionAndError2(float x, float y, float eX, float eY): posX(x), posY(y), errX2(eX), errY2(eY) {};
139  float posX;
140  float posY;
141  float errX2;
142  float errY2;
143  };
144  typedef std::pair<TrackStruct::HitState,PositionAndError2> StatePositionAndError2;
145 
146  virtual void beginJob() ;
147  virtual void analyze(const edm::Event&, const edm::EventSetup&);
148  virtual void endJob();
149 
150  bool isHit2D(const TrackingRecHit&)const;
151 
152  void sectorBuilder();
153  bool checkIntervalsForSectors(const unsigned int sectorCounter, const std::vector<double>&)const;
154  bool checkModuleIds(const unsigned int, const std::vector<unsigned int>&)const;
155  bool checkModuleBools(const bool, const std::vector<unsigned int>&)const;
156  bool checkModuleDirections(const int, const std::vector<int>&)const;
157  bool checkModulePositions(const float, const std::vector<double>&)const;
158  void statistics(const TrackerSectorStruct&, const Int_t)const;
159 
160  void residualErrorBinning();
161 
164  void bookTrackHists();
165 
168 
169  StatePositionAndError2 positionAndError2(const LocalPoint&, const LocalError&, const TransientTrackingRecHit&);
172 
173  void hitSelection();
174  void setHitSelectionMap(const std::string&);
175  void setHitSelectionMapUInt(const std::string&);
177  bool inDoubleInterval(const std::vector<double>&, const float)const;
178  bool inUintInterval(const std::vector<unsigned int>&, const unsigned int, const unsigned int =999)const;
179 
184 
185  void calculateAPE();
186 
187  // ----------member data ---------------------------
189  std::map<unsigned int, TrackerSectorStruct> m_tkSector_;
191 
194 
195 
196  std::map<unsigned int, std::pair<double,double> > m_resErrBins_;
197  std::map<unsigned int, ReducedTrackerTreeVariables> m_tkTreeVar_;
198 
199  std::map<std::string,std::vector<double> > m_hitSelection_;
200  std::map<std::string,std::vector<unsigned int> > m_hitSelectionUInt_;
201 
202  bool trackCut_;
203 
204  const unsigned int maxTracksPerEvent_;
205  const unsigned int minGoodHitsPerTrack_;
206 
207  const bool analyzerMode_;
208 
209  const bool calculateApe_;
210 
212 
213 };
214 
215 //
216 // constants, enums and typedefs
217 //
218 
219 //
220 // static data member definitions
221 //
222 
223 //
224 // constructors and destructor
225 //
227 parameterSet_(iConfig),
228 tjTagToken_(consumes<TrajTrackAssociationCollection>(parameterSet_.getParameter<edm::InputTag>("tjTkAssociationMapTag"))),
229 offlinebeamSpot_(consumes<reco::BeamSpot>(edm::InputTag("offlineBeamSpot"))),
230 trackCut_(false), maxTracksPerEvent_(parameterSet_.getParameter<unsigned int>("maxTracksPerEvent")),
231 minGoodHitsPerTrack_(parameterSet_.getParameter<unsigned int>("minGoodHitsPerTrack")),
232 analyzerMode_(parameterSet_.getParameter<bool>("analyzerMode")),
233 calculateApe_(parameterSet_.getParameter<bool>("calculateApe"))
234 {
236 }
237 
238 
240 {
241 }
242 
243 
244 //
245 // member functions
246 //
247 
248 // -----------------------------------------------------------------------------------------------------------
249 
250 void
252 
253  TFile* tkTreeFile(TFile::Open((parameterSet_.getParameter<std::string>("TrackerTreeFile")).c_str()));
254  if(tkTreeFile){
255  edm::LogInfo("SectorBuilder")<<"TrackerTreeFile OK";
256  }else{
257  edm::LogError("SectorBuilder")<<"TrackerTreeFile not found";
258  return;
259  }
260  TTree* tkTree(0);
261  tkTreeFile->GetObject("TrackerTreeGenerator/TrackerTree/TrackerTree",tkTree);
262  if(tkTree){
263  edm::LogInfo("SectorBuilder")<<"TrackerTree OK";
264  }else{
265  edm::LogError("SectorBuilder")<<"TrackerTree not found in file";
266  return;
267  }
268  UInt_t rawId(999), subdetId(999), layer(999), side(999), half(999), rod(999), ring(999), petal(999),
269  blade(999), panel(999), outerInner(999), module(999), nStrips(999);
270  Bool_t isDoubleSide(false), isRPhi(false), isStereo(false);
271  Int_t uDirection(999), vDirection(999), wDirection(999);
272  Float_t posR(999.F), posPhi(999.F), posEta(999.F), posX(999.F), posY(999.F), posZ(999.F);
273  tkTree->SetBranchAddress("RawId", &rawId);
274  tkTree->SetBranchAddress("SubdetId", &subdetId);
275  tkTree->SetBranchAddress("Layer", &layer);
276  tkTree->SetBranchAddress("Side", &side);
277  tkTree->SetBranchAddress("Half", &half);
278  tkTree->SetBranchAddress("Rod", &rod);
279  tkTree->SetBranchAddress("Ring", &ring);
280  tkTree->SetBranchAddress("Petal", &petal);
281  tkTree->SetBranchAddress("Blade", &blade);
282  tkTree->SetBranchAddress("Panel", &panel);
283  tkTree->SetBranchAddress("OuterInner", &outerInner);
284  tkTree->SetBranchAddress("Module", &module);
285  tkTree->SetBranchAddress("NStrips", &nStrips);
286  tkTree->SetBranchAddress("IsDoubleSide", &isDoubleSide);
287  tkTree->SetBranchAddress("IsRPhi", &isRPhi);
288  tkTree->SetBranchAddress("IsStereo", &isStereo);
289  tkTree->SetBranchAddress("UDirection", &uDirection);
290  tkTree->SetBranchAddress("VDirection", &vDirection);
291  tkTree->SetBranchAddress("WDirection", &wDirection);
292  tkTree->SetBranchAddress("PosR", &posR);
293  tkTree->SetBranchAddress("PosPhi", &posPhi);
294  tkTree->SetBranchAddress("PosEta", &posEta);
295  tkTree->SetBranchAddress("PosX", &posX);
296  tkTree->SetBranchAddress("PosY", &posY);
297  tkTree->SetBranchAddress("PosZ", &posZ);
298 
299  Int_t nModules(tkTree->GetEntries());
300  TrackerSectorStruct allSectors;
301 
302  //Loop over all Sectors
303  unsigned int sectorCounter(1);
304  std::vector<edm::ParameterSet> v_sectorDef(parameterSet_.getParameter<std::vector<edm::ParameterSet> >("Sectors"));
305  edm::LogInfo("SectorBuilder")<<"There are "<<v_sectorDef.size()<<" Sectors definded";
306  std::vector<edm::ParameterSet>::const_iterator i_parSet;
307  for(i_parSet = v_sectorDef.begin(); i_parSet != v_sectorDef.end();++i_parSet, ++sectorCounter){
308  const edm::ParameterSet& parSet = *i_parSet;
309  const std::string& sectorName(parSet.getParameter<std::string>("name"));
310  std::vector<unsigned int> v_rawId(parSet.getParameter<std::vector<unsigned int> >("rawId")),
311  v_subdetId(parSet.getParameter<std::vector<unsigned int> >("subdetId")),
312  v_layer(parSet.getParameter<std::vector<unsigned int> >("layer")),
313  v_side(parSet.getParameter<std::vector<unsigned int> >("side")),
314  v_half(parSet.getParameter<std::vector<unsigned int> >("half")),
315  v_rod(parSet.getParameter<std::vector<unsigned int> >("rod")),
316  v_ring(parSet.getParameter<std::vector<unsigned int> >("ring")),
317  v_petal(parSet.getParameter<std::vector<unsigned int> >("petal")),
318  v_blade(parSet.getParameter<std::vector<unsigned int> >("blade")),
319  v_panel(parSet.getParameter<std::vector<unsigned int> >("panel")),
320  v_outerInner(parSet.getParameter<std::vector<unsigned int> >("outerInner")),
321  v_module(parSet.getParameter<std::vector<unsigned int> >("module")),
322  v_nStrips(parSet.getParameter<std::vector<unsigned int> >("nStrips")),
323  v_isDoubleSide(parSet.getParameter<std::vector<unsigned int> >("isDoubleSide")),
324  v_isRPhi(parSet.getParameter<std::vector<unsigned int> >("isRPhi")),
325  v_isStereo(parSet.getParameter<std::vector<unsigned int> >("isStereo"));
326  std::vector<int> v_uDirection(parSet.getParameter<std::vector<int> >("uDirection")),
327  v_vDirection(parSet.getParameter<std::vector<int> >("vDirection")),
328  v_wDirection(parSet.getParameter<std::vector<int> >("wDirection"));
329  std::vector<double> v_posR(parSet.getParameter<std::vector<double> >("posR")),
330  v_posPhi(parSet.getParameter<std::vector<double> >("posPhi")),
331  v_posEta(parSet.getParameter<std::vector<double> >("posEta")),
332  v_posX(parSet.getParameter<std::vector<double> >("posX")),
333  v_posY(parSet.getParameter<std::vector<double> >("posY")),
334  v_posZ(parSet.getParameter<std::vector<double> >("posZ"));
335 
336  if(!this->checkIntervalsForSectors(sectorCounter,v_posR) || !this->checkIntervalsForSectors(sectorCounter,v_posPhi) ||
337  !this->checkIntervalsForSectors(sectorCounter,v_posEta) || !this->checkIntervalsForSectors(sectorCounter,v_posX) ||
338  !this->checkIntervalsForSectors(sectorCounter,v_posY) || !this->checkIntervalsForSectors(sectorCounter,v_posZ))continue;
339 
340 
341  TrackerSectorStruct tkSector;
342  tkSector.name = sectorName;
343 
344  ReducedTrackerTreeVariables tkTreeVar;
345 
346  //Loop over all Modules
347  for(Int_t module = 0; module < nModules; ++module){
348  tkTree->GetEntry(module);
349 
350  if(sectorCounter==1){
351  tkTreeVar.subdetId = subdetId;
352  tkTreeVar.nStrips = nStrips;
353  tkTreeVar.uDirection = uDirection;
354  tkTreeVar.vDirection = vDirection;
355  tkTreeVar.wDirection = wDirection;
356  m_tkTreeVar_[rawId] = tkTreeVar;
357  }
358 
359  if(!this->checkModuleIds(rawId,v_rawId))continue;
360  if(!this->checkModuleIds(subdetId,v_subdetId))continue;
361  if(!this->checkModuleIds(layer,v_layer))continue;
362  if(!this->checkModuleIds(side,v_side))continue;
363  if(!this->checkModuleIds(half,v_half))continue;
364  if(!this->checkModuleIds(rod,v_rod))continue;
365  if(!this->checkModuleIds(ring,v_ring))continue;
366  if(!this->checkModuleIds(petal,v_petal))continue;
367  if(!this->checkModuleIds(blade,v_blade))continue;
368  if(!this->checkModuleIds(panel,v_panel))continue;
369  if(!this->checkModuleIds(outerInner,v_outerInner))continue;
370  if(!this->checkModuleIds(module,v_module))continue;
371  if(!this->checkModuleIds(nStrips,v_nStrips))continue;
372  if(!this->checkModuleBools(isDoubleSide,v_isDoubleSide))continue;
373  if(!this->checkModuleBools(isRPhi,v_isRPhi))continue;
374  if(!this->checkModuleBools(isStereo,v_isStereo))continue;
375  if(!this->checkModuleDirections(uDirection,v_uDirection))continue;
376  if(!this->checkModuleDirections(vDirection,v_vDirection))continue;
377  if(!this->checkModuleDirections(wDirection,v_wDirection))continue;
378  if(!this->checkModulePositions(posR,v_posR))continue;
379  if(!this->checkModulePositions(posPhi,v_posPhi))continue;
380  if(!this->checkModulePositions(posEta,v_posEta))continue;
381  if(!this->checkModulePositions(posX,v_posX))continue;
382  if(!this->checkModulePositions(posY,v_posY))continue;
383  if(!this->checkModulePositions(posZ,v_posZ))continue;
384 
385  tkSector.v_rawId.push_back(rawId);
386  bool moduleSelected(false);
387  for(std::vector<unsigned int>::const_iterator i_rawId = allSectors.v_rawId.begin();
388  i_rawId != allSectors.v_rawId.end(); ++i_rawId){
389  if(rawId == *i_rawId)moduleSelected = true;
390  }
391  if(!moduleSelected)allSectors.v_rawId.push_back(rawId);
392  }
393 
394  bool isPixel(false);
395  bool isStrip(false);
396  for(std::vector<unsigned int>::const_iterator i_rawId = tkSector.v_rawId.begin();
397  i_rawId != tkSector.v_rawId.end(); ++i_rawId){
398  if(m_tkTreeVar_[*i_rawId].subdetId==PixelSubdetector::PixelBarrel || m_tkTreeVar_[*i_rawId].subdetId==PixelSubdetector::PixelEndcap){
399  isPixel = true;
400  }
401  if(m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TOB ||
402  m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[*i_rawId].subdetId==StripSubdetector::TEC){
403  isStrip = true;
404  }
405  }
406 
407  if(isPixel && isStrip){
408  edm::LogError("SectorBuilder")<<"Incorrect Sector Definition: there are pixel and strip modules within one sector"
409  <<"\n... sector selection is not applied, sector "<<sectorCounter<<" is not built";
410  continue;
411  }
412  tkSector.isPixel = isPixel;
413 
414  m_tkSector_[sectorCounter] = tkSector;
415  edm::LogInfo("SectorBuilder")<<"There are "<<tkSector.v_rawId.size()<<" Modules in Sector "<<sectorCounter;
416  }
417  this->statistics(allSectors, nModules);
418  return;
419 }
420 
421 
422 
423 // -----------------------------------------------------------------------------------------------------------
424 
425 
426 bool
427 ApeEstimator::checkIntervalsForSectors(const unsigned int sectorCounter, const std::vector<double>& v_id)const{
428  if(v_id.size()==0)return true;
429  if(v_id.size()%2==1){
430  edm::LogError("SectorBuilder")<<"Incorrect Sector Definition: Position Vectors need even number of arguments (Intervals)"
431  <<"\n... sector selection is not applied, sector "<<sectorCounter<<" is not built";
432  return false;
433  }
434  int entry(1); double intervalBegin(999.);
435  for(std::vector<double>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id, ++entry){
436  if(entry%2==1)intervalBegin = *i_id;
437  if(entry%2==0 && intervalBegin>*i_id){
438  edm::LogError("SectorBuilder")<<"Incorrect Sector Definition (Position Vector Intervals): \t"
439  <<intervalBegin<<" is bigger than "<<*i_id<<" but is expected to be smaller"
440  <<"\n... sector selection is not applied, sector "<<sectorCounter<<" is not built";
441  return false;
442  }
443  }
444  return true;
445 }
446 
447 bool
448 ApeEstimator::checkModuleIds(const unsigned int id, const std::vector<unsigned int>& v_id)const{
449  if(v_id.size()==0)return true;
450  for(std::vector<unsigned int>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id){
451  if(id==*i_id)return true;
452  }
453  return false;
454 }
455 
456 bool
457 ApeEstimator::checkModuleBools(const bool id, const std::vector<unsigned int>& v_id)const{
458  if(v_id.size()==0)return true;
459  for(std::vector<unsigned int>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id){
460  if(1==*i_id && id)return true;
461  if(2==*i_id && !id)return true;
462  }
463  return false;
464 }
465 
466 bool
467 ApeEstimator::checkModuleDirections(const int id, const std::vector<int>& v_id)const{
468  if(v_id.size()==0)return true;
469  for(std::vector<int>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id){
470  if(id==*i_id)return true;
471  }
472  return false;
473 }
474 
475 bool
476 ApeEstimator::checkModulePositions(const float id, const std::vector<double>& v_id)const{
477  if(v_id.size()==0)return true;
478  int entry(1); double intervalBegin(999.);
479  for(std::vector<double>::const_iterator i_id = v_id.begin(); i_id != v_id.end(); ++i_id, ++entry){
480  if(entry%2==1)intervalBegin = *i_id;
481  if(entry%2==0 && id>=intervalBegin && id<*i_id)return true;
482  }
483  return false;
484 }
485 
486 void
487 ApeEstimator::statistics(const TrackerSectorStruct& allSectors, const Int_t nModules)const{
488  bool commonModules(false);
489  for(std::map<unsigned int,TrackerSectorStruct>::const_iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
490  std::map<unsigned int,TrackerSectorStruct>::const_iterator i_sector2(i_sector);
491  for(++i_sector2; i_sector2 != m_tkSector_.end(); ++i_sector2){
492  unsigned int nCommonModules(0);
493  for(std::vector<unsigned int>::const_iterator i_module = (*i_sector).second.v_rawId.begin(); i_module != (*i_sector).second.v_rawId.end(); ++i_module){
494  for(std::vector<unsigned int>::const_iterator i_module2 = (*i_sector2).second.v_rawId.begin(); i_module2 != (*i_sector2).second.v_rawId.end(); ++i_module2){
495  if(*i_module2 == *i_module)++nCommonModules;
496  }
497  }
498  if(nCommonModules==0)
499  ;//edm::LogInfo("SectorBuilder")<<"Sector "<<(*i_sector).first<<" and Sector "<<(*i_sector2).first<< " have ZERO Modules in common";
500  else{
501  edm::LogError("SectorBuilder")<<"Sector "<<(*i_sector).first<<" and Sector "<<(*i_sector2).first<< " have "<<nCommonModules<<" Modules in common";
502  commonModules = true;
503  }
504  }
505  }
506  if(static_cast<int>(allSectors.v_rawId.size())==nModules)
507  edm::LogInfo("SectorBuilder")<<"ALL Tracker Modules are contained in the Sectors";
508  else
509  edm::LogWarning("SectorBuilder")<<"There are "<<allSectors.v_rawId.size()<<" Modules in all Sectors"
510  <<" out of "<<nModules<<" Tracker Modules";
511  if(!commonModules)
512  edm::LogInfo("SectorBuilder")<<"There are ZERO modules associated to different sectors, no ambiguities exist";
513  else
514  edm::LogError("SectorBuilder")<<"There are modules associated to different sectors, APE value cannot be assigned reasonably";
515 }
516 
517 
518 // -----------------------------------------------------------------------------------------------------------
519 
520 
521 void
523  std::vector<double> v_residualErrorBinning(parameterSet_.getParameter<std::vector<double> >("residualErrorBinning"));
524  if(v_residualErrorBinning.size()==1){
525  edm::LogError("ResidualErrorBinning")<<"Incorrect selection of Residual Error Bins (used for APE calculation): \t"
526  <<"Only one argument passed, so no interval is specified"
527  <<"\n... delete whole bin selection"; //m_resErrBins_ remains empty
528  return;
529  }
530  double xMin(0.), xMax(0.);
531  unsigned int binCounter(0);
532  for(std::vector<double>::const_iterator i_binning = v_residualErrorBinning.begin(); i_binning != v_residualErrorBinning.end(); ++i_binning, ++binCounter){
533  if(binCounter == 0){xMin = *i_binning;continue;}
534  xMax = *i_binning;
535  if(xMax<=xMin){
536  edm::LogError("ResidualErrorBinning")<<"Incorrect selection of Residual Error Bins (used for APE calculation): \t"
537  <<xMin<<" is bigger than "<<xMax<<" but is expected to be smaller"
538  <<"\n... delete whole bin selection";
539  m_resErrBins_.clear();
540  return;
541  }
542  m_resErrBins_[binCounter].first = xMin;
543  m_resErrBins_[binCounter].second = xMax;
544  xMin = xMax;
545  }
546  edm::LogInfo("ResidualErrorBinning")<<m_resErrBins_.size()<<" Intervals of residual errors used for separate APE calculation sucessfully set";
547 }
548 
549 
550 
551 // -----------------------------------------------------------------------------------------------------------
552 
553 
554 
555 void
557 
558  std::vector<unsigned int> v_errHists(parameterSet_.getParameter<std::vector<unsigned int> >("vErrHists"));
559  for(std::vector<unsigned int>::iterator i_errHists = v_errHists.begin(); i_errHists != v_errHists.end(); ++i_errHists){
560  for(std::vector<unsigned int>::iterator i_errHists2 = i_errHists; i_errHists2 != v_errHists.end();){
561  ++i_errHists2;
562  if(*i_errHists==*i_errHists2){
563  edm::LogError("BookSectorHists")<<"Value of vErrHists in config exists twice: "<<*i_errHists<<"\n... delete one of both";
564  v_errHists.erase(i_errHists2);
565  }
566  }
567  }
568 
569 
570  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
571  bool zoomHists(parameterSet_.getParameter<bool>("zoomHists"));
572 
573  double widthMax = zoomHists ? 20. : 200.;
574  double chargePixelMax = zoomHists ? 200000. : 2000000.;
575  double chargeStripMax = zoomHists ? 1000. : 10000.;
576  double sOverNMax = zoomHists ? 200. : 2000.;
577  double logClusterProbMin = zoomHists ? -5. : -15.;
578 
579  double resXAbsMax = zoomHists ? 0.5 : 5.;
580  double norResXAbsMax = zoomHists ? 10. : 50.;
581  double probXMin = zoomHists ? -0.01 : -0.1;
582  double probXMax = zoomHists ? 0.11 : 1.1;
583  double sigmaXMin = zoomHists ? 0. : -0.05;
584  double sigmaXMax = zoomHists ? 0.02 : 1.;
585  double sigmaX2Max = sigmaXMax*sigmaXMax;
586  double sigmaXHitMax = zoomHists ? 0.02 : 1.;
587  double phiSensXMax = zoomHists ? 31. : 93.;
588 
589  double norChi2Max = zoomHists ? 5. : 1000.;
590  double d0Max = zoomHists ? 0.02 : 40.; // cosmics: 100.|100.
591  double dzMax = zoomHists ? 15. : 100.; // cosmics: 200.|600.
592  double pMax = zoomHists ? 200. : 2000.;
593  double invPMax = zoomHists ? 0.05 : 10.; //begins at 20GeV, 0.1GeV
594 
595 
597  if(!fileService){
599  "TFileService is not registered in cfg file" );
600  }
601 
602  std::stringstream sector; sector << "Sector_" << (*i_sector).first;
603  TFileDirectory secDir = fileService->mkdir(sector.str().c_str());
604 
605  // Dummy histo containing the sector name as title
606  (*i_sector).second.Name = secDir.make<TH1F>("z_name",(*i_sector).second.name.c_str(),1,0,1);
607 
608  // Do not book histos for empty sectors
609  if((*i_sector).second.v_rawId.size()==0){
610  continue;
611  }
612  // Set parameters for correlationHists
613  (*i_sector).second.setCorrHistParams(&secDir,norResXAbsMax,sigmaXHitMax,sigmaXMax);
614 
615 
616  // Book pixel or strip specific hists
617  const bool pixelSector(i_sector->second.isPixel);
618 
619 
620  // Cluster Parameters
621  (*i_sector).second.m_correlationHistsX["WidthX"] = (*i_sector).second.bookCorrHistsX("WidthX","cluster width","w_{cl,x}","[# channels]",static_cast<int>(widthMax),static_cast<int>(widthMax),0.,widthMax,"nph");
622  (*i_sector).second.m_correlationHistsX["BaryStripX"] = (*i_sector).second.bookCorrHistsX("BaryStripX","barycenter of cluster charge","b_{cl,x}","[# channels]",800,100,-10.,790.,"nph");
623 
624  if(pixelSector){
625  (*i_sector).second.m_correlationHistsY["WidthY"] = (*i_sector).second.bookCorrHistsY("WidthY","cluster width","w_{cl,y}","[# channels]",static_cast<int>(widthMax),static_cast<int>(widthMax),0.,widthMax,"nph");
626  (*i_sector).second.m_correlationHistsY["BaryStripY"] = (*i_sector).second.bookCorrHistsY("BaryStripY","barycenter of cluster charge","b_{cl,y}","[# channels]",800,100,-10.,790.,"nph");
627 
628  (*i_sector).second.m_correlationHistsX["ChargePixel"] = (*i_sector).second.bookCorrHistsX("ChargePixel","cluster charge","c_{cl}","[e]",100,50,0.,chargePixelMax,"nph");
629  (*i_sector).second.m_correlationHistsX["ClusterProbXY"] = (*i_sector).second.bookCorrHistsX("ClusterProbXY","cluster probability xy","prob_{cl,xy}","",100,50,0.,1.,"nph");
630  (*i_sector).second.m_correlationHistsX["ClusterProbQ"] = (*i_sector).second.bookCorrHistsX("ClusterProbQ","cluster probability q","prob_{cl,q}","",100,50,0.,1.,"nph");
631  (*i_sector).second.m_correlationHistsX["ClusterProbXYQ"] = (*i_sector).second.bookCorrHistsX("ClusterProbXYQ","cluster probability xyq","prob_{cl,xyq}","",100,50,0.,1.,"nph");
632  (*i_sector).second.m_correlationHistsX["LogClusterProb"] = (*i_sector).second.bookCorrHistsX("LogClusterProb","cluster probability xy","log(prob_{cl,xy})","",60,30,logClusterProbMin,0.,"nph");
633  (*i_sector).second.m_correlationHistsX["IsOnEdge"] = (*i_sector).second.bookCorrHistsX("IsOnEdge","IsOnEdge","isOnEdge","",2,2,0,2,"nph");
634  (*i_sector).second.m_correlationHistsX["HasBadPixels"] = (*i_sector).second.bookCorrHistsX("HasBadPixels","HasBadPixels","hasBadPixels","",2,2,0,2,"nph");
635  (*i_sector).second.m_correlationHistsX["SpansTwoRoc"] = (*i_sector).second.bookCorrHistsX("SpansTwoRoc","SpansTwoRoc","spansTwoRoc","",2,2,0,2,"nph");
636  (*i_sector).second.m_correlationHistsX["QBin"] = (*i_sector).second.bookCorrHistsX("QBin","q bin","q bin","",8,8,0,8,"nph");
637 
638  (*i_sector).second.m_correlationHistsY["ChargePixel"] = (*i_sector).second.bookCorrHistsY("ChargePixel","cluster charge","c_{cl}","[e]",100,50,0.,chargePixelMax,"nph");
639  (*i_sector).second.m_correlationHistsY["ClusterProbXY"] = (*i_sector).second.bookCorrHistsY("ClusterProbXY","cluster probability xy","prob_{cl,xy}","",100,50,0.,1.,"nph");
640  (*i_sector).second.m_correlationHistsY["ClusterProbQ"] = (*i_sector).second.bookCorrHistsY("ClusterProbQ","cluster probability q","prob_{cl,q}","",100,50,0.,1.,"nph");
641  (*i_sector).second.m_correlationHistsY["ClusterProbXYQ"] = (*i_sector).second.bookCorrHistsY("ClusterProbXYQ","cluster probability xyq","prob_{cl,xyq}","",100,50,0.,1.,"nph");
642  (*i_sector).second.m_correlationHistsY["LogClusterProb"] = (*i_sector).second.bookCorrHistsY("LogClusterProb","cluster probability xy","log(prob_{cl,xy})","",60,30,logClusterProbMin,0.,"nph");
643  (*i_sector).second.m_correlationHistsY["IsOnEdge"] = (*i_sector).second.bookCorrHistsY("IsOnEdge","IsOnEdge","isOnEdge","",2,2,0,2,"nph");
644  (*i_sector).second.m_correlationHistsY["HasBadPixels"] = (*i_sector).second.bookCorrHistsY("HasBadPixels","HasBadPixels","hasBadPixels","",2,2,0,2,"nph");
645  (*i_sector).second.m_correlationHistsY["SpansTwoRoc"] = (*i_sector).second.bookCorrHistsY("SpansTwoRoc","SpansTwoRoc","spansTwoRoc","",2,2,0,2,"nph");
646  (*i_sector).second.m_correlationHistsY["QBin"] = (*i_sector).second.bookCorrHistsY("QBin","q bin","q bin","",8,8,0,8,"nph");
647  }
648 
649  else{
650  (*i_sector).second.m_correlationHistsX["ChargeStrip"] = (*i_sector).second.bookCorrHistsX("ChargeStrip","cluster charge","c_{cl}","[APV counts]",100,50,0.,chargeStripMax,"nph");
651  (*i_sector).second.m_correlationHistsX["MaxStrip"] = (*i_sector).second.bookCorrHistsX("MaxStrip","strip with max. charge","n_{cl,max}","[# strips]",800,800,-10.,790.,"npht");
652  (*i_sector).second.m_correlationHistsX["MaxCharge"] = (*i_sector).second.bookCorrHistsX("MaxCharge","charge of strip with max. charge","c_{cl,max}","[APV counts]",300,75,-10.,290.,"nph");
653  (*i_sector).second.m_correlationHistsX["MaxIndex"] = (*i_sector).second.bookCorrHistsX("MaxIndex","cluster-index of strip with max. charge","i_{cl,max}","[# strips]",10,10,0.,10.,"nph");
654  (*i_sector).second.m_correlationHistsX["ChargeOnEdges"] = (*i_sector).second.bookCorrHistsX("ChargeOnEdges","fraction of charge on edge strips","(c_{st,L}+c_{st,R})/c_{cl}","",60,60,-0.1,1.1,"nph");
655  (*i_sector).second.m_correlationHistsX["ChargeAsymmetry"] = (*i_sector).second.bookCorrHistsX("ChargeAsymmetry","asymmetry of charge on edge strips","(c_{st,L}-c_{st,R})/c_{cl}","",110,55,-1.1,1.1,"nph");
656  (*i_sector).second.m_correlationHistsX["ChargeLRplus"] = (*i_sector).second.bookCorrHistsX("ChargeLRplus","fraction of charge not on maxStrip","(c_{cl,L}+c_{cl,R})/c_{cl}","",60,60,-0.1,1.1,"nph");
657  (*i_sector).second.m_correlationHistsX["ChargeLRminus"] = (*i_sector).second.bookCorrHistsX("ChargeLRminus","asymmetry of charge L and R of maxStrip","(c_{cl,L}-c_{cl,R})/c_{cl}","",110,55,-1.1,1.1,"nph");
658  (*i_sector).second.m_correlationHistsX["SOverN"] = (*i_sector).second.bookCorrHistsX("SOverN","signal over noise","s/N","",100,50,0,sOverNMax,"nph");
659  (*i_sector).second.m_correlationHistsX["WidthProj"] = (*i_sector).second.bookCorrHistsX("WidthProj","projected width","w_{p}","[# strips]",200,20,0.,widthMax,"nph");
660  (*i_sector).second.m_correlationHistsX["WidthDiff"] = (*i_sector).second.bookCorrHistsX("WidthDiff","width difference","w_{p} - w_{cl}","[# strips]",200,20,-widthMax/2.,widthMax/2.,"nph");
661 
662  (*i_sector).second.WidthVsWidthProjected = secDir.make<TH2F>("h2_widthVsWidthProj","w_{cl} vs. w_{p};w_{p} [# strips];w_{cl} [# strips]",static_cast<int>(widthMax),0,widthMax,static_cast<int>(widthMax),0,widthMax);
663  (*i_sector).second.PWidthVsWidthProjected = secDir.make<TProfile>("p_widthVsWidthProj","w_{cl} vs. w_{p};w_{p} [# strips];w_{cl} [# strips]",static_cast<int>(widthMax),0,widthMax);
664 
665  (*i_sector).second.WidthDiffVsMaxStrip = secDir.make<TH2F>("h2_widthDiffVsMaxStrip","(w_{p} - w_{cl}) vs. n_{cl,max};n_{cl,max};w_{p} - w_{cl} [# strips]",800,-10.,790.,static_cast<int>(widthMax),-widthMax/2.,widthMax/2.);
666  (*i_sector).second.PWidthDiffVsMaxStrip = secDir.make<TProfile>("p_widthDiffVsMaxStrip","(w_{p} - w_{cl}) vs. n_{cl,max};n_{cl,max};w_{p} - w_{cl} [# strips]",800,-10.,790.);
667 
668  (*i_sector).second.WidthDiffVsSigmaXHit = secDir.make<TH2F>("h2_widthDiffVsSigmaXHit","(w_{p} - w_{cl}) vs. #sigma_{hit,x};#sigma_{hit,x} [cm];w_{p} - w_{cl} [# strips]",100,0.,sigmaXMax,100,-10.,10.);
669  (*i_sector).second.PWidthDiffVsSigmaXHit = secDir.make<TProfile>("p_widthDiffVsSigmaXHit","(w_{p} - w_{cl}) vs. #sigma_{hit,x};#sigma_{hit,x} [cm];w_{p} - w_{cl} [# strips]",100,0.,sigmaXMax);
670 
671  (*i_sector).second.WidthVsPhiSensX = secDir.make<TH2F>("h2_widthVsPhiSensX","w_{cl} vs. #phi_{module,x};#phi_{module,x} [ ^{o}];w_{cl} [# strips]",93,-93,93,static_cast<int>(widthMax),0,widthMax);
672  (*i_sector).second.PWidthVsPhiSensX = secDir.make<TProfile>("p_widthVsPhiSensX","w_{cl} vs. #phi_{module,x};#phi_{module,x} [ ^{o}];w_{cl} [# strips]",93,-93,93);
673  }
674 
675 
676  // Hit Parameters (transform errors and residuals from [cm] in [mum])
677  (*i_sector).second.m_correlationHistsX["SigmaXHit"] = (*i_sector).second.bookCorrHistsX("SigmaXHit","hit error","#sigma_{hit,x}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
678  (*i_sector).second.m_correlationHistsX["SigmaXTrk"] = (*i_sector).second.bookCorrHistsX("SigmaXTrk","track error","#sigma_{trk,x}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
679  (*i_sector).second.m_correlationHistsX["SigmaX"] = (*i_sector).second.bookCorrHistsX("SigmaX","residual error","#sigma_{r,x}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
680  (*i_sector).second.m_correlationHistsX["PhiSens"] = (*i_sector).second.bookCorrHistsX("PhiSens","track angle on sensor","#phi_{module}","[ ^{o}]",96,48,-3,93,"nphtr");
681  (*i_sector).second.m_correlationHistsX["PhiSensX"] = (*i_sector).second.bookCorrHistsX("PhiSensX","track angle on sensor","#phi_{module,x}","[ ^{o}]",186,93,-phiSensXMax,phiSensXMax,"nphtr");
682  (*i_sector).second.m_correlationHistsX["PhiSensY"] = (*i_sector).second.bookCorrHistsX("PhiSensY","track angle on sensor","#phi_{module,y}","[ ^{o}]",186,93,-93,93,"nphtr");
683 
684  (*i_sector).second.XHit = secDir.make<TH1F>("h_XHit"," hit measurement x_{hit};x_{hit} [cm];# hits",100,-20,20);
685  (*i_sector).second.XTrk = secDir.make<TH1F>("h_XTrk","track prediction x_{trk};x_{trk} [cm];# hits",100,-20,20);
686  (*i_sector).second.SigmaX2 = secDir.make<TH1F>("h_SigmaX2","squared residual error #sigma_{r,x}^{2};#sigma_{r,x}^{2} [#mum^{2}];# hits",105,sigmaXMin*10000.,sigmaX2Max*10000.*10000.); //no mistake !
687  (*i_sector).second.ResX = secDir.make<TH1F>("h_ResX","residual r_{x};x_{trk}-x_{hit} [#mum];# hits",100,-resXAbsMax*10000.,resXAbsMax*10000.);
688  (*i_sector).second.NorResX = secDir.make<TH1F>("h_NorResX","normalized residual r_{x}/#sigma_{r,x};(x_{trk}-x_{hit})/#sigma_{r,x};# hits",100,-norResXAbsMax,norResXAbsMax);
689  (*i_sector).second.ProbX = secDir.make<TH1F>("h_ProbX","residual probability;prob(r_{x}^{2}/#sigma_{r,x}^{2},1);# hits",60,probXMin,probXMax);
690 
691  (*i_sector).second.PhiSensXVsBarycentreX = secDir.make<TH2F>("h2_phiSensXVsBarycentreX","#phi_{module,x} vs. b_{cl,x};b_{cl,x} [# channels];#phi_{module,x} [ ^{o}]",200,-10.,790.,93,-93,93);
692  (*i_sector).second.PPhiSensXVsBarycentreX = secDir.make<TProfile>("p_phiSensXVsBarycentreX","#phi_{module,x} vs. b_{cl,x};b_{cl,x} [# channels];#phi_{module,x} [ ^{o}]",200,-10.,790.);
693 
694  if(pixelSector){
695  (*i_sector).second.m_correlationHistsY["SigmaYHit"] = (*i_sector).second.bookCorrHistsY("SigmaYHit","hit error","#sigma_{hit,y}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
696  (*i_sector).second.m_correlationHistsY["SigmaYTrk"] = (*i_sector).second.bookCorrHistsY("SigmaYTrk","track error","#sigma_{trk,y}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
697  (*i_sector).second.m_correlationHistsY["SigmaY"] = (*i_sector).second.bookCorrHistsY("SigmaY","residual error","#sigma_{r,y}","[#mum]",105,20,sigmaXMin*10000.,sigmaXMax*10000.,"np");
698  (*i_sector).second.m_correlationHistsY["PhiSens"] = (*i_sector).second.bookCorrHistsY("PhiSens","track angle on sensor","#phi_{module}","[ ^{o}]",96,48,-3,93,"nphtr");
699  (*i_sector).second.m_correlationHistsY["PhiSensX"] = (*i_sector).second.bookCorrHistsY("PhiSensX","track angle on sensor","#phi_{module,x}","[ ^{o}]",186,93,-phiSensXMax,phiSensXMax,"nphtr");
700  (*i_sector).second.m_correlationHistsY["PhiSensY"] = (*i_sector).second.bookCorrHistsY("PhiSensY","track angle on sensor","#phi_{module,y}","[ ^{o}]",186,93,-93,93,"nphtr");
701 
702  (*i_sector).second.YHit = secDir.make<TH1F>("h_YHit"," hit measurement y_{hit};y_{hit} [cm];# hits",100,-20,20);
703  (*i_sector).second.YTrk = secDir.make<TH1F>("h_YTrk","track prediction y_{trk};y_{trk} [cm];# hits",100,-20,20);
704  (*i_sector).second.SigmaY2 = secDir.make<TH1F>("h_SigmaY2","squared residual error #sigma_{r,y}^{2};#sigma_{r,y}^{2} [#mum^{2}];# hits",105,sigmaXMin*10000.,sigmaX2Max*10000.*10000.); //no mistake !
705  (*i_sector).second.ResY = secDir.make<TH1F>("h_ResY","residual r_{y};y_{trk}-y_{hit} [#mum];# hits",100,-resXAbsMax*10000.,resXAbsMax*10000.);
706  (*i_sector).second.NorResY = secDir.make<TH1F>("h_NorResY","normalized residual r_{y}/#sigma_{r,y};(y_{trk}-y_{hit})/#sigma_{r,y};# hits",100,-norResXAbsMax,norResXAbsMax);
707  (*i_sector).second.ProbY = secDir.make<TH1F>("h_ProbY","residual probability;prob(r_{y}^{2}/#sigma_{r,y}^{2},1);# hits",60,probXMin,probXMax);
708 
709  (*i_sector).second.PhiSensYVsBarycentreY = secDir.make<TH2F>("h2_phiSensYVsBarycentreY","#phi_{module,y} vs. b_{cl,y};b_{cl,y} [# channels];#phi_{module,y} [ ^{o}]",200,-10.,790.,93,-93,93);
710  (*i_sector).second.PPhiSensYVsBarycentreY = secDir.make<TProfile>("p_phiSensYVsBarycentreY","#phi_{module,y} vs. b_{cl,y};b_{cl,y} [# channels];#phi_{module,y} [ ^{o}]",200,-10.,790.);
711  }
712 
713 
714  // Track Parameters
715  (*i_sector).second.m_correlationHistsX["HitsValid"] = (*i_sector).second.bookCorrHistsX("HitsValid","# hits","[valid]",50,0,50,"npt");
716  (*i_sector).second.m_correlationHistsX["HitsInvalid"] = (*i_sector).second.bookCorrHistsX("HitsInvalid","# hits","[invalid]",20,0,20,"npt");
717  (*i_sector).second.m_correlationHistsX["Hits2D"] = (*i_sector).second.bookCorrHistsX("Hits2D","# hits","[2D]",20,0,20,"npt");
718  (*i_sector).second.m_correlationHistsX["LayersMissed"] = (*i_sector).second.bookCorrHistsX("LayersMissed","# layers","[missed]",10,0,10,"npt");
719  (*i_sector).second.m_correlationHistsX["HitsPixel"] = (*i_sector).second.bookCorrHistsX("HitsPixel","# hits","[pixel]",10,0,10,"npt");
720  (*i_sector).second.m_correlationHistsX["HitsStrip"] = (*i_sector).second.bookCorrHistsX("HitsStrip","# hits","[strip]",40,0,40,"npt");
721  (*i_sector).second.m_correlationHistsX["HitsGood"] = (*i_sector).second.bookCorrHistsX("HitsGood","# hits","[good]",50,0,50,"npt");
722  (*i_sector).second.m_correlationHistsX["NorChi2"] = (*i_sector).second.bookCorrHistsX("NorChi2","#chi^{2}/f","",50,0,norChi2Max,"npr");
723  (*i_sector).second.m_correlationHistsX["Theta"] = (*i_sector).second.bookCorrHistsX("Theta","#theta","[ ^{o}]",40,-10,190,"npt");
724  (*i_sector).second.m_correlationHistsX["Phi"] = (*i_sector).second.bookCorrHistsX("Phi","#phi","[ ^{o}]",76,-190,190,"npt");
725  (*i_sector).second.m_correlationHistsX["D0Beamspot"] = (*i_sector).second.bookCorrHistsX("D0Beamspot","d_{0, BS}","[cm]",40,-d0Max,d0Max,"npt");
726  (*i_sector).second.m_correlationHistsX["Dz"] = (*i_sector).second.bookCorrHistsX("Dz","d_{z}","[cm]",40,-dzMax,dzMax,"npt");
727  (*i_sector).second.m_correlationHistsX["Pt"] = (*i_sector).second.bookCorrHistsX("Pt","p_{t}","[GeV]",50,0,pMax,"npt");
728  (*i_sector).second.m_correlationHistsX["P"] = (*i_sector).second.bookCorrHistsX("P","|p|","[GeV]",50,0,pMax,"npt");
729  (*i_sector).second.m_correlationHistsX["InvP"] = (*i_sector).second.bookCorrHistsX("InvP","1/|p|","[GeV^{-1}]",25,0,invPMax,"t");
730  (*i_sector).second.m_correlationHistsX["MeanAngle"] = (*i_sector).second.bookCorrHistsX("MeanAngle","<#phi_{module}>","[ ^{o}]",25,-5,95,"npt");
731  //(*i_sector).second.m_correlationHistsX[""] = (*i_sector).second.bookCorrHistsX("","","",,,,"nphtr");
732 
733  if(pixelSector){
734  (*i_sector).second.m_correlationHistsY["HitsValid"] = (*i_sector).second.bookCorrHistsY("HitsValid","# hits","[valid]",50,0,50,"npt");
735  (*i_sector).second.m_correlationHistsY["HitsInvalid"] = (*i_sector).second.bookCorrHistsY("HitsInvalid","# hits","[invalid]",20,0,20,"npt");
736  (*i_sector).second.m_correlationHistsY["Hits2D"] = (*i_sector).second.bookCorrHistsY("Hits2D","# hits","[2D]",20,0,20,"npt");
737  (*i_sector).second.m_correlationHistsY["LayersMissed"] = (*i_sector).second.bookCorrHistsY("LayersMissed","# layers","[missed]",10,0,10,"npt");
738  (*i_sector).second.m_correlationHistsY["HitsPixel"] = (*i_sector).second.bookCorrHistsY("HitsPixel","# hits","[pixel]",10,0,10,"npt");
739  (*i_sector).second.m_correlationHistsY["HitsStrip"] = (*i_sector).second.bookCorrHistsY("HitsStrip","# hits","[strip]",40,0,40,"npt");
740  (*i_sector).second.m_correlationHistsY["HitsGood"] = (*i_sector).second.bookCorrHistsY("HitsGood","# hits","[good]",50,0,50,"npt");
741  (*i_sector).second.m_correlationHistsY["NorChi2"] = (*i_sector).second.bookCorrHistsY("NorChi2","#chi^{2}/f","",50,0,norChi2Max,"npr");
742  (*i_sector).second.m_correlationHistsY["Theta"] = (*i_sector).second.bookCorrHistsY("Theta","#theta","[ ^{o}]",40,-10,190,"npt");
743  (*i_sector).second.m_correlationHistsY["Phi"] = (*i_sector).second.bookCorrHistsY("Phi","#phi","[ ^{o}]",76,-190,190,"npt");
744  (*i_sector).second.m_correlationHistsY["D0Beamspot"] = (*i_sector).second.bookCorrHistsY("D0Beamspot","d_{0, BS}","[cm]",40,-d0Max,d0Max,"npt");
745  (*i_sector).second.m_correlationHistsY["Dz"] = (*i_sector).second.bookCorrHistsY("Dz","d_{z}","[cm]",40,-dzMax,dzMax,"npt");
746  (*i_sector).second.m_correlationHistsY["Pt"] = (*i_sector).second.bookCorrHistsY("Pt","p_{t}","[GeV]",50,0,pMax,"npt");
747  (*i_sector).second.m_correlationHistsY["P"] = (*i_sector).second.bookCorrHistsY("P","|p|","[GeV]",50,0,pMax,"npt");
748  (*i_sector).second.m_correlationHistsY["InvP"] = (*i_sector).second.bookCorrHistsY("InvP","1/|p|","[GeV^{-1}]",25,0,invPMax,"t");
749  (*i_sector).second.m_correlationHistsY["MeanAngle"] = (*i_sector).second.bookCorrHistsY("MeanAngle","<#phi_{module}>","[ ^{o}]",25,-5,95,"npt");
750  }
751 
752 
753  // (transform errors and residuals from [cm] in [mum])
754  for(std::vector<unsigned int>::iterator i_errHists = v_errHists.begin(); i_errHists != v_errHists.end(); ++i_errHists){
755  double xMin(0.01*(*i_errHists-1)), xMax(0.01*(*i_errHists));
756  std::stringstream sigmaXHit, sigmaXTrk, sigmaX;
757  sigmaXHit << "h_sigmaXHit_" << *i_errHists;
758  sigmaXTrk << "h_sigmaXTrk_" << *i_errHists;
759  sigmaX << "h_sigmaX_" << *i_errHists;
760  (*i_sector).second.m_sigmaX["sigmaXHit"].push_back(secDir.make<TH1F>(sigmaXHit.str().c_str(),"hit error #sigma_{hit,x};#sigma_{hit,x} [#mum];# hits",100,xMin*10000.,xMax*10000.));
761  (*i_sector).second.m_sigmaX["sigmaXTrk"].push_back(secDir.make<TH1F>(sigmaXTrk.str().c_str(),"track error #sigma_{trk,x};#sigma_{trk,x} [#mum];# hits",100,xMin*10000.,xMax*10000.));
762  (*i_sector).second.m_sigmaX["sigmaX" ].push_back(secDir.make<TH1F>(sigmaX.str().c_str(),"residual error #sigma_{r,x};#sigma_{r,x} [#mum];# hits",100,xMin*10000.,xMax*10000.));
763  if(pixelSector){
764  std::stringstream sigmaYHit, sigmaYTrk, sigmaY;
765  sigmaYHit << "h_sigmaYHit_" << *i_errHists;
766  sigmaYTrk << "h_sigmaYTrk_" << *i_errHists;
767  sigmaY << "h_sigmaY_" << *i_errHists;
768  (*i_sector).second.m_sigmaY["sigmaYHit"].push_back(secDir.make<TH1F>(sigmaYHit.str().c_str(),"hit error #sigma_{hit,y};#sigma_{hit,y} [#mum];# hits",100,xMin*10000.,xMax*10000.));
769  (*i_sector).second.m_sigmaY["sigmaYTrk"].push_back(secDir.make<TH1F>(sigmaYTrk.str().c_str(),"track error #sigma_{trk,y};#sigma_{trk,y} [#mum];# hits",100,xMin*10000.,xMax*10000.));
770  (*i_sector).second.m_sigmaY["sigmaY" ].push_back(secDir.make<TH1F>(sigmaY.str().c_str(),"residual error #sigma_{r,y};#sigma_{r,y} [#mum];# hits",100,xMin*10000.,xMax*10000.));
771  }
772  }
773 
774  }
775 }
776 
777 
778 
779 void
781 
782  std::vector<unsigned int> v_errHists(parameterSet_.getParameter<std::vector<unsigned int> >("vErrHists"));
783  for(std::vector<unsigned int>::iterator i_errHists = v_errHists.begin(); i_errHists != v_errHists.end(); ++i_errHists){
784  for(std::vector<unsigned int>::iterator i_errHists2 = i_errHists; i_errHists2 != v_errHists.end();){
785  ++i_errHists2;
786  if(*i_errHists==*i_errHists2){
787  edm::LogError("BookSectorHists")<<"Value of vErrHists in config exists twice: "<<*i_errHists<<"\n... delete one of both";
788  v_errHists.erase(i_errHists2);
789  }
790  }
791  }
792 
793  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
794 
796  if(!fileService){
798  "TFileService is not registered in cfg file" );
799  }
800 
801  std::stringstream sector; sector << "Sector_" << (*i_sector).first;
802  TFileDirectory secDir = fileService->mkdir(sector.str().c_str());
803 
804  // Dummy histo containing the sector name as title
805  (*i_sector).second.Name = secDir.make<TH1F>("z_name",(*i_sector).second.name.c_str(),1,0,1);
806 
807  // Do not book histos for empty sectors
808  if((*i_sector).second.v_rawId.size()==0){
809  continue;
810  }
811 
812 
813  // Distributions in each interval (stay in [cm], to have all calculations in [cm])
814  if(m_resErrBins_.size()==0){m_resErrBins_[1].first = 0.;m_resErrBins_[1].second = 0.01;} // default if no selection taken into account: calculate APE with one bin with residual error 0-100um
815  for(std::map<unsigned int,std::pair<double,double> >::const_iterator i_errBins = m_resErrBins_.begin();
816  i_errBins != m_resErrBins_.end(); ++i_errBins){
817  std::stringstream interval; interval << "Interval_" << (*i_errBins).first;
818  TFileDirectory intDir = secDir.mkdir(interval.str().c_str());
819  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaX"] = intDir.make<TH1F>("h_sigmaX","residual resolution #sigma_{x};#sigma_{x} [cm];# hits",100,0.,0.01);
820  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResX"] = intDir.make<TH1F>("h_norResX","normalized residual r_{x}/#sigma_{r,x};(x_{trk}-x_{hit})/#sigma_{r,x};# hits",100,-10,10);
821  if((*i_sector).second.isPixel){
822  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaY"] = intDir.make<TH1F>("h_sigmaY","residual resolution #sigma_{y};#sigma_{y} [cm];# hits",100,0.,0.01);
823  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResY"] = intDir.make<TH1F>("h_norResY","normalized residual r_{y}/#sigma_{r,y};(y_{trk}-y_{hit})/#sigma_{r,y};# hits",100,-10,10);
824  }
825  }
826 
827 
828  TFileDirectory resDir = secDir.mkdir("Results");
829 
830  // TTree containing rawIds of all modules in sector
831  unsigned int rawId(0);
832  (*i_sector).second.RawId = resDir.make<TTree>("rawIdTree","Tree containing rawIds of all modules in sector");
833  (*i_sector).second.RawId->Branch("RawId", &rawId, "RawId/i");
834  for(std::vector<unsigned int>::const_iterator i_rawId=(*i_sector).second.v_rawId.begin(); i_rawId!=(*i_sector).second.v_rawId.end(); ++i_rawId){
835  rawId = (*i_rawId);
836  (*i_sector).second.RawId->Fill();
837  }
838 
839  // Result plots (one hist per sector containing one bin per interval)
840  // (transform errors and residuals from [cm] in [mum])
841  std::vector<double> v_binX(parameterSet_.getParameter<std::vector<double> >("residualErrorBinning"));
842  for(std::vector<double>::iterator i_binX = v_binX.begin(); i_binX != v_binX.end(); ++i_binX){
843  *i_binX *= 10000.;
844  }
845  (*i_sector).second.EntriesX = resDir.make<TH1F>("h_entriesX","# hits used;#sigma_{x} [#mum];# hits",v_binX.size()-1,&(v_binX[0]));
846  if((*i_sector).second.isPixel){
847  (*i_sector).second.EntriesY = resDir.make<TH1F>("h_entriesY","# hits used;#sigma_{y} [#mum];# hits",v_binX.size()-1,&(v_binX[0]));
848  }
849 
850  // In fact these are un-needed Analyzer plots, but I want to have them always for every sector visible
851  // (transform errors and residuals from [cm] in [mum])
852  (*i_sector).second.ResX = resDir.make<TH1F>("h_ResX","residual r_{x};x_{trk}-x_{hit} [#mum];# hits",100,-0.03*10000.,0.03*10000.);
853  (*i_sector).second.NorResX = resDir.make<TH1F>("h_NorResX","normalized residual r_{x}/#sigma_{r,x};(x_{trk}-x_{hit})/#sigma_{r,x};# hits",100,-5.,5.);
854  if((*i_sector).second.isPixel){
855  (*i_sector).second.ResY = resDir.make<TH1F>("h_ResY","residual r_{y};y_{trk}-y_{hit} [#mum];# hits",100,-0.03*10000.,0.03*10000.);
856  (*i_sector).second.NorResY = resDir.make<TH1F>("h_NorResY","normalized residual r_{y}/#sigma_{r,y};(y_{trk}-y_{hit})/#sigma_{r,y};# hits",100,-5.,5.);
857  }
858  }
859 }
860 
861 
862 // -----------------------------------------------------------------------------------------------------------
863 
864 void
866 
867  bool zoomHists(parameterSet_.getParameter<bool>("zoomHists"));
868 
869  int trackSizeBins = zoomHists ? 6 : 201;
870  double trackSizeMax = trackSizeBins -1;
871 
872  double chi2Max = zoomHists ? 100. : 2000.;
873  double norChi2Max = zoomHists ? 5. : 1000.;
874  double d0max = zoomHists ? 0.02 : 40.; // cosmics: 100.|100.
875  double dzmax = zoomHists ? 15. : 100.; // cosmics: 200.|600.
876  double pMax = zoomHists ? 200. : 2000.;
877 
879  TFileDirectory evtDir = fileService->mkdir("EventVariables");
880  tkDetector_.TrkSize = evtDir.make<TH1F>("h_trackSize","# tracks [all];# tracks;# events",trackSizeBins,-1,trackSizeMax);
881  tkDetector_.TrkSizeGood = evtDir.make<TH1F>("h_trackSizeGood","# tracks [good];# tracks;# events",trackSizeBins,-1,trackSizeMax);
882  TFileDirectory trkDir = fileService->mkdir("TrackVariables");
883  tkDetector_.HitsSize = trkDir.make<TH1F>("h_hitsSize","# hits;# hits;# tracks",51,-1,50);
884  tkDetector_.HitsValid = trkDir.make<TH1F>("h_hitsValid","# hits [valid];# hits [valid];# tracks",51,-1,50);
885  tkDetector_.HitsInvalid = trkDir.make<TH1F>("h_hitsInvalid","# hits [invalid];# hits [invalid];# tracks",21,-1,20);
886  tkDetector_.Hits2D = trkDir.make<TH1F>("h_hits2D","# hits [2D];# hits [2D];# tracks",21,-1,20);
887  tkDetector_.LayersMissed = trkDir.make<TH1F>("h_layersMissed","# layers [missed];# layers [missed];# tracks",11,-1,10);
888  tkDetector_.HitsPixel = trkDir.make<TH1F>("h_hitsPixel","# hits [pixel];# hits [pixel];# tracks",11,-1,10);
889  tkDetector_.HitsStrip = trkDir.make<TH1F>("h_hitsStrip","# hits [strip];# hits [strip];# tracks",41,-1,40);
890  tkDetector_.Charge = trkDir.make<TH1F>("h_charge","charge q;q [e];# tracks",5,-2,3);
891  tkDetector_.Chi2 = trkDir.make<TH1F>("h_chi2"," #chi^{2};#chi^{2};# tracks",100,0,chi2Max);
892  tkDetector_.Ndof = trkDir.make<TH1F>("h_ndof","# degrees of freedom f;f;# tracks",101,-1,100);
893  tkDetector_.NorChi2 = trkDir.make<TH1F>("h_norChi2","normalized #chi^{2};#chi^{2}/f;# tracks",200,0,norChi2Max);
894  tkDetector_.Prob = trkDir.make<TH1F>("h_prob"," #chi^{2} probability;prob(#chi^{2},f);# tracks",50,0,1);
895  tkDetector_.Eta = trkDir.make<TH1F>("h_eta","pseudorapidity #eta;#eta;# tracks",100,-5,5);
896  tkDetector_.EtaErr = trkDir.make<TH1F>("h_etaErr","Error of #eta;#sigma(#eta);# tracks",100,0,0.001);
897  tkDetector_.EtaSig = trkDir.make<TH1F>("h_etaSig","Significance of #eta;#eta/#sigma(#eta);# tracks",100,-20000,20000);
898  tkDetector_.Theta = trkDir.make<TH1F>("h_theta","polar angle #theta;#theta [ ^{o}];# tracks",100,-10,190);
899  tkDetector_.Phi = trkDir.make<TH1F>("h_phi","azimuth angle #phi;#phi [ ^{o}];# tracks",190,-190,190);
900  tkDetector_.PhiErr = trkDir.make<TH1F>("h_phiErr","Error of #phi;#sigma(#phi) [ ^{o}];# tracks",100,0,0.04);
901  tkDetector_.PhiSig = trkDir.make<TH1F>("h_phiSig","Significance of #phi;#phi/#sigma(#phi) [ ^{o}];# tracks",100,-50000,50000);
902  tkDetector_.D0Beamspot = trkDir.make<TH1F>("h_d0Beamspot","Closest approach d_{0} wrt. beamspot;d_{0, BS} [cm];# tracks",200,-d0max,d0max);
903  tkDetector_.D0BeamspotErr = trkDir.make<TH1F>("h_d0BeamspotErr","Error of d_{0, BS};#sigma(d_{0, BS}) [cm];# tracks",200,0,0.01);
904  tkDetector_.D0BeamspotSig = trkDir.make<TH1F>("h_d0BeamspotSig","Significance of d_{0, BS};d_{0, BS}/#sigma(d_{0, BS});# tracks",100,-5,5);
905  tkDetector_.Dz = trkDir.make<TH1F>("h_dz","Closest approach d_{z};d_{z} [cm];# tracks",200,-dzmax,dzmax);
906  tkDetector_.DzErr = trkDir.make<TH1F>("h_dzErr","Error of d_{z};#sigma(d_{z}) [cm];# tracks",200,0,0.01);
907  tkDetector_.DzSig = trkDir.make<TH1F>("h_dzSig","Significance of d_{z};d_{z}/#sigma(d_{z});# tracks",100,-10000,10000);
908  tkDetector_.Pt = trkDir.make<TH1F>("h_pt","transverse momentum p_{t};p_{t} [GeV];# tracks",100,0,pMax);
909  tkDetector_.PtErr = trkDir.make<TH1F>("h_ptErr","Error of p_{t};#sigma(p_{t}) [GeV];# tracks",100,0,1.6);
910  tkDetector_.PtSig = trkDir.make<TH1F>("h_ptSig","Significance of p_{t};p_{t}/#sigma(p_{t});# tracks",100,0,200);
911  tkDetector_.P = trkDir.make<TH1F>("h_p","momentum magnitude |p|;|p| [GeV];# tracks",100,0,pMax);
912  tkDetector_.MeanAngle = trkDir.make<TH1F>("h_meanAngle","mean angle on module <#phi_{module}>;<#phi_{module}> [ ^{o}];# tracks",100,-5,95);
913  tkDetector_.HitsGood = trkDir.make<TH1F>("h_hitsGood","# hits [good];# hits [good];# tracks",51,-1,50);
914 
915  tkDetector_.MeanAngleVsHits = trkDir.make<TH2F>("h2_meanAngleVsHits","<#phi_{module}> vs. # hits;# hits;<#phi_{module}> [ ^{o}]",51,-1,50,50,-5,95);
916  tkDetector_.HitsGoodVsHitsValid = trkDir.make<TH2F>("h2_hitsGoodVsHitsValid","# hits [good] vs. # hits [valid];# hits [valid];# hits [good]",51,-1,50,51,-1,50);
917  tkDetector_.HitsPixelVsEta = trkDir.make<TH2F>("h2_hitsPixelVsEta","# hits [pixel] vs. #eta;#eta;# hits [pixel]",60,-3,3,11,-1,10);
918  tkDetector_.HitsPixelVsTheta = trkDir.make<TH2F>("h2_hitsPixelVsTheta","# hits [pixel] vs. #theta;#theta;# hits [pixel]",100,-10,190,11,-1,10);
919  tkDetector_.HitsStripVsEta = trkDir.make<TH2F>("h2_hitsStripVsEta","# hits [strip] vs. #eta;#eta;# hits [strip]",60,-3,3,31,-1,40);
920  tkDetector_.HitsStripVsTheta = trkDir.make<TH2F>("h2_hitsStripVsTheta","# hits [strip] vs. #theta;#theta;# hits [strip]",100,-10,190,31,-1,40);
921  tkDetector_.PtVsEta = trkDir.make<TH2F>("h2_ptVsEta","p_{t} vs. #eta;#eta;p_{t} [GeV]",60,-3,3,100,0,pMax);
922  tkDetector_.PtVsTheta = trkDir.make<TH2F>("h2_ptVsTheta","p_{t} vs. #theta;#theta;p_{t} [GeV]",100,-10,190,100,0,pMax);
923 
924  tkDetector_.PMeanAngleVsHits = trkDir.make<TProfile>("p_meanAngleVsHits","<#phi_{module}> vs. # hits;# hits;<#phi_{module}> [ ^{o}]",51,-1,50);
925  tkDetector_.PHitsGoodVsHitsValid = trkDir.make<TProfile>("p_hitsGoodVsHitsValid","# hits [good] vs. # hits [valid];# hits [valid];# hits [good]",51,-1,50);
926  tkDetector_.PHitsPixelVsEta = trkDir.make<TProfile>("p_hitsPixelVsEta","# hits [pixel] vs. #eta;#eta;# hits [pixel]",60,-3,3);
927  tkDetector_.PHitsPixelVsTheta = trkDir.make<TProfile>("p_hitsPixelVsTheta","# hits [pixel] vs. #theta;#theta;# hits [pixel]",100,-10,190);
928  tkDetector_.PHitsStripVsEta = trkDir.make<TProfile>("p_hitsStripVsEta","# hits [strip] vs. #eta;#eta;# hits [strip]",60,-3,3);
929  tkDetector_.PHitsStripVsTheta = trkDir.make<TProfile>("p_hitsStripVsTheta","# hits [strip] vs. #theta;#theta;# hits [strip]",100,-10,190);
930  tkDetector_.PPtVsEta = trkDir.make<TProfile>("p_ptVsEta","p_{t} vs. #eta;#eta;p_{t} [GeV]",60,-3,3);
931  tkDetector_.PPtVsTheta = trkDir.make<TProfile>("p_ptVsTheta","p_{t} vs. #theta;#theta;p_{t} [GeV]",100,-10,190);
932 }
933 
934 
935 
936 // -----------------------------------------------------------------------------------------------------------
937 
938 
941 
942  const math::XYZPoint beamPoint(beamSpot.x0(),beamSpot.y0(), beamSpot.z0());
943  double d0BeamspotErr = std::sqrt( track.d0Error()*track.d0Error() + 0.5*beamSpot.BeamWidthX()*beamSpot.BeamWidthX() + 0.5*beamSpot.BeamWidthY()*beamSpot.BeamWidthY() );
944 
945  static TrajectoryStateCombiner tsoscomb;
946 
947  const reco::HitPattern& hitPattern(track.hitPattern());
948 
950 
951  trkParams.hitsSize = track.recHitsSize();
952  trkParams.hitsValid = track.found(); // invalid is every hit from every single module that expects a hit
953  trkParams.hitsInvalid = trkParams.hitsSize-trkParams.hitsValid;
954  trkParams.layersMissed = track.lost(); // lost hit means, that a crossed layer doesn't contain a hit (can be more than one invalid hit)
955  trkParams.hitsPixel = hitPattern.numberOfValidPixelHits();
956  trkParams.hitsStrip = hitPattern.numberOfValidStripHits();
957  trkParams.charge = track.charge();
958  trkParams.chi2 = track.chi2();
959  trkParams.ndof = track.ndof();
960  trkParams.norChi2 = trkParams.chi2/trkParams.ndof;
961  trkParams.prob = TMath::Prob(trkParams.chi2,trkParams.ndof);
962  trkParams.eta = track.eta();
963  trkParams.etaErr = track.etaError();
964  trkParams.theta = track.theta();
965  trkParams.phi = track.phi();
966  trkParams.phiErr = track.phiError();
967  trkParams.d0 = track.d0();
968  trkParams.d0Beamspot = -1.*track.dxy(beamPoint);
969  trkParams.d0BeamspotErr = d0BeamspotErr;
970  trkParams.dz = track.dz();
971  trkParams.dzErr = track.dzError();
972  trkParams.dzBeamspot = track.dz(beamPoint);
973  trkParams.p = track.p();
974  trkParams.pt = track.pt();
975  trkParams.ptErr = track.ptError();
976 
977  const std::vector<TrajectoryMeasurement>& v_meas = traj.measurements();
978 
979  int count2D(0); float meanPhiSensToNorm(0.F);
980  std::vector<TrajectoryMeasurement>::const_iterator i_meas;
981  for(i_meas = v_meas.begin(); i_meas != v_meas.end(); ++i_meas){
982  const TrajectoryMeasurement& meas = *i_meas;
983  const TransientTrackingRecHit& hit = *meas.recHit();
984  const TrackingRecHit& recHit = *hit.hit();
985  if(this->isHit2D(recHit))++count2D;
986 
988  const align::LocalVector mom(tsos.localDirection());
989  meanPhiSensToNorm += atan(fabs(sqrt(mom.x()*mom.x()+mom.y()*mom.y())/mom.z()));
990  }
991  meanPhiSensToNorm *= (1./static_cast<float>(trkParams.hitsSize));
992 
993  trkParams.hits2D = count2D;
994  trkParams.meanPhiSensToNorm = meanPhiSensToNorm;
995 
996  if(parameterSet_.getParameter<bool>("applyTrackCuts")){
997  trackCut_ = false;
998  if(trkParams.hitsStrip<11 || trkParams.hits2D<2 || trkParams.hitsPixel<2 || //trkParams.hitsInvalid>2 ||
999  trkParams.hitsStrip>35 || trkParams.hitsPixel>7 ||
1000  trkParams.norChi2>5. ||
1001  trkParams.pt<25. || trkParams.pt>150. ||
1002  std::abs(trkParams.d0Beamspot)>0.02 || std::abs(trkParams.dz)>15.)trackCut_ = true;
1003  }
1004  else{
1005  trackCut_ = false;
1006  }
1007 
1008  return trkParams;
1009 }
1010 
1011 
1012 
1015 
1016 
1018 
1019  static TrajectoryStateCombiner tsoscomb;
1020 
1021  const TrajectoryMeasurement& meas = i_meas;
1022  const TransientTrackingRecHit& hit = *meas.recHit();
1023  const TrackingRecHit& recHit = *hit.hit();
1024  const TrajectoryStateOnSurface& tsos = tsoscomb(meas.forwardPredictedState(),meas.backwardPredictedState());
1025 
1026  const DetId& detId(hit.geographicalId());
1027  const DetId::Detector& detector = detId.det(); if(detector != DetId::Tracker){hitParams.hitState = TrackStruct::notInTracker; return hitParams;}
1028  const uint32_t rawId(detId.rawId());
1029 
1030  for(std::map<unsigned int,TrackerSectorStruct>::const_iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
1031  for(std::vector<unsigned int>::const_iterator i_rawId = (*i_sector).second.v_rawId.begin();
1032  i_rawId != (*i_sector).second.v_rawId.end(); ++i_rawId){
1033  if(rawId==*i_rawId){hitParams.v_sector.push_back((*i_sector).first); break;}
1034  }
1035  }
1036 
1037  const align::LocalVector& mom(tsos.localDirection());
1038  int xMomentum(0), yMomentum(0), zMomentum(0);
1039  xMomentum = mom.x()>0. ? 1 : -1;
1040  yMomentum = mom.y()>0. ? 1 : -1;
1041  zMomentum = mom.z()>0. ? 1 : -1;
1042  float phiSensX = std::atan(std::fabs(mom.x()/mom.z()))*static_cast<float>(m_tkTreeVar_[rawId].vDirection); // check for orientation of E- and B- Field (thoughts for barrel)
1043  float phiSensY = std::atan(std::fabs(mom.y()/mom.z()))*static_cast<float>(m_tkTreeVar_[rawId].vDirection);
1044  hitParams.phiSens = std::atan(std::fabs(std::sqrt(mom.x()*mom.x()+mom.y()*mom.y())/mom.z()));
1045  hitParams.phiSensX = (xMomentum==zMomentum ? phiSensX : -phiSensX );
1046  hitParams.phiSensY = (yMomentum==zMomentum ? phiSensY : -phiSensY );
1047 
1048  if(!hit.isValid()){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1049 
1050 
1051  // Get local positions and errors of hit and track
1052 
1053  const LocalPoint& lPHit = hit.localPosition();
1054  const LocalPoint& lPTrk = tsos.localPosition();
1055 
1056  // use APE also for the hit error, while APE is automatically included in tsos error
1057  //
1058  // no need to add APE to hitError anymore by Ajay 27 Oct 2014
1059 
1060 
1061  const LocalError& errHitApe = hit.localPositionError(); // now sum of CPE+APE as said by MARCO?
1062  LocalError errorWithoutAPE;
1063 
1064  bool Pixel(false);
1065  bool Strip(false);
1066 
1068  Pixel = true;
1069  }
1070  else if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TOB ||
1071  m_tkTreeVar_[rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TEC){
1072  Strip = true;
1073  }
1074  else { edm::LogWarning("FillHitVariables")<<"cant identify wether hit is from pixel or strip";
1075  hitParams.hitState = TrackStruct::invalid; return hitParams;}
1076 
1077 
1078  if(!hit.detUnit()){hitParams.hitState = TrackStruct::invalid; return hitParams;} // is it a single physical module?
1079  const GeomDetUnit& detUnit = *hit.detUnit();
1080 
1081 
1082  if(Pixel){
1083  if(!dynamic_cast<const PixelTopology*>(&detUnit.type().topology())){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1084  const PixelGeomDetUnit * pixelDet = (const PixelGeomDetUnit*)(&detUnit);
1085  const LocalError& lape = pixelDet->localAlignmentError();
1086  if (lape.valid())
1087  { errorWithoutAPE = LocalError(errHitApe.xx() -lape.xx(), errHitApe.xy()- lape.xy(), errHitApe.yy()-lape.yy());
1088 
1089  }
1090  }
1091  if(Strip){
1092  if(!dynamic_cast<const StripTopology*>(&detUnit.type().topology())){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1093  const StripGeomDetUnit * stripDet = (const StripGeomDetUnit*)(&detUnit);
1094  const LocalError& lape = stripDet->localAlignmentError();
1095  if (lape.valid())
1096  { errorWithoutAPE = LocalError(errHitApe.xx() -lape.xx(), errHitApe.xy()- lape.xy(), errHitApe.yy()-lape.yy());
1097  }
1098  }
1099 
1100 
1101  const LocalError& errHitWoApe = errorWithoutAPE;
1102  const LocalError& errTrk = tsos.localError().positionError();
1103 
1104  const StatePositionAndError2 positionAndError2Hit = this->positionAndError2(lPHit, errHitApe, hit);
1105  const StatePositionAndError2 positionAndError2HitWoApe = this->positionAndError2(lPHit, errHitWoApe, hit);
1106  std::cout<<"errHitWoApe " <<errHitWoApe<<"errHitApe "<<errHitApe<<std::endl;
1107 
1108  const StatePositionAndError2 positionAndError2Trk = this->positionAndError2(lPTrk, errTrk, hit);
1109 
1110  const TrackStruct::HitState& stateHit(positionAndError2Hit.first);
1111  const TrackStruct::HitState& stateHitWoApe(positionAndError2HitWoApe.first);
1112  const TrackStruct::HitState& stateTrk(positionAndError2Trk.first);
1113 
1114  if(stateHit==TrackStruct::invalid || stateHitWoApe==TrackStruct::invalid || stateTrk==TrackStruct::invalid){
1115  hitParams.hitState = TrackStruct::invalid;
1116  return hitParams;
1117  }
1118  else if(stateHit==TrackStruct::negativeError || stateHitWoApe==TrackStruct::negativeError || stateTrk==TrackStruct::negativeError){
1119  ++counter1;
1120  // Do not print error message by default
1121  //std::stringstream ss_error;
1122  //ss_error<<"Upper values belong to: ";
1123  //if(stateHit==TrackStruct::negativeError)ss_error<<"Hit without APE, ";
1124  //if(stateHitWoApe==TrackStruct::negativeError)ss_error<<"Hit with APE, ";
1125  //if(stateTrk==TrackStruct::negativeError)ss_error<<"Track,";
1126  //edm::LogError("Negative error Value")<<"@SUB=ApeEstimator::fillHitVariables"<<ss_error.str();
1128  return hitParams;
1129  }
1130 
1131 
1132  // Calculate residuals
1133 
1134  const float xHit = positionAndError2Hit.second.posX;
1135  const float xTrk = positionAndError2Trk.second.posX;
1136  const float yHit = positionAndError2Hit.second.posY;
1137  const float yTrk = positionAndError2Trk.second.posY;
1138 
1139  const float errXHit2(positionAndError2Hit.second.errX2);
1140  const float errXHitWoApe2(positionAndError2HitWoApe.second.errX2);
1141  const float errXTrk2(positionAndError2Trk.second.errX2);
1142  const float errYHit2(positionAndError2Hit.second.errY2);
1143  const float errYHitWoApe2(positionAndError2HitWoApe.second.errY2);
1144  const float errYTrk2(positionAndError2Trk.second.errY2);
1145 
1146  const float errXHit = std::sqrt(positionAndError2Hit.second.errX2);
1147  const float errXHitWoApe = std::sqrt(positionAndError2HitWoApe.second.errX2);
1148  const float errXTrk = std::sqrt(positionAndError2Trk.second.errX2);
1149  const float errYHit = std::sqrt(positionAndError2Hit.second.errY2);
1150  const float errYHitWoApe = std::sqrt(positionAndError2HitWoApe.second.errY2);
1151  const float errYTrk = std::sqrt(positionAndError2Trk.second.errY2);
1152 
1153  const float resX = xTrk - xHit;
1154  const float resY = yTrk - yHit;
1155 
1156  const float errX = std::sqrt(errXHit2 + errXTrk2);
1157  const float errXWoApe2 = errXHitWoApe2 + errXTrk2;
1158  const float errXWoApe = std::sqrt(errXWoApe2);
1159  const float errY = std::sqrt(errYHit2 + errYTrk2);
1160  const float errYWoApe2 = errYHitWoApe2 + errYTrk2;
1161  const float errYWoApe = std::sqrt(errYWoApe2);
1162 
1163  const float norResX = resX/errX;
1164  const float norResY = resY/errY;
1165 
1166 
1167  // Take global orientation into account for residuals (sign is not important for errors)
1168 
1169  float resXprime(999.F), resYprime(999.F), norResXprime(999.F), norResYprime(999.F);
1170  if(m_tkTreeVar_[rawId].uDirection == 1){resXprime = resX; norResXprime = norResX;}
1171  else if(m_tkTreeVar_[rawId].uDirection == -1){resXprime = -resX; norResXprime = -norResX;}
1172  else {edm::LogError("FillHitVariables")<<"Incorrect value of uDirection, which gives global module orientation"; hitParams.hitState = TrackStruct::invalid; return hitParams;}
1173  if(m_tkTreeVar_[rawId].vDirection == 1){resYprime = resY; norResYprime = norResY;}
1174  else if(m_tkTreeVar_[rawId].vDirection == -1){resYprime = -resY; norResYprime = -norResY;}
1175  else {edm::LogError("FillHitVariables")<<"Incorrect value of vDirection, which gives global module orientation"; hitParams.hitState = TrackStruct::invalid; return hitParams;}
1176 
1177  hitParams.xHit = xHit;
1178  hitParams.xTrk = xTrk;
1179 
1180  hitParams.errXHit = errXHit;
1181  hitParams.errXHitWoApe = errXHitWoApe;
1182  hitParams.errXTrk = errXTrk;
1183 
1184  hitParams.errX2 = errX*errX;
1185  hitParams.errX = errX;
1186  hitParams.errXWoApe = errXWoApe;
1187 
1188  hitParams.resX = resXprime;
1189  hitParams.norResX = norResXprime;
1190 
1191  const float norResX2(norResXprime*norResXprime);
1192  hitParams.probX = TMath::Prob(norResX2,1);
1193 
1194 
1195  hitParams.yHit = yHit;
1196  hitParams.yTrk = yTrk;
1197 
1198  hitParams.errYHit = errYHit;
1199  hitParams.errYHitWoApe = errYHitWoApe;
1200  hitParams.errYTrk = errYTrk;
1201 
1202  hitParams.errY2 = errY*errY;
1203  hitParams.errY = errY;
1204  hitParams.errYWoApe = errYWoApe;
1205 
1206  hitParams.resY = resYprime;
1207  hitParams.norResY = norResYprime;
1208 
1209  const float norResY2(norResYprime*norResYprime);
1210  hitParams.probY = TMath::Prob(norResY2,1);
1211 
1212 
1213  // Cluster parameters
1214 
1216  const SiPixelRecHit& pixelHit = dynamic_cast<const SiPixelRecHit&>(recHit);
1217  const SiPixelCluster& pixelCluster = *pixelHit.cluster();
1218 
1219  hitParams.chargePixel = pixelCluster.charge();
1220  hitParams.widthX = pixelCluster.sizeX();
1221  hitParams.baryStripX = pixelCluster.x();
1222  hitParams.widthY = pixelCluster.sizeY();
1223  hitParams.baryStripY = pixelCluster.y();
1224 
1225  hitParams.clusterProbabilityXY = pixelHit.clusterProbability(0);
1226  hitParams.clusterProbabilityQ = pixelHit.clusterProbability(2);
1227  hitParams.clusterProbabilityXYQ = pixelHit.clusterProbability(1);
1228  hitParams.logClusterProbability = std::log10(hitParams.clusterProbabilityXY);
1229 
1230  hitParams.isOnEdge = pixelHit.isOnEdge();
1231  hitParams.hasBadPixels = pixelHit.hasBadPixels();
1232  hitParams.spansTwoRoc = pixelHit.spansTwoROCs();
1233  hitParams.qBin = pixelHit.qBin();
1234 
1235  hitParams.isPixelHit = true;
1236  }
1237  else if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TOB ||
1238  m_tkTreeVar_[rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TEC){
1239  if(!(dynamic_cast<const SiStripRecHit2D*>(&recHit) || dynamic_cast<const SiStripRecHit1D*>(&recHit))){
1240  edm::LogError("FillHitVariables")<<"RecHit in Strip is 'Matched' or 'Projected', but here all should be monohits per module";
1241  hitParams.hitState = TrackStruct::invalid; return hitParams;
1242  }
1243  const SiStripCluster* clusterPtr(0);
1244  if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TIB || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TOB){
1245  if(dynamic_cast<const SiStripRecHit1D*>(&recHit)){
1246  const SiStripRecHit1D& stripHit = dynamic_cast<const SiStripRecHit1D&>(recHit);
1247  clusterPtr = &(*stripHit.cluster());
1248  }
1249  else if(dynamic_cast<const SiStripRecHit2D*>(&recHit)){
1250  edm::LogWarning("FillHitVariables")<<"Data has TIB/TOB hits as SiStripRecHit2D and not 1D. Probably data is processed with CMSSW<34X. Nevertheless everything should work fine";
1251  const SiStripRecHit2D& stripHit = dynamic_cast<const SiStripRecHit2D&>(recHit);
1252  clusterPtr = &(*stripHit.cluster());
1253  }
1254  }
1255  else if(m_tkTreeVar_[rawId].subdetId==StripSubdetector::TID || m_tkTreeVar_[rawId].subdetId==StripSubdetector::TEC){
1256  const SiStripRecHit2D& stripHit = dynamic_cast<const SiStripRecHit2D&>(recHit);
1257  clusterPtr = &(*stripHit.cluster());
1258  }
1259  if(!clusterPtr){
1260  edm::LogError("FillHitVariables")<<"Pointer to cluster not valid!!! This should never happen...";
1261  hitParams.hitState = TrackStruct::invalid; return hitParams;
1262  }
1263  const SiStripCluster& stripCluster(*clusterPtr);
1264 
1265  const SiStripClusterInfo clusterInfo =SiStripClusterInfo(stripCluster,iSetup,rawId,std::string(""));
1266 
1267  const std::vector<uint8_t>::const_iterator stripChargeL(clusterInfo.stripCharges().begin());
1268  const std::vector<uint8_t>::const_iterator stripChargeR(--(clusterInfo.stripCharges().end()));
1269  const std::pair<uint16_t, uint16_t> stripChargeLR = std::make_pair(*stripChargeL,*stripChargeR);
1270 
1271  hitParams.chargeStrip = clusterInfo.charge();
1272  hitParams.widthX = clusterInfo.width();
1273  hitParams.baryStripX = clusterInfo.baryStrip() +1.;
1274  hitParams.isModuleUsable = clusterInfo.IsModuleUsable();
1275  hitParams.maxStrip = clusterInfo.maxStrip() +1;
1276  hitParams.maxStripInv = m_tkTreeVar_[rawId].nStrips - hitParams.maxStrip +1;
1277  hitParams.maxCharge = clusterInfo.maxCharge();
1278  hitParams.maxIndex = clusterInfo.maxIndex();
1279  hitParams.chargeOnEdges = static_cast<float>(stripChargeLR.first + stripChargeLR.second)/static_cast<float>(hitParams.chargeStrip);
1280  hitParams.chargeAsymmetry = static_cast<float>(stripChargeLR.first - stripChargeLR.second)/static_cast<float>(stripChargeLR.first + stripChargeLR.second);
1281  hitParams.chargeLRplus = static_cast<float>(clusterInfo.chargeLR().first + clusterInfo.chargeLR().second)/static_cast<float>(hitParams.chargeStrip);
1282  hitParams.chargeLRminus = static_cast<float>(clusterInfo.chargeLR().first - clusterInfo.chargeLR().second)/static_cast<float>(hitParams.chargeStrip);
1283  hitParams.sOverN = clusterInfo.signalOverNoise();
1284 
1285 
1286  // Calculate projection length corrected by drift
1287  if(!hit.detUnit()){hitParams.hitState = TrackStruct::invalid; return hitParams;} // is it a single physical module?
1288  const GeomDetUnit& detUnit = *hit.detUnit();
1289  if(!dynamic_cast<const StripTopology*>(&detUnit.type().topology())){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1290 
1291 
1292  edm::ESHandle<MagneticField> magFieldHandle;
1293  iSetup.get<IdealMagneticFieldRecord>().get(magFieldHandle);
1294 
1295  edm::ESHandle<SiStripLorentzAngle> lorentzAngleHandle;
1296  iSetup.get<SiStripLorentzAngleDepRcd>().get(lorentzAngleHandle); //MODIFIED BY LOIC QUERTENMONT
1297 
1298 
1299  const StripGeomDetUnit * stripDet = (const StripGeomDetUnit*)(&detUnit);
1300  const MagneticField * magField(magFieldHandle.product());
1301  LocalVector bField = (stripDet->surface()).toLocal(magField->inTesla(stripDet->surface().position()));
1302  const SiStripLorentzAngle * lorentzAngle(lorentzAngleHandle.product());
1303  float tanLorentzAnglePerTesla = lorentzAngle->getLorentzAngle(stripDet->geographicalId().rawId());
1304 
1305  float dirX = -tanLorentzAnglePerTesla * bField.y();
1306  float dirY = tanLorentzAnglePerTesla * bField.x();
1307  float dirZ = 1.; // E field always in z direction
1308  LocalVector driftDirection(dirX,dirY,dirZ);
1309 
1310 
1311  const Bounds& bounds = stripDet->specificSurface().bounds();
1312  float maxLength = std::sqrt(std::pow(bounds.length(),2)+std::pow(bounds.width(),2));
1313  float thickness = bounds.thickness();
1314 
1315 
1316 
1317  const StripTopology& topol = dynamic_cast<const StripTopology&>(detUnit.type().topology());
1318  LocalVector momentumDir(tsos.localDirection());
1319  LocalPoint momentumPos(tsos.localPosition());
1320  LocalVector scaledMomentumDir(momentumDir);
1321  if(momentumDir.z() > 0.)scaledMomentumDir *= std::fabs(thickness/momentumDir.z());
1322  else if(momentumDir.z() < 0.)scaledMomentumDir *= -std::fabs(thickness/momentumDir.z());
1323  else scaledMomentumDir *= maxLength/momentumDir.mag();
1324 
1325  float projEdge1 = topol.measurementPosition(momentumPos - 0.5*scaledMomentumDir).x();
1326  if(projEdge1 < 0.)projEdge1 = 0.;
1327  else if(projEdge1 > m_tkTreeVar_[rawId].nStrips)projEdge1 = m_tkTreeVar_[rawId].nStrips;
1328  float projEdge2 = topol.measurementPosition(momentumPos + 0.5*scaledMomentumDir).x();
1329  if(projEdge2 < 0.)projEdge1 = 0.;
1330  else if(projEdge2 > m_tkTreeVar_[rawId].nStrips)projEdge1 = m_tkTreeVar_[rawId].nStrips;
1331 
1332 
1333  float coveredStrips = std::fabs(projEdge2 - projEdge1);
1334 
1335  hitParams.projWidth = coveredStrips;
1336 
1337 
1338  }
1339  else{
1340  edm::LogError("FillHitVariables")<<"Incorrect subdetector ID, hit not associated to tracker";
1341  hitParams.hitState = TrackStruct::notInTracker; return hitParams;
1342  }
1343 
1344 
1345  if(!hitParams.isModuleUsable){hitParams.hitState = TrackStruct::invalid; return hitParams;}
1346 
1347  if(0==hitParams.v_sector.size()){hitParams.hitState = TrackStruct::notAssignedToSectors; return hitParams;}
1348 
1349  return hitParams;
1350 //}
1351 }
1352 
1353 
1354 
1358 
1359  const DetId& detId(hit.geographicalId());
1360  const uint32_t& rawId(detId.rawId());
1361  const UInt_t& subdetId(m_tkTreeVar_[rawId].subdetId);
1362 
1363  if(localError.xx()<0. || localError.yy()<0.){
1364  // Do not print error message by default
1365  //edm::LogError("Negative error Value")<<"@SUB=ApeEstimator::fillHitVariables"
1366  // <<"One of the squared error methods gives negative result\n"
1367  // <<"\tSubdetector\tlocalError.xx()\tlocalError.yy()\n"
1368  // <<"\t"<<subdetId<<"\t\t"<<localError.xx()<<"\t"<<localError.yy();
1369  vPE2.first = TrackStruct::negativeError;
1370  return vPE2;
1371  }
1372 
1374  subdetId==StripSubdetector::TIB || subdetId==StripSubdetector::TOB){
1375  // Cartesian coordinates
1376  vPE2 = std::make_pair(TrackStruct::ok, this->rectangularPositionAndError2(localPoint, localError));
1377  }
1378  else if(subdetId==StripSubdetector::TID || subdetId==StripSubdetector::TEC){
1379  // Local x in radial coordinates
1380  if(!hit.detUnit())return vPE2; // is it a single physical module?
1381  const GeomDetUnit& detUnit = *hit.detUnit();
1382 
1383  if(!dynamic_cast<const RadialStripTopology*>(&detUnit.type().topology()))return vPE2;
1384  const RadialStripTopology& topol = dynamic_cast<const RadialStripTopology&>(detUnit.type().topology());
1385 
1386  MeasurementError measError = topol.measurementError(localPoint,localError);
1387  if(measError.uu()<0. || measError.vv()<0.){
1388  // Do not print error message by default
1389  //edm::LogError("Negative error Value")<<"@SUB=ApeEstimator::fillHitVariables"
1390  // <<"One of the squared error methods gives negative result\n"
1391  // <<"\tmeasError.uu()\tmeasError.vv()\n"
1392  // <<"\t"<<measError.uu()<<"\t"<<measError.vv()
1393  // <<"\n\nOriginalValues:\n"
1394  // <<localPoint.x()<<" "<<localPoint.y()<<"\n"
1395  // <<localError.xx()<<" "<<localError.yy()<<"\n"
1396  // <<"Subdet: "<<subdetId;
1397  vPE2.first = TrackStruct::negativeError;
1398  return vPE2;
1399  }
1400  vPE2 = std::make_pair(TrackStruct::ok, this->radialPositionAndError2(localPoint, localError, topol));
1401  }
1402  else{
1403  edm::LogError("FillHitVariables")<<"Incorrect subdetector ID, hit not associated to tracker";
1404  }
1405 
1406  return vPE2;
1407 }
1408 
1409 
1410 
1413 
1414  const float x(lP.x());
1415  const float y(lP.y());
1416  const float errX2(lE.xx());
1417  const float errY2(lE.yy());
1418 
1419  return PositionAndError2(x, y, errX2, errY2);
1420 }
1421 
1422 
1423 
1426 
1427  MeasurementPoint measPos = topol.measurementPosition(lP);
1428  MeasurementError measErr = topol.measurementError(lP,lE);
1429 
1430  const float r_0 = topol.originToIntersection();
1431  const float stripLength = topol.localStripLength(lP);
1432  const float phi = topol.stripAngle(measPos.x());
1433 
1434  float x(-999.F);
1435  float y(-999.F);
1436  float errX2(-999.F);
1437  float errY2(-999.F);
1438 
1439  x = phi*r_0;
1440  // Radial y (not symmetric around 0; radial distance with minimum at middle strip at lower edge [0, yMax])
1441  const float l_0 = r_0 - topol.detHeight()/2;
1442  const float cosPhi(std::cos(phi));
1443  y = measPos.y()*stripLength - 0.5*stripLength + l_0*(1./cosPhi - 1.);
1444 
1445  const float angularWidth2(topol.angularWidth()*topol.angularWidth());
1446  const float errPhi2(measErr.uu()*angularWidth2);
1447 
1448  errX2 = errPhi2*r_0*r_0;
1449  // Radial y (not symmetric around 0, real radial distance from intersection point)
1450  const float cosPhi4(std::pow(cosPhi,4)), sinPhi2(std::sin(phi)*std::sin(phi));
1451  const float helpSummand = l_0*l_0*(sinPhi2/cosPhi4*errPhi2);
1452  errY2 = measErr.vv()*stripLength*stripLength + helpSummand;
1453 
1454  return PositionAndError2(x, y, errX2, errY2);
1455 }
1456 
1457 
1458 
1459 
1460 
1461 // -----------------------------------------------------------------------------------------------------------
1462 
1463 void
1465  this->setHitSelectionMapUInt("width");
1466  this->setHitSelectionMap("widthProj");
1467  this->setHitSelectionMap("widthDiff");
1468  this->setHitSelectionMap("charge");
1469  this->setHitSelectionMapUInt("edgeStrips");
1470  this->setHitSelectionMap("maxCharge");
1471  this->setHitSelectionMapUInt("maxIndex");
1472  this->setHitSelectionMap("chargeOnEdges");
1473  this->setHitSelectionMap("chargeAsymmetry");
1474  this->setHitSelectionMap("chargeLRplus");
1475  this->setHitSelectionMap("chargeLRminus");
1476  this->setHitSelectionMap("sOverN");
1477 
1478  this->setHitSelectionMap("chargePixel");
1479  this->setHitSelectionMapUInt("widthX");
1480  this->setHitSelectionMapUInt("widthY");
1481 
1482 
1483  this->setHitSelectionMap("baryStripX");
1484  this->setHitSelectionMap("baryStripY");
1485  this->setHitSelectionMap("clusterProbabilityXY");
1486  this->setHitSelectionMap("clusterProbabilityQ");
1487  this->setHitSelectionMap("clusterProbabilityXYQ");
1488  this->setHitSelectionMap("logClusterProbability");
1489  this->setHitSelectionMapUInt("isOnEdge");
1490  this->setHitSelectionMapUInt("hasBadPixels");
1491  this->setHitSelectionMapUInt("spansTwoRoc");
1492  this->setHitSelectionMapUInt("qBin");
1493 
1494 
1495 
1496  this->setHitSelectionMap("phiSens");
1497  this->setHitSelectionMap("phiSensX");
1498  this->setHitSelectionMap("phiSensY");
1499  this->setHitSelectionMap("resX");
1500  this->setHitSelectionMap("norResX");
1501  this->setHitSelectionMap("probX");
1502  this->setHitSelectionMap("errXHit");
1503  this->setHitSelectionMap("errXTrk");
1504  this->setHitSelectionMap("errX");
1505  this->setHitSelectionMap("errX2");
1506 
1507  this->setHitSelectionMap("resY");
1508  this->setHitSelectionMap("norResY");
1509  this->setHitSelectionMap("probY");
1510  this->setHitSelectionMap("errYHit");
1511  this->setHitSelectionMap("errYTrk");
1512  this->setHitSelectionMap("errY");
1513  this->setHitSelectionMap("errY2");
1514 
1515  edm::LogInfo("HitSelector")<<"applying hit cuts ...";
1516  bool emptyMap(true);
1517  for(std::map<std::string, std::vector<double> >::iterator i_hitSelection = m_hitSelection_.begin(); i_hitSelection != m_hitSelection_.end(); ++i_hitSelection){
1518  if(0 < (*i_hitSelection).second.size()){
1519  int entry(1); double intervalBegin(999.);
1520  for(std::vector<double>::iterator i_hitInterval = (*i_hitSelection).second.begin(); i_hitInterval != (*i_hitSelection).second.end(); ++entry){
1521  if(entry%2==1){intervalBegin = *i_hitInterval; ++i_hitInterval;}
1522  else{
1523  if(intervalBegin > *i_hitInterval){
1524  edm::LogError("HitSelector")<<"INVALID Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<" > "<<(*i_hitInterval)
1525  <<"\n ... delete Selection for "<<(*i_hitSelection).first;
1526  (*i_hitSelection).second.clear(); i_hitInterval = (*i_hitSelection).second.begin(); //emptyMap = true; i_hitSelection = m_hitSelection_.begin();
1527  }else{
1528  edm::LogInfo("HitSelector")<<"Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<", "<<(*i_hitInterval);
1529  ++i_hitInterval;
1530  }
1531  }
1532  }
1533  if(0 < (*i_hitSelection).second.size())emptyMap = false;
1534  }
1535  }
1536 
1537 
1538  bool emptyMapUInt(true);
1539  for(std::map<std::string, std::vector<unsigned int> >::iterator i_hitSelection = m_hitSelectionUInt_.begin(); i_hitSelection != m_hitSelectionUInt_.end(); ++i_hitSelection){
1540  if(0 < (*i_hitSelection).second.size()){
1541  int entry(1); unsigned int intervalBegin(999);
1542  for(std::vector<unsigned int>::iterator i_hitInterval = (*i_hitSelection).second.begin(); i_hitInterval != (*i_hitSelection).second.end(); ++entry){
1543  if(entry%2==1){intervalBegin = *i_hitInterval; ++i_hitInterval;}
1544  else{
1545  if(intervalBegin > *i_hitInterval){
1546  edm::LogError("HitSelector")<<"INVALID Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<" > "<<(*i_hitInterval)
1547  <<"\n ... delete Selection for "<<(*i_hitSelection).first;
1548  (*i_hitSelection).second.clear(); i_hitInterval = (*i_hitSelection).second.begin(); //emptyMap = true; i_hitSelection = m_hitSelection_.begin();
1549  }else{
1550  edm::LogInfo("HitSelector")<<"Interval selected for "<<(*i_hitSelection).first<<":\t"<<intervalBegin<<", "<<(*i_hitInterval);
1551  ++i_hitInterval;
1552  }
1553  }
1554  }
1555  if(0 < (*i_hitSelection).second.size())emptyMapUInt = false;
1556  }
1557  }
1558 
1559  if(emptyMap && emptyMapUInt){
1560  m_hitSelection_.clear();
1561  m_hitSelectionUInt_.clear();
1562  edm::LogInfo("HitSelector")<<"NO hit cuts applied";
1563  }
1564  return;
1565 }
1566 
1567 
1568 
1569 void
1572  std::vector<double> v_cutVariable(parSet.getParameter<std::vector<double> >(cutVariable));
1573  if(v_cutVariable.size()%2==1){
1574  edm::LogError("HitSelector")<<"Invalid Hit Selection for "<<cutVariable<<": need even number of arguments (intervals)"
1575  <<"\n ... delete Selection for "<<cutVariable;
1576  v_cutVariable.clear();
1577  m_hitSelection_[cutVariable] = v_cutVariable;
1578  return;
1579  }
1580  m_hitSelection_[cutVariable] = v_cutVariable;
1581  return;
1582 }
1583 
1584 
1585 void
1588  std::vector<unsigned int> v_cutVariable(parSet.getParameter<std::vector<unsigned int> >(cutVariable));
1589  if(v_cutVariable.size()%2==1){
1590  edm::LogError("HitSelector")<<"Invalid Hit Selection for "<<cutVariable<<": need even number of arguments (intervals)"
1591  <<"\n ... delete Selection for "<<cutVariable;
1592  v_cutVariable.clear();
1593  m_hitSelectionUInt_[cutVariable] = v_cutVariable;
1594  return;
1595  }
1596  m_hitSelectionUInt_[cutVariable] = v_cutVariable;
1597  return;
1598 }
1599 
1600 
1601 
1602 // -----------------------------------------------------------------------------------------------------------
1603 
1604 bool
1606  if(hitParams.hitState == TrackStruct::notInTracker)return false;
1607  if(hitParams.hitState == TrackStruct::invalid || hitParams.hitState == TrackStruct::negativeError)return false;
1608 
1609  bool isGoodHit(true);
1610  bool isGoodHitX(true);
1611  bool isGoodHitY(true);
1612 
1613  for(std::map<std::string, std::vector<double> >::const_iterator i_hitSelection = m_hitSelection_.begin(); i_hitSelection != m_hitSelection_.end(); ++i_hitSelection){
1614  const std::string& hitSelection((*i_hitSelection).first);
1615  const std::vector<double>& v_hitSelection((*i_hitSelection).second);
1616  if(v_hitSelection.size()==0)continue;
1617 
1618  // For pixel and strip sectors in common
1619  if (hitSelection == "phiSens") {if(!this->inDoubleInterval(v_hitSelection, hitParams.phiSens))isGoodHit = false;}
1620  else if(hitSelection == "phiSensX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.phiSensX))isGoodHit = false;}
1621  else if(hitSelection == "phiSensY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.phiSensY))isGoodHit = false;}
1622 
1623  else if(hitSelection == "resX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.resX))isGoodHitX = false;}
1624  else if(hitSelection == "norResX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.norResX))isGoodHitX = false;}
1625  else if(hitSelection == "probX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.probX))isGoodHitX = false;}
1626  else if(hitSelection == "errXHit") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errXHit))isGoodHitX = false;}
1627  else if(hitSelection == "errXTrk") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errXTrk))isGoodHitX = false;}
1628  else if(hitSelection == "errX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errX))isGoodHitX = false;}
1629  else if(hitSelection == "errX2") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errX2))isGoodHitX = false;}
1630 
1631  // For pixel only
1632  if(hitParams.isPixelHit){
1633  if (hitSelection == "chargePixel") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargePixel))isGoodHit = false;}
1634  else if(hitSelection == "clusterProbabilityXY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.clusterProbabilityXY))isGoodHit = false;}
1635  else if(hitSelection == "clusterProbabilityQ") {if(!this->inDoubleInterval(v_hitSelection, hitParams.clusterProbabilityQ))isGoodHit = false;}
1636  else if(hitSelection == "clusterProbabilityXYQ"){if(!this->inDoubleInterval(v_hitSelection, hitParams.clusterProbabilityXYQ))isGoodHit = false;}
1637  else if(hitSelection == "logClusterProbability"){if(!this->inDoubleInterval(v_hitSelection, hitParams.logClusterProbability))isGoodHit = false;}
1638 
1639  else if(hitSelection == "baryStripX") {if(!this->inDoubleInterval(v_hitSelection, hitParams.baryStripX))isGoodHitX = false;}
1640  else if(hitSelection == "baryStripY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.baryStripY))isGoodHitY = false;}
1641 
1642 
1643 
1644  else if(hitSelection == "resY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.resY))isGoodHitY = false;}
1645  else if(hitSelection == "norResY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.norResY))isGoodHitY = false;}
1646  else if(hitSelection == "probY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.probY))isGoodHitY = false;}
1647  else if(hitSelection == "errYHit") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errYHit))isGoodHitY = false;}
1648  else if(hitSelection == "errYTrk") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errYTrk))isGoodHitY = false;}
1649  else if(hitSelection == "errY") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errY))isGoodHitY = false;}
1650  else if(hitSelection == "errY2") {if(!this->inDoubleInterval(v_hitSelection, hitParams.errY2))isGoodHitY = false;}
1651  }
1652 
1653  // For strip only
1654  else{
1655  if (hitSelection == "widthProj") {if(!this->inDoubleInterval(v_hitSelection, hitParams.projWidth))isGoodHit = false;}
1656  else if(hitSelection == "widthDiff") {if(!this->inDoubleInterval(v_hitSelection, hitParams.projWidth-static_cast<float>(hitParams.widthX)))isGoodHit = false;}
1657  else if(hitSelection == "charge") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeStrip))isGoodHit = false;}
1658  else if(hitSelection == "maxCharge") {if(!this->inDoubleInterval(v_hitSelection, hitParams.maxCharge))isGoodHit = false;}
1659  else if(hitSelection == "chargeOnEdges") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeOnEdges))isGoodHit = false;}
1660  else if(hitSelection == "chargeAsymmetry"){if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeAsymmetry))isGoodHit = false;}
1661  else if(hitSelection == "chargeLRplus") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeLRplus))isGoodHit = false;}
1662  else if(hitSelection == "chargeLRminus") {if(!this->inDoubleInterval(v_hitSelection, hitParams.chargeLRminus))isGoodHit = false;}
1663  else if(hitSelection == "sOverN") {if(!this->inDoubleInterval(v_hitSelection, hitParams.sOverN))isGoodHit = false;}
1664  }
1665  }
1666 
1667  for(std::map<std::string, std::vector<unsigned int> >::const_iterator i_hitSelection = m_hitSelectionUInt_.begin(); i_hitSelection != m_hitSelectionUInt_.end(); ++i_hitSelection){
1668  const std::string& hitSelection((*i_hitSelection).first);
1669  const std::vector<unsigned int>& v_hitSelection((*i_hitSelection).second);
1670  if(v_hitSelection.size()==0)continue;
1671 
1672  // For pixel and strip sectors in common
1673 
1674  // For pixel only
1675  if(hitParams.isPixelHit){
1676  if(hitSelection == "isOnEdge") {if(!this->inUintInterval(v_hitSelection, hitParams.isOnEdge))isGoodHit = false;}
1677  else if(hitSelection == "hasBadPixels"){if(!this->inUintInterval(v_hitSelection, hitParams.hasBadPixels))isGoodHit = false;}
1678  else if(hitSelection == "spansTwoRoc") {if(!this->inUintInterval(v_hitSelection, hitParams.spansTwoRoc))isGoodHit = false;}
1679  else if(hitSelection == "qBin") {if(!this->inUintInterval(v_hitSelection, hitParams.qBin))isGoodHit = false;}
1680 
1681  else if(hitSelection == "widthX") {if(!this->inUintInterval(v_hitSelection, hitParams.widthX))isGoodHitX = false;}
1682  else if(hitSelection == "widthY") {if(!this->inUintInterval(v_hitSelection, hitParams.widthY))isGoodHitY = false;}
1683  }
1684 
1685  // For strip only
1686  else{
1687  if (hitSelection == "width") {if(!this->inUintInterval(v_hitSelection, hitParams.widthX))isGoodHit = false;}
1688  else if(hitSelection == "edgeStrips"){if(!this->inUintInterval(v_hitSelection, hitParams.maxStrip, hitParams.maxStripInv))isGoodHit = false;}
1689  else if(hitSelection == "maxIndex") {if(!this->inUintInterval(v_hitSelection, hitParams.maxIndex))isGoodHit = false;}
1690  }
1691  }
1692 
1693  if(hitParams.isPixelHit){
1694  hitParams.goodXMeasurement = isGoodHit && isGoodHitX;
1695  hitParams.goodYMeasurement = isGoodHit && isGoodHitY;
1696  }
1697  else{
1698  hitParams.goodXMeasurement = isGoodHit && isGoodHitX;
1699  hitParams.goodYMeasurement = false;
1700  }
1701 
1702  if(!hitParams.goodXMeasurement && !hitParams.goodYMeasurement)return false;
1703  else return true;
1704 }
1705 
1706 
1707 bool
1708 ApeEstimator::inDoubleInterval(const std::vector<double>& v_hitSelection, const float variable)const{
1709  int entry(1); double intervalBegin(999.);
1710  bool isSelected(false);
1711  for(std::vector<double>::const_iterator i_hitInterval = v_hitSelection.begin(); i_hitInterval != v_hitSelection.end(); ++i_hitInterval, ++entry){
1712  if(entry%2==1)intervalBegin = *i_hitInterval;
1713  else if(variable>=intervalBegin && variable<*i_hitInterval)isSelected = true;
1714  }
1715  return isSelected;
1716 }
1717 
1718 
1719 bool
1720 ApeEstimator::inUintInterval(const std::vector<unsigned int>& v_hitSelection, const unsigned int variable, const unsigned int variable2)const{
1721  int entry(1); unsigned int intervalBegin(999);
1722  bool isSelected(false);
1723  for(std::vector<unsigned int>::const_iterator i_hitInterval = v_hitSelection.begin(); i_hitInterval != v_hitSelection.end(); ++i_hitInterval, ++entry){
1724  if(entry%2==1)intervalBegin = *i_hitInterval;
1725  else if(variable>=intervalBegin && variable<=*i_hitInterval){
1726  if(variable2==999 || (variable2>=intervalBegin && variable2<=*i_hitInterval))isSelected = true;
1727  }
1728  }
1729  return isSelected;
1730 }
1731 
1732 
1733 
1734 // -----------------------------------------------------------------------------------------------------------
1735 
1736 
1737 void
1739 
1740  unsigned int goodHitsPerTrack(trackStruct.v_hitParams.size());
1741  tkDetector_.HitsGood->Fill(goodHitsPerTrack);
1742  tkDetector_.HitsGoodVsHitsValid->Fill(trackStruct.trkParams.hitsValid,goodHitsPerTrack);
1743  tkDetector_.PHitsGoodVsHitsValid->Fill(trackStruct.trkParams.hitsValid,goodHitsPerTrack);
1744 
1745  if(parameterSet_.getParameter<bool>("applyTrackCuts")){
1746  // which tracks to take? need min. nr. of selected hits?
1747  if(goodHitsPerTrack < minGoodHitsPerTrack_)return;
1748  }
1749 
1750  tkDetector_.HitsSize ->Fill(trackStruct.trkParams.hitsSize);
1751  tkDetector_.HitsValid ->Fill(trackStruct.trkParams.hitsValid);
1752  tkDetector_.HitsInvalid ->Fill(trackStruct.trkParams.hitsInvalid);
1753  tkDetector_.Hits2D ->Fill(trackStruct.trkParams.hits2D);
1754  tkDetector_.LayersMissed ->Fill(trackStruct.trkParams.layersMissed);
1755  tkDetector_.HitsPixel ->Fill(trackStruct.trkParams.hitsPixel);
1756  tkDetector_.HitsStrip ->Fill(trackStruct.trkParams.hitsStrip);
1757  tkDetector_.Charge ->Fill(trackStruct.trkParams.charge);
1758  tkDetector_.Chi2 ->Fill(trackStruct.trkParams.chi2);
1759  tkDetector_.Ndof ->Fill(trackStruct.trkParams.ndof);
1760  tkDetector_.NorChi2 ->Fill(trackStruct.trkParams.norChi2);
1761  tkDetector_.Prob ->Fill(trackStruct.trkParams.prob);
1762  tkDetector_.Eta ->Fill(trackStruct.trkParams.eta);
1763  tkDetector_.EtaErr ->Fill(trackStruct.trkParams.etaErr);
1764  tkDetector_.EtaSig ->Fill(trackStruct.trkParams.eta/trackStruct.trkParams.etaErr);
1765  tkDetector_.Theta ->Fill(trackStruct.trkParams.theta*180./M_PI);
1766  tkDetector_.Phi ->Fill(trackStruct.trkParams.phi*180./M_PI);
1767  tkDetector_.PhiErr ->Fill(trackStruct.trkParams.phiErr*180./M_PI);
1768  tkDetector_.PhiSig ->Fill(trackStruct.trkParams.phi/trackStruct.trkParams.phiErr);
1769  tkDetector_.D0Beamspot ->Fill(trackStruct.trkParams.d0Beamspot);
1770  tkDetector_.D0BeamspotErr->Fill(trackStruct.trkParams.d0BeamspotErr);
1771  tkDetector_.D0BeamspotSig->Fill(trackStruct.trkParams.d0Beamspot/trackStruct.trkParams.d0BeamspotErr);
1772  tkDetector_.Dz ->Fill(trackStruct.trkParams.dz);
1773  tkDetector_.DzErr ->Fill(trackStruct.trkParams.dzErr);
1774  tkDetector_.DzSig ->Fill(trackStruct.trkParams.dz/trackStruct.trkParams.dzErr);
1775  tkDetector_.P ->Fill(trackStruct.trkParams.p);
1776  tkDetector_.Pt ->Fill(trackStruct.trkParams.pt);
1777  tkDetector_.PtErr ->Fill(trackStruct.trkParams.ptErr);
1778  tkDetector_.PtSig ->Fill(trackStruct.trkParams.pt/trackStruct.trkParams.ptErr);
1779  tkDetector_.MeanAngle ->Fill(trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1780 
1781  tkDetector_.MeanAngleVsHits ->Fill(trackStruct.trkParams.hitsSize,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1782  tkDetector_.HitsPixelVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsPixel);
1783  tkDetector_.HitsPixelVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsPixel);
1784  tkDetector_.HitsStripVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsStrip);
1785  tkDetector_.HitsStripVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsStrip);
1786  tkDetector_.PtVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.pt);
1787  tkDetector_.PtVsTheta ->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.pt);
1788 
1789  tkDetector_.PMeanAngleVsHits ->Fill(trackStruct.trkParams.hitsSize,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1790  tkDetector_.PHitsPixelVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsPixel);
1791  tkDetector_.PHitsPixelVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsPixel);
1792  tkDetector_.PHitsStripVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.hitsStrip);
1793  tkDetector_.PHitsStripVsTheta->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.hitsStrip);
1794  tkDetector_.PPtVsEta ->Fill(trackStruct.trkParams.eta,trackStruct.trkParams.pt);
1795  tkDetector_.PPtVsTheta ->Fill(trackStruct.trkParams.theta*180./M_PI,trackStruct.trkParams.pt);
1796 
1797 
1798  for(std::vector<TrackStruct::HitParameterStruct>::const_iterator i_hit = trackStruct.v_hitParams.begin();
1799  i_hit != trackStruct.v_hitParams.end(); ++i_hit){
1800  const TrackStruct::HitParameterStruct& hit(*i_hit);
1801  //Put here from earlier method
1802  if(hit.hitState == TrackStruct::notAssignedToSectors)continue;
1803 
1804  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
1805  bool moduleInSector(false);
1806  for(std::vector<unsigned int>::const_iterator i_hitSector = hit.v_sector.begin(); i_hitSector != hit.v_sector.end(); ++i_hitSector){
1807  if((*i_sector).first == *i_hitSector){moduleInSector = true; break;}
1808  }
1809  if(!moduleInSector)continue;
1810  TrackerSectorStruct& sector((*i_sector).second);
1811 
1812  if(hit.goodXMeasurement){
1813  std::map<std::string,TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsX);
1814 
1815  // Cluster and Hit Parameters
1816  this->fillHitHistsXForAnalyzerMode(hit, sector);
1817 
1818  // Track Parameters
1819  m_corrHists["HitsValid"].fillCorrHistsX(hit,trackStruct.trkParams.hitsValid);
1820  m_corrHists["HitsGood"].fillCorrHistsX(hit,goodHitsPerTrack);
1821  m_corrHists["HitsInvalid"].fillCorrHistsX(hit,trackStruct.trkParams.hitsInvalid);
1822  m_corrHists["Hits2D"].fillCorrHistsX(hit,trackStruct.trkParams.hits2D);
1823  m_corrHists["LayersMissed"].fillCorrHistsX(hit,trackStruct.trkParams.layersMissed);
1824  m_corrHists["HitsPixel"].fillCorrHistsX(hit,trackStruct.trkParams.hitsPixel);
1825  m_corrHists["HitsStrip"].fillCorrHistsX(hit,trackStruct.trkParams.hitsStrip);
1826  m_corrHists["NorChi2"].fillCorrHistsX(hit,trackStruct.trkParams.norChi2);
1827  m_corrHists["Theta"].fillCorrHistsX(hit,trackStruct.trkParams.theta*180./M_PI);
1828  m_corrHists["Phi"].fillCorrHistsX(hit,trackStruct.trkParams.phi*180./M_PI);
1829  m_corrHists["D0Beamspot"].fillCorrHistsX(hit,trackStruct.trkParams.d0Beamspot);
1830  m_corrHists["Dz"].fillCorrHistsX(hit,trackStruct.trkParams.dz);
1831  m_corrHists["Pt"].fillCorrHistsX(hit,trackStruct.trkParams.pt);
1832  m_corrHists["P"].fillCorrHistsX(hit,trackStruct.trkParams.p);
1833  m_corrHists["InvP"].fillCorrHistsX(hit,1./trackStruct.trkParams.p);
1834  m_corrHists["MeanAngle"].fillCorrHistsX(hit,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1835  //m_corrHists[""].fillCorrHistsX(hit, hit.);
1836  }
1837 
1838  if(hit.goodYMeasurement){
1839  std::map<std::string,TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsY);
1840 
1841  // Cluster and Hit Parameters
1842  this->fillHitHistsYForAnalyzerMode(hit, sector);
1843 
1844  // Track Parameters
1845  m_corrHists["HitsValid"].fillCorrHistsY(hit,trackStruct.trkParams.hitsValid);
1846  m_corrHists["HitsGood"].fillCorrHistsY(hit,goodHitsPerTrack);
1847  m_corrHists["HitsInvalid"].fillCorrHistsY(hit,trackStruct.trkParams.hitsInvalid);
1848  m_corrHists["Hits2D"].fillCorrHistsY(hit,trackStruct.trkParams.hits2D);
1849  m_corrHists["LayersMissed"].fillCorrHistsY(hit,trackStruct.trkParams.layersMissed);
1850  m_corrHists["HitsPixel"].fillCorrHistsY(hit,trackStruct.trkParams.hitsPixel);
1851  m_corrHists["HitsStrip"].fillCorrHistsY(hit,trackStruct.trkParams.hitsStrip);
1852  m_corrHists["NorChi2"].fillCorrHistsY(hit,trackStruct.trkParams.norChi2);
1853  m_corrHists["Theta"].fillCorrHistsY(hit,trackStruct.trkParams.theta*180./M_PI);
1854  m_corrHists["Phi"].fillCorrHistsY(hit,trackStruct.trkParams.phi*180./M_PI);
1855  m_corrHists["D0Beamspot"].fillCorrHistsY(hit,trackStruct.trkParams.d0Beamspot);
1856  m_corrHists["Dz"].fillCorrHistsY(hit,trackStruct.trkParams.dz);
1857  m_corrHists["Pt"].fillCorrHistsY(hit,trackStruct.trkParams.pt);
1858  m_corrHists["P"].fillCorrHistsY(hit,trackStruct.trkParams.p);
1859  m_corrHists["InvP"].fillCorrHistsY(hit,1./trackStruct.trkParams.p);
1860  m_corrHists["MeanAngle"].fillCorrHistsY(hit,trackStruct.trkParams.meanPhiSensToNorm*180./M_PI);
1861  }
1862 
1863  // Special Histograms
1864  for(std::map<std::string,std::vector<TH1*> >::iterator i_sigmaX = sector.m_sigmaX.begin(); i_sigmaX != sector.m_sigmaX.end(); ++i_sigmaX){
1865  for(std::vector<TH1*>::iterator iHist = (*i_sigmaX).second.begin(); iHist != (*i_sigmaX).second.end(); ++iHist){
1866  if ((*i_sigmaX).first=="sigmaXHit")(*iHist)->Fill(hit.errXHit*10000.);
1867  else if((*i_sigmaX).first=="sigmaXTrk")(*iHist)->Fill(hit.errXTrk*10000.);
1868  else if((*i_sigmaX).first=="sigmaX") (*iHist)->Fill(hit.errX*10000.);
1869  }
1870  }
1871  for(std::map<std::string,std::vector<TH1*> >::iterator i_sigmaY = sector.m_sigmaY.begin(); i_sigmaY != sector.m_sigmaY.end(); ++i_sigmaY){
1872  for(std::vector<TH1*>::iterator iHist = (*i_sigmaY).second.begin(); iHist != (*i_sigmaY).second.end(); ++iHist){
1873  if ((*i_sigmaY).first=="sigmaYHit")(*iHist)->Fill(hit.errYHit*10000.);
1874  else if((*i_sigmaY).first=="sigmaYTrk")(*iHist)->Fill(hit.errYTrk*10000.);
1875  else if((*i_sigmaY).first=="sigmaY") (*iHist)->Fill(hit.errY*10000.);
1876  }
1877  }
1878  }
1879  }
1880 }
1881 
1882 
1883 
1884 void
1886  std::map<std::string, TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsX);
1887 
1888  // Cluster Parameters
1889  m_corrHists["WidthX"].fillCorrHistsX(hit, hit.widthX);
1890  m_corrHists["BaryStripX"].fillCorrHistsX(hit, hit.baryStripX);
1891 
1892  if(hit.isPixelHit){
1893  m_corrHists["ChargePixel"].fillCorrHistsX(hit, hit.chargePixel);
1894  m_corrHists["ClusterProbXY"].fillCorrHistsX(hit, hit.clusterProbabilityXY);
1895  m_corrHists["ClusterProbQ"].fillCorrHistsX(hit, hit.clusterProbabilityQ);
1896  m_corrHists["ClusterProbXYQ"].fillCorrHistsX(hit, hit.clusterProbabilityXYQ);
1897  m_corrHists["LogClusterProb"].fillCorrHistsX(hit, hit.logClusterProbability);
1898  m_corrHists["IsOnEdge"].fillCorrHistsX(hit, hit.isOnEdge);
1899  m_corrHists["HasBadPixels"].fillCorrHistsX(hit, hit.hasBadPixels);
1900  m_corrHists["SpansTwoRoc"].fillCorrHistsX(hit, hit.spansTwoRoc);
1901  m_corrHists["QBin"].fillCorrHistsX(hit, hit.qBin);
1902 
1903  }
1904  else{
1905  m_corrHists["ChargeStrip"].fillCorrHistsX(hit, hit.chargeStrip);
1906  m_corrHists["MaxStrip"].fillCorrHistsX(hit, hit.maxStrip);
1907  m_corrHists["MaxCharge"].fillCorrHistsX(hit, hit.maxCharge);
1908  m_corrHists["MaxIndex"].fillCorrHistsX(hit, hit.maxIndex);
1909  m_corrHists["ChargeOnEdges"].fillCorrHistsX(hit, hit.chargeOnEdges);
1910  m_corrHists["ChargeAsymmetry"].fillCorrHistsX(hit, hit.chargeAsymmetry);
1911  m_corrHists["ChargeLRplus"].fillCorrHistsX(hit, hit.chargeLRplus);
1912  m_corrHists["ChargeLRminus"].fillCorrHistsX(hit, hit.chargeLRminus);
1913  m_corrHists["SOverN"].fillCorrHistsX(hit, hit.sOverN);
1914  m_corrHists["WidthProj"].fillCorrHistsX(hit, hit.projWidth);
1915  m_corrHists["WidthDiff"].fillCorrHistsX(hit, hit.projWidth-static_cast<float>( hit.widthX));
1916 
1917  sector.WidthVsWidthProjected->Fill( hit.projWidth, hit.widthX);
1918  sector.PWidthVsWidthProjected->Fill( hit.projWidth, hit.widthX);
1919 
1920  sector.WidthDiffVsMaxStrip->Fill( hit.maxStrip, hit.projWidth-static_cast<float>( hit.widthX));
1921  sector.PWidthDiffVsMaxStrip->Fill( hit.maxStrip, hit.projWidth-static_cast<float>( hit.widthX));
1922 
1923  sector.WidthDiffVsSigmaXHit->Fill( hit.errXHit, hit.projWidth-static_cast<float>( hit.widthX));
1924  sector.PWidthDiffVsSigmaXHit->Fill( hit.errXHit, hit.projWidth-static_cast<float>( hit.widthX));
1925 
1926  sector.WidthVsPhiSensX->Fill( hit.phiSensX*180./M_PI, hit.widthX);
1927  sector.PWidthVsPhiSensX->Fill( hit.phiSensX*180./M_PI, hit.widthX);
1928  }
1929 
1930  // Hit Parameters
1931  m_corrHists["SigmaXHit"].fillCorrHistsX(hit, hit.errXHit*10000.);
1932  m_corrHists["SigmaXTrk"].fillCorrHistsX(hit, hit.errXTrk*10000.);
1933  m_corrHists["SigmaX"].fillCorrHistsX(hit, hit.errX*10000.);
1934 
1935  m_corrHists["PhiSens"].fillCorrHistsX(hit, hit.phiSens*180./M_PI);
1936  m_corrHists["PhiSensX"].fillCorrHistsX(hit, hit.phiSensX*180./M_PI);
1937  m_corrHists["PhiSensY"].fillCorrHistsX(hit, hit.phiSensY*180./M_PI);
1938 
1939  sector.XHit ->Fill(hit.xHit);
1940  sector.XTrk ->Fill(hit.xTrk);
1941  sector.SigmaX2->Fill(hit.errX2*10000.*10000.);
1942 
1943  sector.ResX ->Fill(hit.resX*10000.);
1944  sector.NorResX->Fill(hit.norResX);
1945 
1946  sector.ProbX->Fill(hit.probX);
1947 
1948  sector.PhiSensXVsBarycentreX->Fill(hit.baryStripX, hit.phiSensX*180./M_PI);
1949  sector.PPhiSensXVsBarycentreX->Fill(hit.baryStripX, hit.phiSensX*180./M_PI);
1950 }
1951 
1952 
1953 
1954 void
1956  std::map<std::string, TrackerSectorStruct::CorrelationHists>& m_corrHists(sector.m_correlationHistsY);
1957  // Do not fill anything for strip
1958  if(!hit.isPixelHit)return;
1959 
1960  // Cluster Parameters
1961  m_corrHists["WidthY"].fillCorrHistsY(hit,hit.widthY);
1962  m_corrHists["BaryStripY"].fillCorrHistsY(hit,hit.baryStripY);
1963 
1964  m_corrHists["ChargePixel"].fillCorrHistsY(hit, hit.chargePixel);
1965  m_corrHists["ClusterProbXY"].fillCorrHistsY(hit, hit.clusterProbabilityXY);
1966  m_corrHists["ClusterProbQ"].fillCorrHistsY(hit, hit.clusterProbabilityQ);
1967  m_corrHists["ClusterProbXYQ"].fillCorrHistsY(hit, hit.clusterProbabilityXYQ);
1968  m_corrHists["LogClusterProb"].fillCorrHistsY(hit, hit.logClusterProbability);
1969  m_corrHists["IsOnEdge"].fillCorrHistsY(hit, hit.isOnEdge);
1970  m_corrHists["HasBadPixels"].fillCorrHistsY(hit, hit.hasBadPixels);
1971  m_corrHists["SpansTwoRoc"].fillCorrHistsY(hit, hit.spansTwoRoc);
1972  m_corrHists["QBin"].fillCorrHistsY(hit, hit.qBin);
1973 
1974  // Hit Parameters
1975  m_corrHists["SigmaYHit"].fillCorrHistsY(hit, hit.errYHit*10000.);
1976  m_corrHists["SigmaYTrk"].fillCorrHistsY(hit, hit.errYTrk*10000.);
1977  m_corrHists["SigmaY"].fillCorrHistsY(hit, hit.errY*10000.);
1978 
1979  m_corrHists["PhiSens"].fillCorrHistsY(hit, hit.phiSens*180./M_PI);
1980  m_corrHists["PhiSensX"].fillCorrHistsY(hit, hit.phiSensX*180./M_PI);
1981  m_corrHists["PhiSensY"].fillCorrHistsY(hit, hit.phiSensY*180./M_PI);
1982 
1983  sector.YHit ->Fill(hit.yHit);
1984  sector.YTrk ->Fill(hit.yTrk);
1985  sector.SigmaY2->Fill(hit.errY2*10000.*10000.);
1986 
1987  sector.ResY ->Fill(hit.resY*10000.);
1988  sector.NorResY->Fill(hit.norResY);
1989 
1990  sector.ProbY->Fill(hit.probY);
1991 
1992  sector.PhiSensYVsBarycentreY->Fill(hit.baryStripY, hit.phiSensY*180./M_PI);
1993  sector.PPhiSensYVsBarycentreY->Fill(hit.baryStripY, hit.phiSensY*180./M_PI);
1994 }
1995 
1996 
1997 
1998 void
2000 
2001  unsigned int goodHitsPerTrack(trackStruct.v_hitParams.size());
2002 
2003  if(parameterSet_.getParameter<bool>("applyTrackCuts")){
2004  // which tracks to take? need min. nr. of selected hits?
2005  if(goodHitsPerTrack < minGoodHitsPerTrack_)return;
2006  }
2007 
2008  for(std::vector<TrackStruct::HitParameterStruct>::const_iterator i_hit = trackStruct.v_hitParams.begin();
2009  i_hit != trackStruct.v_hitParams.end(); ++i_hit){
2010  // Put here from earlier method
2011  if(i_hit->hitState == TrackStruct::notAssignedToSectors)continue;
2012 
2013  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
2014 
2015  bool moduleInSector(false);
2016  for(std::vector<unsigned int>::const_iterator i_hitSector = (*i_hit).v_sector.begin(); i_hitSector != (*i_hit).v_sector.end(); ++i_hitSector){
2017  if((*i_sector).first == *i_hitSector){moduleInSector = true; break;}
2018  }
2019  if(!moduleInSector)continue;
2020 
2021  if(!calculateApe_)continue;
2022 
2023  if((*i_hit).goodXMeasurement){
2024  for(std::map<unsigned int,std::pair<double,double> >::const_iterator i_errBins = m_resErrBins_.begin();
2025  i_errBins != m_resErrBins_.end(); ++i_errBins){
2026  // Separate the bins for residual resolution w/o APE, to be consistent within iterations where APE will change (have same hit always in same bin)
2027  // So also fill this value in the histogram sigmaX
2028  // But of course use the normalized residual regarding the APE to have its influence in its width
2029  if((*i_hit).errXWoApe < (*i_errBins).second.first || (*i_hit).errXWoApe >= (*i_errBins).second.second){
2030  continue;
2031  }
2032  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaX"] ->Fill((*i_hit).errXWoApe);
2033  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResX"]->Fill((*i_hit).norResX);
2034  break;
2035  }
2036  (*i_sector).second.ResX->Fill((*i_hit).resX*10000.);
2037  (*i_sector).second.NorResX->Fill((*i_hit).norResX);
2038  }
2039 
2040  if((*i_hit).goodYMeasurement){
2041  for(std::map<unsigned int,std::pair<double,double> >::const_iterator i_errBins = m_resErrBins_.begin();
2042  i_errBins != m_resErrBins_.end(); ++i_errBins){
2043  // Separate the bins for residual resolution w/o APE, to be consistent within iterations where APE will change (have same hit always in same bin)
2044  // So also fill this value in the histogram sigmaY
2045  // But of course use the normalized residual regarding the APE to have its influence in its width
2046  if((*i_hit).errYWoApe < (*i_errBins).second.first || (*i_hit).errYWoApe >= (*i_errBins).second.second){
2047  continue;
2048  }
2049  (*i_sector).second.m_binnedHists[(*i_errBins).first]["sigmaY"] ->Fill((*i_hit).errYWoApe);
2050  (*i_sector).second.m_binnedHists[(*i_errBins).first]["norResY"]->Fill((*i_hit).norResY);
2051  break;
2052  }
2053  (*i_sector).second.ResY->Fill((*i_hit).resY*10000.);
2054  (*i_sector).second.NorResY->Fill((*i_hit).norResY);
2055  }
2056  }
2057  }
2058 }
2059 
2060 
2061 
2062 
2063 // -----------------------------------------------------------------------------------------------------------
2064 
2065 
2066 
2067 void
2069  // Loop over sectors for calculating APE
2070  for(std::map<unsigned int,TrackerSectorStruct>::iterator i_sector = m_tkSector_.begin(); i_sector != m_tkSector_.end(); ++i_sector){
2071 
2072  // Loop over residual error bins to calculate APE for every bin
2073  for(std::map<unsigned int, std::map<std::string,TH1*> >::const_iterator i_errBins = (*i_sector).second.m_binnedHists.begin();
2074  i_errBins != (*i_sector).second.m_binnedHists.end(); ++i_errBins){
2075  std::map<std::string,TH1*> m_Hists = (*i_errBins).second;
2076 
2077  // Fitting Parameters
2078  double integralX = m_Hists["norResX"]->Integral();
2079  (*i_sector).second.EntriesX->SetBinContent((*i_errBins).first, integralX);
2080 
2081  if((*i_sector).second.isPixel){
2082  double integralY = m_Hists["norResY"]->Integral();
2083  (*i_sector).second.EntriesY->SetBinContent((*i_errBins).first, integralY);
2084  }
2085  }
2086  }
2087 }
2088 
2089 
2090 
2091 
2092 // -----------------------------------------------------------------------------------------------------------
2093 
2094 
2095 bool
2097 {
2098  // we count SiStrip stereo modules as 2D if selected via countStereoHitAs2D_
2099  // (since they provide theta information)
2100  // --- NO, here it is always set to true ---
2101  if (!hit.isValid() ||
2102  (hit.dimension() < 2 && !dynamic_cast<const SiStripRecHit1D*>(&hit))){
2103  return false; // real RecHit1D - but SiStripRecHit1D depends on countStereoHitAs2D_
2104  } else {
2105  const DetId detId(hit.geographicalId());
2106  if (detId.det() == DetId::Tracker) {
2107  if (detId.subdetId() == PixelSubdetector::PixelBarrel || detId.subdetId() == PixelSubdetector::PixelEndcap) {
2108  return true; // pixel is always 2D
2109  } else { // should be SiStrip now
2110  const SiStripDetId stripId(detId);
2111  if (stripId.stereo()) return true; // stereo modules
2112  else if (dynamic_cast<const SiStripRecHit1D*>(&hit)
2113  || dynamic_cast<const SiStripRecHit2D*>(&hit)) return false; // rphi modules hit
2114  //the following two are not used any more since ages...
2115  else if (dynamic_cast<const SiStripMatchedRecHit2D*>(&hit)) return true; // matched is 2D
2116  else if (dynamic_cast<const ProjectedSiStripRecHit2D*>(&hit)) {
2117  const ProjectedSiStripRecHit2D* pH = static_cast<const ProjectedSiStripRecHit2D*>(&hit);
2118  return (this->isHit2D(pH->originalHit())); // depends on original...
2119  } else {
2120  edm::LogError("UnkownType") << "@SUB=AlignmentTrackSelector::isHit2D"
2121  << "Tracker hit not in pixel, neither SiStripRecHit[12]D nor "
2122  << "SiStripMatchedRecHit2D nor ProjectedSiStripRecHit2D.";
2123  return false;
2124  }
2125  }
2126  } else { // not tracker??
2127  edm::LogWarning("DetectorMismatch") << "@SUB=AlignmentTrackSelector::isHit2D"
2128  << "Hit not in tracker with 'official' dimension >=2.";
2129  return true; // dimension() >= 2 so accept that...
2130  }
2131  }
2132  // never reached...
2133 }
2134 
2135 
2136 
2137 // -----------------------------------------------------------------------------------------------------------
2138 
2139 // ------------ method called to for each event ------------
2140 void
2142 {
2143 
2145  edm::Handle<reco::BeamSpot> beamSpotHandle;
2146  iEvent.getByToken(offlinebeamSpot_, beamSpotHandle);
2147 
2148  if (beamSpotHandle.isValid()){
2149  beamSpot = *beamSpotHandle;
2150  }
2151  else
2152  {
2153  edm::LogError("ApeEstimator")<<"No beam spot available from EventSetup"
2154  <<"\n...skip event";
2155  return;
2156  }
2157 
2159  iEvent.getByToken(tjTagToken_, m_TrajTracksMap);
2160 
2161  if(analyzerMode_)tkDetector_.TrkSize->Fill(m_TrajTracksMap->size());
2162 
2163  if(maxTracksPerEvent_!=0 && m_TrajTracksMap->size()>maxTracksPerEvent_)return;
2164 
2165  //Creation of (traj,track)
2166  typedef std::pair<const Trajectory*, const reco::Track*> ConstTrajTrackPair;
2167  typedef std::vector<ConstTrajTrackPair> ConstTrajTrackPairCollection;
2168  ConstTrajTrackPairCollection trajTracks;
2169 
2171  for(i_trajTrack = m_TrajTracksMap->begin();i_trajTrack != m_TrajTracksMap->end();++i_trajTrack){
2172  trajTracks.push_back(ConstTrajTrackPair(&(*(*i_trajTrack).key), &(*(*i_trajTrack).val)));
2173  }
2174 
2175 
2176  //Loop over Tracks & Hits
2177  unsigned int trackSizeGood(0);
2178  ConstTrajTrackPairCollection::const_iterator iTrack;
2179  for(iTrack = trajTracks.begin(); iTrack != trajTracks.end();++iTrack){
2180 
2181  const Trajectory *traj = (*iTrack).first;
2182  const reco::Track *track = (*iTrack).second;
2183 
2184  TrackStruct trackStruct;
2185  trackStruct.trkParams = this->fillTrackVariables(*track, *traj, beamSpot);
2186 
2187  if(trackCut_)continue;
2188 
2189  const std::vector<TrajectoryMeasurement> v_meas = (*traj).measurements();
2190 
2191  //Loop over Hits
2192  for(std::vector<TrajectoryMeasurement>::const_iterator i_meas = v_meas.begin(); i_meas != v_meas.end(); ++i_meas){
2193  TrackStruct::HitParameterStruct hitParams = this->fillHitVariables(*i_meas, iSetup);
2194  if(this->hitSelected(hitParams))trackStruct.v_hitParams.push_back(hitParams);
2195  }
2196 
2197  if(analyzerMode_)this->fillHistsForAnalyzerMode(trackStruct);
2198  if(calculateApe_)this->fillHistsForApeCalculation(trackStruct);
2199 
2200  if(trackStruct.v_hitParams.size()>0)++trackSizeGood;
2201  }
2202  if(analyzerMode_ && trackSizeGood>0)tkDetector_.TrkSizeGood->Fill(trackSizeGood);
2203 }
2204 
2205 
2206 // ------------ method called once each job just before starting event loop ------------
2207 void
2209 
2210  this->hitSelection();
2211 
2212  this->sectorBuilder();
2213 
2214  this->residualErrorBinning();
2215 
2217 
2219 
2220  if(analyzerMode_)this->bookTrackHists();
2221 
2222 
2223 }
2224 
2225 // ------------ method called once each job just after ending the event loop ------------
2226 void
2228 
2229  if(calculateApe_)this->calculateAPE();
2230 
2231  edm::LogInfo("HitSelector")<<"\nThere are "<<counter1<< " negative Errors calculated\n";
2232 }
2233 
2234 //define this as a plug-in
ClusterRef cluster() const
virtual const Topology & topology() const =0
uint8_t maxCharge() const
virtual float localStripLength(const LocalPoint &) const =0
double p() const
momentum vector magnitude
Definition: TrackBase.h:610
bool valid() const
Definition: LocalError.h:21
bool inDoubleInterval(const std::vector< double > &, const float) const
T getParameter(std::string const &) const
double z0() const
z coordinate
Definition: BeamSpot.h:68
std::vector< unsigned int > v_sector
virtual float angularWidth() const =0
const edm::ParameterSet parameterSet_
float xx() const
Definition: LocalError.h:24
double d0Error() const
error on d0
Definition: TrackBase.h:797
virtual float length() const =0
void hitSelection()
float vv() const
unsigned short lost() const
Number of lost (=invalid) hits on track.
Definition: Track.h:199
float clusterProbability(unsigned int flags=0) const
T y() const
Definition: PV2DBase.h:46
ConstRecHitPointer const & recHit() const
void bookSectorHistsForAnalyzerMode()
double d0() const
dxy parameter in perigee convention (d0 = -dxy)
Definition: TrackBase.h:592
uint32_t stereo() const
Definition: SiStripDetId.h:160
virtual const GeomDetType & type() const
Definition: GeomDet.cc:85
const_iterator end() const
last iterator over the map (read only)
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:460
std::pair< uint16_t, uint16_t > chargeLR() const
virtual float originToIntersection() const =0
double theta() const
polar angle
Definition: TrackBase.h:574
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:17
size_t recHitsSize() const
Get number of RecHits. (Warning, this includes invalid hits, which are not physical hits)...
Definition: Track.h:119
std::map< std::string, std::vector< TH1 * > > m_sigmaY
LocalVector localDirection() const
ApeEstimator(const edm::ParameterSet &)
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
const bool calculateApe_
std::map< std::string, std::vector< TH1 * > > m_sigmaX
void sectorBuilder()
unsigned int counter1
float baryStrip() const
T y() const
Definition: PV3DBase.h:63
double etaError() const
error on eta
Definition: TrackBase.h:779
double phi() const
azimuthal angle of momentum vector
Definition: TrackBase.h:640
const Bounds & bounds() const
Definition: Surface.h:120
int charge() const
PositionAndError2 radialPositionAndError2(const LocalPoint &, const LocalError &, const RadialStripTopology &)
unsigned int counter3
void fillHitHistsYForAnalyzerMode(const TrackStruct::HitParameterStruct &, TrackerSectorStruct &)
virtual float stripAngle(float strip) const =0
LocalVector toLocal(const reco::Track::Vector &v, const Surface &s)
unsigned int counter4
uint16_t maxIndex() const
auto stripCharges() const -> decltype(cluster() ->amplitudes())
void calculateAPE()
bool isOnEdge() const
PositionAndError2 rectangularPositionAndError2(const LocalPoint &, const LocalError &)
virtual void endJob()
TrackerDetectorStruct tkDetector_
const Plane & surface() const
The nominal surface of the GeomDet.
Definition: GeomDet.h:42
LocalError positionError() const
const unsigned int maxTracksPerEvent_
bool hasBadPixels() const
TrackStruct::HitParameterStruct fillHitVariables(const TrajectoryMeasurement &, const edm::EventSetup &)
std::map< unsigned int, std::pair< double, double > > m_resErrBins_
std::pair< TrackStruct::HitState, PositionAndError2 > StatePositionAndError2
EDGetTokenT< ProductType > consumes(edm::InputTag const &tag)
void residualErrorBinning()
uint32_t rawId() const
get the raw id
Definition: DetId.h:43
const bool analyzerMode_
virtual float width() const =0
DataContainer const & measurements() const
Definition: Trajectory.h:196
float signalOverNoise() const
float xy() const
Definition: LocalError.h:25
int iEvent
Definition: GenABIO.cc:230
float getLorentzAngle(const uint32_t &) const
TProfile * PPhiSensXVsBarycentreX
double eta() const
pseudorapidity of momentum vector
Definition: TrackBase.h:646
std::vector< HitParameterStruct > v_hitParams
uint16_t charge() const
float yy() const
Definition: LocalError.h:26
double chi2() const
chi-squared of the fit
Definition: TrackBase.h:544
virtual void beginJob()
void statistics(const TrackerSectorStruct &, const Int_t) const
double ndof() const
number of degrees of freedom of the fit
Definition: TrackBase.h:550
T sqrt(T t)
Definition: SSEVec.h:18
virtual int dimension() const =0
bool isHit2D(const TrackingRecHit &) const
TrackStruct::TrackParameterStruct fillTrackVariables(const reco::Track &, const Trajectory &, const reco::BeamSpot &)
double pt() const
track transverse momentum
Definition: TrackBase.h:616
TrackParameterStruct trkParams
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
double ptError() const
error on Pt (set to 1000 TeV if charge==0 for safety)
Definition: TrackBase.h:758
edm::EDGetTokenT< reco::BeamSpot > offlinebeamSpot_
virtual MeasurementPoint measurementPosition(const LocalPoint &) const =0
double phiError() const
error on phi
Definition: TrackBase.h:785
float uu() const
uint16_t width() const
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
DetId geographicalId() const
The label of this GeomDet.
Definition: GeomDet.h:79
double BeamWidthX() const
beam width X
Definition: BeamSpot.h:86
bool hitSelected(TrackStruct::HitParameterStruct &) const
ClusterRef cluster() const
bool checkModulePositions(const float, const std::vector< double > &) const
T * make(const Args &...args) const
make new ROOT object
unsigned int counter6
const LocalTrajectoryError & localError() const
bool checkModuleBools(const bool, const std::vector< unsigned int > &) const
bool checkModuleIds(const unsigned int, const std::vector< unsigned int > &) const
virtual LocalPoint localPosition() const =0
std::map< unsigned int, TrackerSectorStruct > m_tkSector_
bool isValid() const
Definition: HandleBase.h:74
std::map< std::string, std::vector< unsigned int > > m_hitSelectionUInt_
TProfile * PWidthVsWidthProjected
virtual MeasurementPoint measurementPosition(const LocalPoint &) const =0
bool checkIntervalsForSectors(const unsigned int sectorCounter, const std::vector< double > &) const
TrajectoryStateOnSurface const & forwardPredictedState() const
Access to forward predicted state (from fitter or builder)
#define M_PI
std::pair< const Trajectory *, const reco::Track * > ConstTrajTrackPair
void bookTrackHists()
double dz() const
dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to...
Definition: TrackBase.h:604
double dzError() const
error on dz
Definition: TrackBase.h:809
virtual MeasurementError measurementError(const LocalPoint &, const LocalError &) const =0
SiStripRecHit2D originalHit() const
Detector identifier class for the strip tracker.
Definition: SiStripDetId.h:17
int qBin() const
Definition: DetId.h:18
virtual TrackingRecHit const * hit() const
virtual void analyze(const edm::Event &, const edm::EventSetup &)
virtual float detHeight() const =0
TFileDirectory mkdir(const std::string &dir, const std::string &descr="")
create a new subdirectory
Definition: TFileService.h:69
uint16_t maxStrip() const
std::map< std::string, CorrelationHists > m_correlationHistsX
size_type size() const
map size
virtual float thickness() const =0
edm::Service< TFileService > fileService
TFileDirectory mkdir(const std::string &dir, const std::string &descr="")
create a new subdirectory
const HitPattern & hitPattern() const
Access the hit pattern, indicating in which Tracker layers the track has hits.
Definition: TrackBase.h:445
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
bool checkModuleDirections(const int, const std::vector< int > &) const
Detector
Definition: DetId.h:24
ClusterRef cluster() const
Definition: SiPixelRecHit.h:49
const T & get() const
Definition: EventSetup.h:56
double BeamWidthY() const
beam width Y
Definition: BeamSpot.h:88
bool isValid() const
bool inUintInterval(const std::vector< unsigned int > &, const unsigned int, const unsigned int=999) const
int sizeY() const
bool IsModuleUsable() const
std::map< unsigned int, ReducedTrackerTreeVariables > m_tkTreeVar_
Pixel cluster – collection of neighboring pixels above threshold.
fixed size matrix
unsigned int counter5
HLT enums.
virtual const GeomDetUnit * detUnit() const
void fillHistsForApeCalculation(const TrackStruct &)
unsigned short found() const
Number of valid hits on track.
Definition: Track.h:194
unsigned int counter2
bool isPixel(HitType hitType)
bool spansTwoROCs() const
double y0() const
y coordinate
Definition: BeamSpot.h:66
const unsigned int minGoodHitsPerTrack_
float y() const
void setHitSelectionMap(const std::string &)
edm::EDGetTokenT< TrajTrackAssociationCollection > tjTagToken_
int charge() const
track electric charge
Definition: TrackBase.h:562
void fillHitHistsXForAnalyzerMode(const TrackStruct::HitParameterStruct &, TrackerSectorStruct &)
Definition: Bounds.h:22
const_iterator begin() const
first iterator over the map (read only)
DetId geographicalId() const
void fillHistsForAnalyzerMode(const TrackStruct &)
void bookSectorHistsForApeCalculation()
std::map< std::string, CorrelationHists > m_correlationHistsY
virtual LocalError localPositionError() const =0
static uInt32 F(BLOWFISH_CTX *ctx, uInt32 x)
Definition: blowfish.cc:281
double dxy() const
dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close t...
Definition: TrackBase.h:586
T x() const
Definition: PV2DBase.h:45
TProfile * PWidthDiffVsSigmaXHit
std::map< std::string, std::vector< double > > m_hitSelection_
int sizeX() const
T x() const
Definition: PV3DBase.h:62
const PositionType & position() const
void setHitSelectionMapUInt(const std::string &)
T const * product() const
Definition: ESHandle.h:86
Definition: vlib.h:208
float x() const
LocalError const & localAlignmentError() const
Return local alligment error.
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
std::vector< unsigned int > v_rawId
const Plane & specificSurface() const
Same as surface(), kept for backward compatibility.
Definition: GeomDet.h:45
TrajectoryStateOnSurface const & backwardPredictedState() const
Access to backward predicted state (from smoother)
Our base class.
Definition: SiPixelRecHit.h:23
double x0() const
x coordinate
Definition: BeamSpot.h:64
StatePositionAndError2 positionAndError2(const LocalPoint &, const LocalError &, const TransientTrackingRecHit &)