CMS 3D CMS Logo

PhotonIDValueMapProducer.cc
Go to the documentation of this file.
3 
6 
8 
11 
14 
17 
19 
21 
22 #include <memory>
23 #include <vector>
24 
25 // Introduce these two types for brevity of casting
28 
29 // This template function finds whether theCandidate is in thefootprint
30 // collection. It is templated to be able to handle both reco and pat
31 // photons (from AOD and miniAOD, respectively).
32 template <class T, class U>
33 bool isInFootprint(const T& thefootprint, const U& theCandidate) {
34  for ( auto itr = thefootprint.begin(); itr != thefootprint.end(); ++itr ) {
35  if( itr->key() == theCandidate.key() ) return true;
36  }
37  return false;
38 }
39 
41 
42  public:
43 
46 
47  static void fillDescriptions(edm::ConfigurationDescriptions& descriptions);
48 
49  private:
50 
51  virtual void produce(edm::Event&, const edm::EventSetup&) override;
52 
55  const std::vector<float> & values,
56  const std::string & label) const ;
57 
58  // This function computes charged hadron isolation
59  // with respect to multiple PVs and returns the worst
60  // of the found isolation values.
61  // The function implements the computation method taken directly
62  // from Run 1 code of H->gamma gamma, specifically from
63  // the class CiCPhotonID of the HiggsTo2photons anaysis code.
64  // Template is introduced to handle reco/pat photons and aod/miniAOD
65  // PF candidates collections
66  template <class T, class U>
68  const U& pfCandidates,
70  bool isAOD,
71  float dRmax, float dxyMax, float dzMax);
72 
73  // Some helper functions that are needed to access info in
74  // AOD vs miniAOD
76  candidatePdgId(const edm::Ptr<reco::Candidate> candidate, bool isAOD);
77 
78  const reco::Track* getTrackPointer(const edm::Ptr<reco::Candidate> candidate, bool isAOD);
79 
80 
81  // The object that will compute 5x5 quantities
82  std::unique_ptr<noZS::EcalClusterLazyTools> lazyToolnoZS;
83 
84  // for AOD case
92 
93  // for miniAOD case
101 
102  // check whether a non-null preshower is there
103  bool usesES_;
104 
105  // Cluster shapes
106  constexpr static char phoFull5x5SigmaIEtaIEta_[] = "phoFull5x5SigmaIEtaIEta";
107  constexpr static char phoFull5x5SigmaIEtaIPhi_[] = "phoFull5x5SigmaIEtaIPhi";
108  constexpr static char phoFull5x5E1x3_[] = "phoFull5x5E1x3";
109  constexpr static char phoFull5x5E2x2_[] = "phoFull5x5E2x2";
110  constexpr static char phoFull5x5E2x5Max_[] = "phoFull5x5E2x5Max";
111  constexpr static char phoFull5x5E5x5_[] = "phoFull5x5E5x5";
112  constexpr static char phoESEffSigmaRR_[] = "phoESEffSigmaRR";
113  // Isolations
114  constexpr static char phoChargedIsolation_[] = "phoChargedIsolation";
115  constexpr static char phoNeutralHadronIsolation_[] = "phoNeutralHadronIsolation";
116  constexpr static char phoPhotonIsolation_[] = "phoPhotonIsolation";
117  constexpr static char phoWorstChargedIsolation_[] = "phoWorstChargedIsolation";
118 
119 };
120 
121 // Cluster shapes
129 // Isolations
134 
136 
137  //
138  // Declare consummables, handle both AOD and miniAOD case
139  //
140  ebReducedRecHitCollection_ = mayConsume<EcalRecHitCollection>(iConfig.getParameter<edm::InputTag>
141  ("ebReducedRecHitCollection"));
142  ebReducedRecHitCollectionMiniAOD_ = mayConsume<EcalRecHitCollection>(iConfig.getParameter<edm::InputTag>
143  ("ebReducedRecHitCollectionMiniAOD"));
144 
145  eeReducedRecHitCollection_ = mayConsume<EcalRecHitCollection>(iConfig.getParameter<edm::InputTag>
146  ("eeReducedRecHitCollection"));
147  eeReducedRecHitCollectionMiniAOD_ = mayConsume<EcalRecHitCollection>(iConfig.getParameter<edm::InputTag>
148  ("eeReducedRecHitCollectionMiniAOD"));
149 
150  if (!iConfig.getParameter<edm::InputTag>("esReducedRecHitCollection").label().empty() ||
151  !iConfig.getParameter<edm::InputTag>("esReducedRecHitCollectionMiniAOD").label().empty()) {
152  usesES_ = true;
153  esReducedRecHitCollection_ = mayConsume<EcalRecHitCollection>(iConfig.getParameter<edm::InputTag>
154  ("esReducedRecHitCollection"));
155  esReducedRecHitCollectionMiniAOD_ = mayConsume<EcalRecHitCollection>(iConfig.getParameter<edm::InputTag>
156  ("esReducedRecHitCollectionMiniAOD"));
157 
158  } else {
159  usesES_ = false;
160  }
161 
162  vtxToken_ = mayConsume<reco::VertexCollection>(iConfig.getParameter<edm::InputTag>("vertices"));
163  vtxTokenMiniAOD_ = mayConsume<reco::VertexCollection>(iConfig.getParameter<edm::InputTag>("verticesMiniAOD"));
164 
165  // reco photons are castable into pat photons, so no need to handle reco/pat seprately
166  src_ = mayConsume<edm::View<reco::Photon> >(iConfig.getParameter<edm::InputTag>("src"));
167  srcMiniAOD_ = mayConsume<edm::View<reco::Photon> >(iConfig.getParameter<edm::InputTag>("srcMiniAOD"));
168 
169  // The particleBasedIsolation object is relevant only for AOD, RECO format
170  particleBasedIsolationToken_ = mayConsume<edm::ValueMap<std::vector<reco::PFCandidateRef > > >
171  (iConfig.getParameter<edm::InputTag>("particleBasedIsolation"));
172 
173  // AOD has reco::PFCandidate vector, and miniAOD has pat::PackedCandidate vector.
174  // Both inherit from reco::Candidate, so we go to the base class. We can cast into
175  // the full type later if needed. Since the collection names are different, we
176  // introduce both collections
177  pfCandidatesToken_ = mayConsume< edm::View<reco::Candidate> >(iConfig.getParameter<edm::InputTag>("pfCandidates"));
178  pfCandidatesTokenMiniAOD_ = mayConsume< edm::View<reco::Candidate> >(iConfig.getParameter<edm::InputTag>("pfCandidatesMiniAOD"));
179 
180  //
181  // Declare producibles
182  //
183  // Cluster shapes
184  produces<edm::ValueMap<float> >(phoFull5x5SigmaIEtaIEta_);
185  produces<edm::ValueMap<float> >(phoFull5x5SigmaIEtaIPhi_);
186  produces<edm::ValueMap<float> >(phoFull5x5E1x3_);
187  produces<edm::ValueMap<float> >(phoFull5x5E2x2_);
188  produces<edm::ValueMap<float> >(phoFull5x5E2x5Max_);
189  produces<edm::ValueMap<float> >(phoFull5x5E5x5_);
190  produces<edm::ValueMap<float> >(phoESEffSigmaRR_);
191  // Isolations
192  produces<edm::ValueMap<float> >(phoChargedIsolation_);
193  produces<edm::ValueMap<float> >(phoNeutralHadronIsolation_);
194  produces<edm::ValueMap<float> >(phoPhotonIsolation_);
195  produces<edm::ValueMap<float> >(phoWorstChargedIsolation_);
196 
197 }
198 
200 }
201 
203 
204  using namespace edm;
205 
206  // Constants
207  const float coneSizeDR = 0.3;
208  const float dxyMax = 0.1;
209  const float dzMax = 0.2;
210 
212 
213  bool isAOD = true;
214  iEvent.getByToken(src_, src);
215  if( !src.isValid() ){
216  isAOD = false;
217  iEvent.getByToken(srcMiniAOD_,src);
218  }
219  if( !src.isValid() ) {
220  throw cms::Exception("IllDefinedDataTier")
221  << "DataFormat does not contain a photon source!";
222  }
223 
224  // Configure Lazy Tools
225  if (usesES_) {
226  if( isAOD )
227  lazyToolnoZS = std::make_unique<noZS::EcalClusterLazyTools>(iEvent, iSetup,
231  else
232  lazyToolnoZS = std::make_unique<noZS::EcalClusterLazyTools>(iEvent, iSetup,
236  } else {
237  if( isAOD )
238  lazyToolnoZS = std::make_unique<noZS::EcalClusterLazyTools>(iEvent, iSetup,
241  else
242  lazyToolnoZS = std::make_unique<noZS::EcalClusterLazyTools>(iEvent, iSetup,
245 
246  }
247 
248  // Get PV
250  iEvent.getByToken(vtxToken_, vertices);
251  if( !vertices.isValid() )
252  iEvent.getByToken(vtxTokenMiniAOD_, vertices);
253  if (vertices->empty()) return; // skip the event if no PV found
254  const reco::Vertex &pv = vertices->front();
255 
257  if( isAOD ){
258  // this exists only in AOD
259  iEvent.getByToken(particleBasedIsolationToken_, particleBasedIsolationMap);
260  }
261 
262  edm::Handle< edm::View<reco::Candidate> > pfCandidatesHandle;
263 
264  iEvent.getByToken(pfCandidatesToken_, pfCandidatesHandle);
265  if( !pfCandidatesHandle.isValid() )
266  iEvent.getByToken(pfCandidatesTokenMiniAOD_, pfCandidatesHandle);
267 
268  if( !isAOD && src->size() ) {
269  edm::Ptr<pat::Photon> test(src->ptrAt(0));
270  if( test.isNull() || !test.isAvailable() ) {
271  throw cms::Exception("InvalidConfiguration")
272  <<"DataFormat is detected as miniAOD but cannot cast to pat::Photon!";
273  }
274  }
275 
276  // size_t n = src->size();
277  // Cluster shapes
278  std::vector<float> phoFull5x5SigmaIEtaIEta;
279  std::vector<float> phoFull5x5SigmaIEtaIPhi;
280  std::vector<float> phoFull5x5E1x3;
281  std::vector<float> phoFull5x5E2x2;
282  std::vector<float> phoFull5x5E2x5Max;
283  std::vector<float> phoFull5x5E5x5;
284  std::vector<float> phoESEffSigmaRR;
285  // Isolations
286  std::vector<float> phoChargedIsolation;
287  std::vector<float> phoNeutralHadronIsolation;
288  std::vector<float> phoPhotonIsolation;
289  std::vector<float> phoWorstChargedIsolation;
290 
291  // reco::Photon::superCluster() is virtual so we can exploit polymorphism
292  for (unsigned idxpho = 0; idxpho < src->size(); ++idxpho) {
293  const auto& iPho = src->ptrAt(idxpho);
294 
295  //
296  // Compute full 5x5 quantities
297  //
298  const auto& theseed = *(iPho->superCluster()->seed());
299 
300  // For full5x5_sigmaIetaIeta, for 720 we use: lazy tools for AOD,
301  // and userFloats or lazy tools for miniAOD. From some point in 72X and on, one can
302  // retrieve the full5x5 directly from the object with ->full5x5_sigmaIetaIeta()
303  // for both formats.
304  float see = -999;
305  std::vector<float> vCov = lazyToolnoZS->localCovariances( theseed );
306  see = (isnan(vCov[0]) ? 0. : sqrt(vCov[0]));
307  float sep = vCov[1];
308  phoFull5x5SigmaIEtaIEta.push_back(see);
309  phoFull5x5SigmaIEtaIPhi.push_back(sep);
310 
311  phoFull5x5E1x3 .push_back(lazyToolnoZS-> e1x3 (theseed) );
312  phoFull5x5E2x2 .push_back(lazyToolnoZS-> e2x2 (theseed) );
313  phoFull5x5E2x5Max.push_back(lazyToolnoZS-> e2x5Max(theseed) );
314  phoFull5x5E5x5 .push_back(lazyToolnoZS-> e5x5 (theseed) );
315 
316  phoESEffSigmaRR .push_back(lazyToolnoZS->eseffsirir( *(iPho->superCluster()) ) );
317 
318  //
319  // Compute absolute uncorrected isolations with footprint removal
320  //
321 
322  // First, find photon direction with respect to the good PV
323  math::XYZVector photon_directionWrtVtx(iPho->superCluster()->x() - pv.x(),
324  iPho->superCluster()->y() - pv.y(),
325  iPho->superCluster()->z() - pv.z());
326 
327  // Zero the isolation sums
328  float chargedIsoSum = 0;
329  float neutralHadronIsoSum = 0;
330  float photonIsoSum = 0;
331 
332  // Loop over all PF candidates
333  for (unsigned idxcand = 0; idxcand < pfCandidatesHandle->size(); ++idxcand ){
334 
335  // Here, the type will be a simple reco::Candidate. We cast it
336  // for full PFCandidate or PackedCandidate below as necessary
337  const auto& iCand = pfCandidatesHandle->ptrAt(idxcand);
338 
339  // One would think that we should check that this iCand from
340  // the generic PF collection is not identical to the iPho photon
341  // for which we are computing the isolations. However, it turns out
342  // to be unnecessary. Below, in the function isInFootprint(), we drop
343  // this iCand if it is in the footprint, and this always removes
344  // the iCand if it matches the iPho.
345  // The explicit check at this point is not totally trivial because
346  // of non-triviality of implementation of this check for miniAOD (PackedCandidates
347  // of the PF collection do not contain the supercluser link, so can't use that).
348  // if( isAOD ){
349  // if( ((const recoCandPtr)iCand)->superClusterRef() == iPho->superCluster() ) continue;
350  // }
351 
352 
353  // Check if this candidate is within the isolation cone
354  float dR2 = deltaR2(photon_directionWrtVtx.Eta(),photon_directionWrtVtx.Phi(),
355  iCand->eta(), iCand->phi());
356  if( dR2 > coneSizeDR*coneSizeDR ) continue;
357 
358  // Check if this candidate is not in the footprint
359  bool inFootprint = false;
360  if(isAOD) {
361  inFootprint = isInFootprint( (*particleBasedIsolationMap)[iPho], iCand );
362  } else {
363  edm::Ptr<pat::Photon> patPhotonPtr(src->ptrAt(idxpho));
364  inFootprint = isInFootprint(patPhotonPtr->associatedPackedPFCandidates(), iCand);
365  }
366 
367  if( inFootprint ) continue;
368 
369  // Find candidate type
370  reco::PFCandidate::ParticleType thisCandidateType = candidatePdgId(iCand, isAOD);
371 
372  // Increment the appropriate isolation sum
373  if( thisCandidateType == reco::PFCandidate::h ){
374  // for charged hadrons, additionally check consistency
375  // with the PV
376  const reco::Track *theTrack = getTrackPointer( iCand, isAOD );
377 
378  float dxy = theTrack->dxy(pv.position());
379  if(fabs(dxy) > dxyMax) continue;
380 
381  float dz = theTrack->dz(pv.position());
382  if (fabs(dz) > dzMax) continue;
383 
384  // The candidate is eligible, increment the isolaiton
385  chargedIsoSum += iCand->pt();
386  }
387 
388  if( thisCandidateType == reco::PFCandidate::h0 )
389  neutralHadronIsoSum += iCand->pt();
390 
391  if( thisCandidateType == reco::PFCandidate::gamma )
392  photonIsoSum += iCand->pt();
393  }
394 
395  phoChargedIsolation .push_back( chargedIsoSum );
396  phoNeutralHadronIsolation.push_back( neutralHadronIsoSum );
397  phoPhotonIsolation .push_back( photonIsoSum );
398 
399  float worstChargedIso =
400  computeWorstPFChargedIsolation(iPho, pfCandidatesHandle, vertices,
401  isAOD, coneSizeDR, dxyMax, dzMax);
402  phoWorstChargedIsolation .push_back( worstChargedIso );
403 
404 
405  }
406 
407  // Cluster shapes
408  writeValueMap(iEvent, src, phoFull5x5SigmaIEtaIEta, phoFull5x5SigmaIEtaIEta_);
409  writeValueMap(iEvent, src, phoFull5x5SigmaIEtaIPhi, phoFull5x5SigmaIEtaIPhi_);
410  writeValueMap(iEvent, src, phoFull5x5E1x3 , phoFull5x5E1x3_);
411  writeValueMap(iEvent, src, phoFull5x5E2x2 , phoFull5x5E2x2_);
412  writeValueMap(iEvent, src, phoFull5x5E2x5Max, phoFull5x5E2x5Max_);
413  writeValueMap(iEvent, src, phoFull5x5E5x5 , phoFull5x5E5x5_);
414  writeValueMap(iEvent, src, phoESEffSigmaRR , phoESEffSigmaRR_);
415  // Isolations
416  writeValueMap(iEvent, src, phoChargedIsolation, phoChargedIsolation_);
417  writeValueMap(iEvent, src, phoNeutralHadronIsolation, phoNeutralHadronIsolation_);
418  writeValueMap(iEvent, src, phoPhotonIsolation, phoPhotonIsolation_);
419  writeValueMap(iEvent, src, phoWorstChargedIsolation, phoWorstChargedIsolation_);
420 }
421 
424  const std::vector<float> & values,
425  const std::string & label) const
426 {
427  using namespace edm;
428  using namespace std;
429  auto valMap = std::make_unique<ValueMap<float>>();
431  filler.insert(handle, values.begin(), values.end());
432  filler.fill();
433  iEvent.put(std::move(valMap), label);
434 }
435 
437  //The following says we do not know what parameters are allowed so do no validation
438  // Please change this to state exactly what you do use, even if it is no parameters
440  desc.setUnknown();
441  descriptions.addDefault(desc);
442 }
443 
444 // Charged isolation with respect to the worst vertex. See more
445 // comments above at the function declaration.
446 template <class T, class U>
450  bool isAOD,
451  float dRmax, float dxyMax, float dzMax){
452 
453  float worstIsolation = 999;
454  std::vector<float> allIsolations;
455 
456  // Constants below: there are no vetos and no min pt requirement,
457  // just like in the original H->gamma gamma code.
458  const float dRvetoBarrel = 0.0;
459  const float dRvetoEndcap = 0.0;
460  const float ptMin = 0.0;
461 
462  float dRveto;
463  if (photon->isEB())
464  dRveto = dRvetoBarrel;
465  else
466  dRveto = dRvetoEndcap;
467 
468  //Calculate isolation sum separately for each vertex
469  for(unsigned int ivtx=0; ivtx<vertices->size(); ++ivtx) {
470 
471  // Shift the photon according to the vertex
472  reco::VertexRef vtx(vertices, ivtx);
473  math::XYZVector photon_directionWrtVtx(photon->superCluster()->x() - vtx->x(),
474  photon->superCluster()->y() - vtx->y(),
475  photon->superCluster()->z() - vtx->z());
476 
477  float sum = 0;
478  // Loop over the PFCandidates
479  for(unsigned i=0; i<pfCandidates->size(); i++) {
480 
481  const auto& iCand = pfCandidates->ptrAt(i);
482 
483  //require that PFCandidate is a charged hadron
484  reco::PFCandidate::ParticleType thisCandidateType = candidatePdgId(iCand, isAOD);
485  if (thisCandidateType != reco::PFCandidate::h)
486  continue;
487 
488  if (iCand->pt() < ptMin)
489  continue;
490 
491  const reco::Track *theTrack = getTrackPointer( iCand, isAOD );
492  float dxy = theTrack->dxy(vtx->position());
493  if( fabs(dxy) > dxyMax) continue;
494 
495  float dz = theTrack->dz(vtx->position());
496  if ( fabs(dz) > dzMax) continue;
497 
498  float dR2 = deltaR2(photon_directionWrtVtx.Eta(), photon_directionWrtVtx.Phi(),
499  iCand->eta(), iCand->phi());
500  if(dR2 > dRmax*dRmax || dR2 < dRveto*dRveto) continue;
501 
502  sum += iCand->pt();
503  }
504 
505  allIsolations.push_back(sum);
506  }
507 
508  if( allIsolations.size()>0 )
509  worstIsolation = * std::max_element( allIsolations.begin(), allIsolations.end() );
510 
511  return worstIsolation;
512 }
513 
516  bool isAOD){
517 
519  if( isAOD )
520  thisCandidateType = ( (const recoCandPtr)candidate)->particleId();
521  else {
522  // the neutral hadrons and charged hadrons can be of pdgId types
523  // only 130 (K0L) and +-211 (pi+-) in packed candidates
524  const int pdgId = ( (const patCandPtr)candidate)->pdgId();
525  if( pdgId == 22 )
526  thisCandidateType = reco::PFCandidate::gamma;
527  else if( abs(pdgId) == 130) // PDG ID for K0L
528  thisCandidateType = reco::PFCandidate::h0;
529  else if( abs(pdgId) == 211) // PDG ID for pi+-
530  thisCandidateType = reco::PFCandidate::h;
531  }
532  return thisCandidateType;
533 }
534 
535 const reco::Track*
537 
538  const reco::Track* theTrack = nullptr;
539  if( isAOD )
540  theTrack = &*( ((const recoCandPtr) candidate)->trackRef());
541  else
542  theTrack = &( ((const patCandPtr) candidate)->pseudoTrack());
543 
544  return theTrack;
545 }
546 
void writeValueMap(edm::Event &iEvent, const edm::Handle< edm::View< reco::Photon > > &handle, const std::vector< float > &values, const std::string &label) const
T getParameter(std::string const &) const
edm::EDGetTokenT< EcalRecHitCollection > esReducedRecHitCollectionMiniAOD_
const reco::Track * getTrackPointer(const edm::Ptr< reco::Candidate > candidate, bool isAOD)
edm::EDGetTokenT< reco::VertexCollection > vtxToken_
OrphanHandle< PROD > put(std::unique_ptr< PROD > product)
Put a new product.
Definition: Event.h:122
ParticleType
particle types
Definition: PFCandidate.h:44
edm::EDGetTokenT< reco::VertexCollection > vtxTokenMiniAOD_
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:457
std::unique_ptr< noZS::EcalClusterLazyTools > lazyToolnoZS
edm::EDGetTokenT< EcalRecHitCollection > eeReducedRecHitCollectionMiniAOD_
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:17
double y() const
y coordinate
Definition: Vertex.h:113
reco::PFCandidate::ParticleType candidatePdgId(const edm::Ptr< reco::Candidate > candidate, bool isAOD)
edm::EDGetTokenT< EcalRecHitCollection > ebReducedRecHitCollection_
PhotonIDValueMapProducer(const edm::ParameterSet &)
edm::EDGetTokenT< edm::ValueMap< std::vector< reco::PFCandidateRef > > > particleBasedIsolationToken_
edm::EDGetTokenT< edm::ValueMap< std::vector< reco::PFCandidateRef > > > particleBasedIsolationTokenMiniAOD_
edm::EDGetTokenT< EcalRecHitCollection > ebReducedRecHitCollectionMiniAOD_
const Point & position() const
position
Definition: Vertex.h:109
#define constexpr
static void fillDescriptions(edm::ConfigurationDescriptions &descriptions)
int iEvent
Definition: GenABIO.cc:230
edm::EDGetTokenT< edm::View< reco::Candidate > > pfCandidatesTokenMiniAOD_
void addDefault(ParameterSetDescription const &psetDescription)
edm::EDGetTokenT< EcalRecHitCollection > eeReducedRecHitCollection_
bool isnan(float x)
Definition: math.h:13
T sqrt(T t)
Definition: SSEVec.h:18
bool isInFootprint(const T &thefootprint, const U &theCandidate)
edm::Ptr< pat::PackedCandidate > patCandPtr
def pv(vc)
Definition: MetAnalyzer.py:6
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
double z() const
z coordinate
Definition: Vertex.h:115
edm::EDGetTokenT< edm::View< reco::Candidate > > pfCandidatesToken_
virtual void produce(edm::Event &, const edm::EventSetup &) override
bool isValid() const
Definition: HandleBase.h:74
float computeWorstPFChargedIsolation(const T &photon, const U &pfCandidates, const edm::Handle< reco::VertexCollection > vertices, bool isAOD, float dRmax, float dxyMax, float dzMax)
double dz() const
dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to...
Definition: TrackBase.h:604
double x() const
x coordinate
Definition: Vertex.h:111
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:30
edm::EDGetTokenT< EcalRecHitCollection > esReducedRecHitCollection_
T1 deltaR2(T1 eta1, T2 phi1, T3 eta2, T4 phi2)
Definition: deltaR.h:36
std::string const & label() const
Definition: InputTag.h:36
edm::Ptr< pat::Photon > patPhotonPtr
HLT enums.
double dxy() const
dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close t...
Definition: TrackBase.h:586
long double T
edm::Ptr< reco::PFCandidate > recoCandPtr
def move(src, dest)
Definition: eostools.py:510