5 const std::vector<MagBLayer *>& theBLayers,
6 const std::vector<MagESector *>& theESectors,
7 const std::vector<MagVolume6Faces*>& theBVolumes,
8 const std::vector<MagVolume6Faces*>& theEVolumes,
11 bool isParamFieldOwned) :
12 field(new
MagGeometry(geomVersion,theBLayers,theESectors,theBVolumes,theEVolumes)),
17 paramFieldOwned(isParamFieldOwned)
GlobalVector inTeslaUnchecked(const GlobalPoint &g) const
bool isZSymmetric() const
virtual GlobalVector inTeslaUnchecked(const GlobalPoint &gp) const
const MagGeometry * field
const MagVolume * findVolume(const GlobalPoint &gp) const
virtual MagneticField * clone() const
Returns a shallow copy.
virtual ~VolumeBasedMagneticField()
bool isZSymmetric() const
VolumeBasedMagneticField(int geomVersion, const std::vector< MagBLayer * > &theBLayers, const std::vector< MagESector * > &theESectors, const std::vector< MagVolume6Faces * > &theBVolumes, const std::vector< MagVolume6Faces * > &theEVolumes, float rMax, float zMax, const MagneticField *param=0, bool isParamFieldOwned=false)
MagVolume const * findVolume(const GlobalPoint &gp, double tolerance=0.) const
Find a volume.
bool isDefined(const GlobalPoint &gp) const
True if the point is within the region where the concrete field.
virtual bool isDefined(const GlobalPoint &) const
True if the point is within the region where the concrete field.
GlobalVector inTesla(const GlobalPoint &g) const
Field value ad specified global point, in Tesla.
const MagneticField * paramField
GlobalVector fieldInTesla(const GlobalPoint &gp) const
Return field vector at the specified global point.
Global3DVector GlobalVector