CMS 3D CMS Logo

Classes | Namespaces | Macros | Functions
approx_log.h File Reference
#include <cstdint>
#include <cmath>
#include <limits>
#include <algorithm>

Go to the source code of this file.

Classes

union  approx_math::binary32
 

Namespaces

 approx_math
 

Macros

#define APPROX_MATH_N
 

Functions

template<int DEGREE>
float approx_logf (float x)
 
template<int DEGREE>
float approx_logf_P (float p)
 
template<>
float approx_logf_P< 2 > (float y)
 
template<>
float approx_logf_P< 3 > (float y)
 
template<>
float approx_logf_P< 4 > (float y)
 
template<>
float approx_logf_P< 5 > (float y)
 
template<>
float approx_logf_P< 6 > (float y)
 
template<>
float approx_logf_P< 7 > (float y)
 
template<>
float approx_logf_P< 8 > (float y)
 
template<int DEGREE>
float unsafe_logf (float x)
 
template<int DEGREE>
float unsafe_logf_impl (float x)
 

Macro Definition Documentation

#define APPROX_MATH_N

Definition at line 36 of file approx_log.h.

Function Documentation

template<int DEGREE>
float approx_logf ( float  x)
inline

Definition at line 137 of file approx_log.h.

References constexpr, infinity, cmsBatch::log, unsafe_logf(), and x().

137  {
138  using namespace approx_math;
139 
140 
141  constexpr float MAXNUMF = 3.4028234663852885981170418348451692544e38f;
142 
143  //x = std::max(std::min(x,MAXNUMF),0.f);
144  float res = unsafe_logf<DEGREE>(x);
146  return (x>0) ? res :std::numeric_limits<float>::quiet_NaN();
147 }
#define constexpr
Definition: Electron.h:4
T x() const
Cartesian x coordinate.
const double infinity
template<int DEGREE>
float approx_logf_P ( float  p)
inline
template<>
float approx_logf_P< 2 > ( float  y)
inline

Definition at line 60 of file approx_log.h.

References objects.autophobj::float.

60  {
61  return y * ( float(0x1.0671c4p0) + y * ( float(-0x7.27744p-4) )) ;
62 }
template<>
float approx_logf_P< 3 > ( float  y)
inline

Definition at line 66 of file approx_log.h.

References objects.autophobj::float.

66  {
67  return y * (float(0x1.013354p0) + y * (-float(0x8.33006p-4) + y * float(0x4.0d16cp-4))) ;
68 }
template<>
float approx_logf_P< 4 > ( float  y)
inline

Definition at line 72 of file approx_log.h.

References objects.autophobj::float.

72  {
73  return y * (float(0xf.ff5bap-4) + y * (-float(0x8.13e5ep-4) + y * (float(0x5.826ep-4) + y * (-float(0x2.e87fb8p-4))))) ;
74 }
template<>
float approx_logf_P< 5 > ( float  y)
inline

Definition at line 78 of file approx_log.h.

References objects.autophobj::float.

78  {
79  return y * (float(0xf.ff652p-4) + y * (-float(0x8.0048ap-4) + y * (float(0x5.72782p-4) + y * (-float(0x4.20904p-4) + y * float(0x2.1d7fd8p-4))))) ;
80 }
template<>
float approx_logf_P< 6 > ( float  y)
inline

Definition at line 84 of file approx_log.h.

References objects.autophobj::float.

84  {
85  return y * (float(0xf.fff14p-4) + y * (-float(0x7.ff4bfp-4) + y * (float(0x5.582f6p-4) + y * (-float(0x4.1dcf2p-4) + y * (float(0x3.3863f8p-4) + y * (-float(0x1.9288d4p-4))))))) ;
86 }
template<>
float approx_logf_P< 7 > ( float  y)
inline

Definition at line 90 of file approx_log.h.

References objects.autophobj::float.

90  {
91  return y * (float(0x1.000034p0) + y * (-float(0x7.ffe57p-4) + y * (float(0x5.5422ep-4) + y * (-float(0x4.037a6p-4) + y * (float(0x3.541c88p-4) + y * (-float(0x2.af842p-4) + y * float(0x1.48b3d8p-4))))))) ;
92 }
template<>
float approx_logf_P< 8 > ( float  y)
inline

Definition at line 96 of file approx_log.h.

References objects.autophobj::float.

96  {
97  return y * ( float(0x1.00000cp0) + y * (float(-0x8.0003p-4) + y * (float(0x5.55087p-4) + y * ( float(-0x3.fedcep-4) + y * (float(0x3.3a1dap-4) + y * (float(-0x2.cb55fp-4) + y * (float(0x2.38831p-4) + y * (float(-0xf.e87cap-8) )))))))) ;
98 }
template<int DEGREE>
float unsafe_logf ( float  x)
inline

Definition at line 132 of file approx_log.h.

Referenced by approx_logf().

132  {
133  return unsafe_logf_impl<DEGREE>(x);
134 }
T x() const
Cartesian x coordinate.
template<int DEGREE>
float unsafe_logf_impl ( float  x)
inline

Definition at line 103 of file approx_log.h.

References constexpr, MillePedeFileConverter_cfg::e, objects.autophobj::float, funct::m, AlCaHLTBitMon_ParallelJobs::p, and geometryCSVtoXML::xx.

103  {
104  using namespace approx_math;
105 
106  binary32 xx,m;
107  xx.f = x;
108 
109  // as many integer computations as possible, most are 1-cycle only, and lots of ILP.
110  int e= (((xx.i32) >> 23) & 0xFF) -127; // extract exponent
111  m.i32 = (xx.i32 & 0x007FFFFF) | 0x3F800000; // extract mantissa as an FP number
112 
113  int adjust = (xx.i32>>22)&1; // first bit of the mantissa, tells us if 1.m > 1.5
114  m.i32 -= adjust << 23; // if so, divide 1.m by 2 (exact operation, no rounding)
115  e += adjust; // and update exponent so we still have x=2^E*y
116 
117  // now back to floating-point
118  float y = m.f -1.0f; // Sterbenz-exact; cancels but we don't care about output relative error
119  // all the computations so far were free of rounding errors...
120 
121  // the following is based on Sollya output
122  float p = approx_logf_P<DEGREE>(y);
123 
124 
125  constexpr float Log2=0xb.17218p-4; // 0.693147182464599609375
126  return float(e)*Log2+p;
127 
128 }
#define constexpr
T x() const
Cartesian x coordinate.