CMS 3D CMS Logo

PixelThresholdClusterizer.cc
Go to the documentation of this file.
1 //----------------------------------------------------------------------------
20 //----------------------------------------------------------------------------
21 
22 // Our own includes
24 #include "SiPixelArrayBuffer.h"
26 // Geometry
29 //#include "Geometry/CommonTopologies/RectangularPixelTopology.h"
31 
32 // STL
33 #include <stack>
34 #include <vector>
35 #include <iostream>
36 #include <atomic>
37 using namespace std;
38 
39 //----------------------------------------------------------------------------
43 //----------------------------------------------------------------------------
45  (edm::ParameterSet const& conf) :
46  bufferAlreadySet(false),
47  // Get thresholds in electrons
48  thePixelThreshold( conf.getParameter<int>("ChannelThreshold") ),
49  theSeedThreshold( conf.getParameter<int>("SeedThreshold") ),
50  theClusterThreshold( conf.getParameter<double>("ClusterThreshold") ),
51  theConversionFactor( conf.getParameter<int>("VCaltoElectronGain") ),
52  theOffset( conf.getParameter<int>("VCaltoElectronOffset") ),
53  theStackADC_( conf.exists("AdcFullScaleStack") ? conf.getParameter<int>("AdcFullScaleStack") : 255 ),
54  theFirstStack_( conf.exists("FirstStackLayer") ? conf.getParameter<int>("FirstStackLayer") : 5 ),
55  theElectronPerADCGain_( conf.exists("ElectronPerADCGain") ? conf.getParameter<double>("ElectronPerADCGain") : 135. ),
56  theNumOfRows(0), theNumOfCols(0), detid_(0),
57  // Get the constants for the miss-calibration studies
58  doMissCalibrate( conf.getUntrackedParameter<bool>("MissCalibrate",true) ),
59  doSplitClusters( conf.getParameter<bool>("SplitClusters") )
60 {
61  theBuffer.setSize( theNumOfRows, theNumOfCols );
62 }
65 
66 //----------------------------------------------------------------------------
69 //----------------------------------------------------------------------------
71 {
72  // Cache the topology.
73  const PixelTopology & topol = pixDet->specificTopology();
74 
75  // Get the new sizes.
76  int nrows = topol.nrows(); // rows in x
77  int ncols = topol.ncolumns(); // cols in y
78 
79  theNumOfRows = nrows; // Set new sizes
80  theNumOfCols = ncols;
81 
82  if ( nrows > theBuffer.rows() ||
83  ncols > theBuffer.columns() )
84  { // change only when a larger is needed
85  //if( nrows != theNumOfRows || ncols != theNumOfCols ) {
86  //cout << " PixelThresholdClusterizer: pixel buffer redefined to "
87  // << nrows << " * " << ncols << endl;
88  //theNumOfRows = nrows; // Set new sizes
89  //theNumOfCols = ncols;
90  // Resize the buffer
91  theBuffer.setSize(nrows,ncols); // Modify
92  bufferAlreadySet = true;
93  }
94 
95  return true;
96 }
97 //----------------------------------------------------------------------------
103 //----------------------------------------------------------------------------
104 template<typename T>
106  const PixelGeomDetUnit * pixDet,
107  const std::vector<short>& badChannels,
109 
110  typename T::const_iterator begin = input.begin();
111  typename T::const_iterator end = input.end();
112 
113  // Do not bother for empty detectors
114  //if (begin == end) cout << " PixelThresholdClusterizer::clusterizeDetUnit - No digis to clusterize";
115 
116  // Set up the clusterization on this DetId.
117  if ( !setup(pixDet) )
118  return;
119 
120  detid_ = input.detId();
121 
122  // Copy PixelDigis to the buffer array; select the seed pixels
123  // on the way, and store them in theSeeds.
124  copy_to_buffer(begin, end);
125 
126  // Loop over all seeds. TO DO: wouldn't using iterators be faster?
127  // edm::LogError("PixelThresholdClusterizer") << "Starting clusterizing" << endl;
128  for (unsigned int i = 0; i < theSeeds.size(); i++)
129  {
130 
131  // Gavril : The charge of seeds that were already inlcuded in clusters is set to 1 electron
132  // so we don't want to call "make_cluster" for these cases
133  if ( theBuffer(theSeeds[i]) >= theSeedThreshold )
134  { // Is this seed still valid?
135  // Make a cluster around this seed
136  SiPixelCluster && cluster = make_cluster( theSeeds[i] , output);
137 
138  // Check if the cluster is above threshold
139  // (TO DO: one is signed, other unsigned, gcc warns...)
140  if ( cluster.charge() >= theClusterThreshold)
141  {
142  // std::cout << "putting in this cluster " << i << " " << cluster.charge() << " " << cluster.pixelADC().size() << endl;
143  output.push_back( std::move(cluster) );
144  }
145  }
146  }
147 
148  // Erase the seeds.
149  theSeeds.clear();
150 
151  // Need to clean unused pixels from the buffer array.
152  clear_buffer(begin, end);
153 
154 }
155 
156 //----------------------------------------------------------------------------
164 //----------------------------------------------------------------------------
166 {
167  for(DigiIterator di = begin; di != end; ++di )
168  {
169  theBuffer.set_adc( di->row(), di->column(), 0 ); // reset pixel adc to 0
170  }
171 }
172 
174 {
175  for(ClusterIterator ci = begin; ci != end; ++ci )
176  {
177  for(int i = 0; i < ci->size(); ++i)
178  {
179  const SiPixelCluster::Pixel pixel = ci->pixel(i);
180 
181  theBuffer.set_adc( pixel.x, pixel.y, 0 ); // reset pixel adc to 0
182  }
183  }
184 }
185 
186 //----------------------------------------------------------------------------
188 //----------------------------------------------------------------------------
190 {
191 #ifdef PIXELREGRESSION
192  static std::atomic<int> s_ic=0;
193  in ic = ++s_ic;
194  if (ic==1) {
195  // std::cout << (doMissCalibrate ? "VI from db" : "VI linear") << std::endl;
196  }
197 #endif
198  int electron[end-begin];
199  memset(electron, 0, sizeof(electron));
200  if ( doMissCalibrate ) {
201  (*theSiPixelGainCalibrationService_).calibrate(detid_,begin,end,theConversionFactor, theOffset,electron);
202  } else {
203  int layer = (DetId(detid_).subdetId()==1) ? PXBDetId(detid_).layer() : 0;
204  int i=0;
205  for(DigiIterator di = begin; di != end; ++di) {
206  auto adc = di->adc();
207  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
208  const float pedestal = 0.; //
209  electron[i] = int(adc * gain + pedestal);
210  if (layer>=theFirstStack_) {
211  if (theStackADC_==1&&adc==1) {
212  electron[i] = int(255*135); // Arbitrarily use overflow value.
213  }
214  if (theStackADC_>1&&theStackADC_!=255&&adc>=1){
215  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
216  electron[i] = int((adc-1) * gain * 255/float(theStackADC_-1));
217  }
218  }
219  ++i;
220  }
221  assert(i==(end-begin));
222  }
223 
224  int i=0;
225 #ifdef PIXELREGRESSION
226  static std::atomic<int> eqD=0;
227 #endif
228  for(DigiIterator di = begin; di != end; ++di) {
229  int row = di->row();
230  int col = di->column();
231  int adc = electron[i++];
232 #ifdef PIXELREGRESSION
233  int adcOld = calibrate(di->adc(),col,row);
234  //assert(adc==adcOld);
235  if (adc!=adcOld) std::cout << "VI " << eqD <<' '<< ic <<' '<< end-begin <<' '<< i <<' '<< di->adc() <<' ' << adc <<' '<< adcOld << std::endl; else ++eqD;
236 #endif
237  if ( adc >= thePixelThreshold) {
238  theBuffer.set_adc( row, col, adc);
239  if ( adc >= theSeedThreshold) theSeeds.push_back( SiPixelCluster::PixelPos(row,col) );
240  }
241  }
242  assert(i==(end-begin));
243 
244 }
245 
247 {
248  // loop over clusters
249  for(ClusterIterator ci = begin; ci != end; ++ci) {
250  // loop over pixels
251  for(int i = 0; i < ci->size(); ++i) {
252  const SiPixelCluster::Pixel pixel = ci->pixel(i);
253 
254  int row = pixel.x;
255  int col = pixel.y;
256  int adc = pixel.adc;
257  if ( adc >= thePixelThreshold) {
258  theBuffer.add_adc( row, col, adc);
259  if ( adc >= theSeedThreshold) theSeeds.push_back( SiPixelCluster::PixelPos(row,col) );
260  }
261  }
262  }
263 }
264 
265 //----------------------------------------------------------------------------
266 // Calibrate adc counts to electrons
267 //-----------------------------------------------------------------
269 {
270  int electrons = 0;
271  int layer= 0;
272  if (DetId(detid_).subdetId()==1){ layer = PXBDetId(detid_).layer();}
273 
274  if ( doMissCalibrate )
275  {
276  // do not perform calibration if pixel is dead!
277 
278  if ( !theSiPixelGainCalibrationService_->isDead(detid_,col,row) &&
279  !theSiPixelGainCalibrationService_->isNoisy(detid_,col,row) )
280  {
281 
282  // Linear approximation of the TANH response
283  // Pixel(0,0,0)
284  //const float gain = 2.95; // 1 ADC = 2.95 VCALs (1/0.339)
285  //const float pedestal = -83.; // -28/0.339
286  // Roc-0 average
287  //const float gain = 1./0.357; // 1 ADC = 2.80 VCALs
288  //const float pedestal = -28.2 * gain; // -79.
289 
290  float DBgain = theSiPixelGainCalibrationService_->getGain(detid_, col, row);
291  float DBpedestal = theSiPixelGainCalibrationService_->getPedestal(detid_, col, row) * DBgain;
292 
293 
294  // Roc-6 average
295  //const float gain = 1./0.313; // 1 ADC = 3.19 VCALs
296  //const float pedestal = -6.2 * gain; // -19.8
297  //
298  float vcal = adc * DBgain - DBpedestal;
299 
300  // atanh calibration
301  // Roc-6 average
302  //const float p0 = 0.00492;
303  //const float p1 = 1.998;
304  //const float p2 = 90.6;
305  //const float p3 = 134.1;
306  // Roc-6 average
307  //const float p0 = 0.00382;
308  //const float p1 = 0.886;
309  //const float p2 = 112.7;
310  //const float p3 = 113.0;
311  //float vcal = ( atanh( (adc-p3)/p2) + p1)/p0;
312 
313  electrons = int( vcal * theConversionFactor + theOffset);
314  }
315  }
316  else
317  { // No misscalibration in the digitizer
318  // Simple (default) linear gain
319  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
320  const float pedestal = 0.; //
321  electrons = int(adc * gain + pedestal);
322  if (layer>=theFirstStack_) {
323  if (theStackADC_==1&&adc==1)
324  {
325  electrons = int(255*135); // Arbitrarily use overflow value.
326  }
327  if (theStackADC_>1&&theStackADC_!=255&&adc>=1)
328  {
329  const float gain = theElectronPerADCGain_; // default: 1 ADC = 135 electrons
330  electrons = int((adc-1) * gain * 255/float(theStackADC_-1));
331  }
332  }
333  }
334 
335  return electrons;
336 }
337 
338 //----------------------------------------------------------------------------
340 //----------------------------------------------------------------------------
344 {
345 
346  //First we acquire the seeds for the clusters
347  int seed_adc;
348  stack<SiPixelCluster::PixelPos, vector<SiPixelCluster::PixelPos> > dead_pixel_stack;
349 
350  //The individual modules have been loaded into a buffer.
351  //After each pixel has been considered by the clusterizer, we set the adc count to 1
352  //to mark that we have already considered it.
353  //The only difference between dead/noisy pixels and standard ones is that for dead/noisy pixels,
354  //We consider the charge of the pixel to always be zero.
355 
356  /* this is not possible as dead and noisy pixel cannot make it into a seed...
357  if ( doMissCalibrate &&
358  (theSiPixelGainCalibrationService_->isDead(detid_,pix.col(),pix.row()) ||
359  theSiPixelGainCalibrationService_->isNoisy(detid_,pix.col(),pix.row())) )
360  {
361  std::cout << "IMPOSSIBLE" << std::endl;
362  seed_adc = 0;
363  theBuffer.set_adc(pix, 1);
364  }
365  else {
366  */
367  seed_adc = theBuffer(pix.row(), pix.col());
368  theBuffer.set_adc( pix, 1);
369  // }
370 
371  AccretionCluster acluster;
372  acluster.add(pix, seed_adc);
373 
374  //Here we search all pixels adjacent to all pixels in the cluster.
375  bool dead_flag = false;
376  while ( ! acluster.empty())
377  {
378  //This is the standard algorithm to find and add a pixel
379  auto curInd = acluster.top(); acluster.pop();
380  for ( auto c = std::max(0,int(acluster.y[curInd])-1); c < std::min(int(acluster.y[curInd])+2,theBuffer.columns()) ; ++c) {
381  for ( auto r = std::max(0,int(acluster.x[curInd])-1); r < std::min(int(acluster.x[curInd])+2,theBuffer.rows()); ++r) {
382  if ( theBuffer(r,c) >= thePixelThreshold) {
383  SiPixelCluster::PixelPos newpix(r,c);
384  if (!acluster.add( newpix, theBuffer(r,c))) goto endClus;
385  theBuffer.set_adc( newpix, 1);
386  }
387 
388 
389  /* //Commenting out the addition of dead pixels to the cluster until further testing -- dfehling 06/09
390  //Check on the bounds of the module; this is to keep the isDead and isNoisy modules from returning errors
391  else if(r>= 0 && c >= 0 && (r <= (theNumOfRows-1.)) && (c <= (theNumOfCols-1.))){
392  //Check for dead/noisy pixels check that the buffer is not -1 (already considered). Check whether we want to split clusters separated by dead pixels or not.
393  if((theSiPixelGainCalibrationService_->isDead(detid_,c,r) || theSiPixelGainCalibrationService_->isNoisy(detid_,c,r)) && theBuffer(r,c) != 1){
394 
395  //If a pixel is dead or noisy, check to see if we want to split the clusters or not.
396  //Push it into a dead pixel stack in case we want to split the clusters. Otherwise add it to the cluster.
397  //If we are splitting the clusters, we will iterate over the dead pixel stack later.
398 
399  SiPixelCluster::PixelPos newpix(r,c);
400  if(!doSplitClusters){
401 
402  cluster.add(newpix, theBuffer(r,c));}
403  else if(doSplitClusters){
404  dead_pixel_stack.push(newpix);
405  dead_flag = true;}
406 
407  theBuffer.set_adc(newpix, 1);
408  }
409 
410  }
411  */
412 
413 
414 
415  }
416  }
417 
418  } // while accretion
419  endClus:
420  SiPixelCluster cluster(acluster.isize,acluster.adc, acluster.x,acluster.y, acluster.xmin,acluster.ymin);
421  //Here we split the cluster, if the flag to do so is set and we have found a dead or noisy pixel.
422 
423  if (dead_flag && doSplitClusters)
424  {
425  //Set the first cluster equal to the existing cluster.
426  SiPixelCluster first_cluster = cluster;
427  bool have_second_cluster = false;
428  while ( !dead_pixel_stack.empty() )
429  {
430  //consider each found dead pixel
431  SiPixelCluster::PixelPos deadpix = dead_pixel_stack.top(); dead_pixel_stack.pop();
432  theBuffer.set_adc(deadpix, 1);
433 
434  //Clusterize the split cluster using the dead pixel as a seed
435  SiPixelCluster second_cluster = make_cluster(deadpix, output);
436 
437  //If both clusters would normally have been found by the clusterizer, put them into output
438  if ( second_cluster.charge() >= theClusterThreshold &&
439  first_cluster.charge() >= theClusterThreshold )
440  {
441  output.push_back( second_cluster );
442  have_second_cluster = true;
443  }
444 
445  //We also want to keep the merged cluster in data and let the RecHit algorithm decide which set to keep
446  //This loop adds the second cluster to the first.
447  const std::vector<SiPixelCluster::Pixel>& branch_pixels = second_cluster.pixels();
448  for ( unsigned int i = 0; i<branch_pixels.size(); i++)
449  {
450  int temp_x = branch_pixels[i].x;
451  int temp_y = branch_pixels[i].y;
452  int temp_adc = branch_pixels[i].adc;
453  SiPixelCluster::PixelPos newpix(temp_x, temp_y);
454  cluster.add(newpix, temp_adc);}
455  }
456 
457  //Remember to also add the first cluster if we added the second one.
458  if ( first_cluster.charge() >= theClusterThreshold && have_second_cluster)
459  {
460  output.push_back( first_cluster );
461  }
462  }
463 
464  return cluster;
465 }
466 
int adc(sample_type sample)
get the ADC sample (12 bits)
T getParameter(std::string const &) const
T getUntrackedParameter(std::string const &, T const &) const
int i
Definition: DBlmapReader.cc:9
float charge() const
void push_back(data_type const &d)
virtual int nrows() const =0
PixelThresholdClusterizer(edm::ParameterSet const &conf)
SiPixelCluster make_cluster(const SiPixelCluster::PixelPos &pix, edmNew::DetSetVector< SiPixelCluster >::FastFiller &output)
The actual clustering algorithm: group the neighboring pixels around the seed.
bool exists(std::string const &parameterName) const
checks if a parameter exists
def setup(process, global_tag, zero_tesla=False)
Definition: GeneralSetup.py:1
unsigned int layer() const
layer id
Definition: PXBDetId.h:35
static std::string const input
Definition: EdmProvDump.cc:44
void clusterizeDetUnitT(const T &input, const PixelGeomDetUnit *pixDet, const std::vector< short > &badChannels, edmNew::DetSetVector< SiPixelCluster >::FastFiller &output)
Cluster pixels. This method operates on a matrix of pixels and finds the largest contiguous cluster a...
edm::DetSet< PixelDigi >::const_iterator DigiIterator
#define end
Definition: vmac.h:37
void add(const PixelPos &pix, int adc)
T min(T a, T b)
Definition: MathUtil.h:58
int subdetId() const
get the contents of the subdetector field (not cast into any detector&#39;s numbering enum) ...
Definition: DetId.h:37
bool add(SiPixelCluster::PixelPos const &p, UShort const iadc)
constexpr int col() const
Definition: DetId.h:18
edmNew::DetSet< SiPixelCluster >::const_iterator ClusterIterator
void clear_buffer(DigiIterator begin, DigiIterator end)
Clear the internal buffer array.
virtual const PixelTopology & specificTopology() const
Returns a reference to the pixel proxy topology.
Pixel cluster – collection of neighboring pixels above threshold.
#define begin
Definition: vmac.h:30
virtual int ncolumns() const =0
col
Definition: cuy.py:1008
bool setup(const PixelGeomDetUnit *pixDet)
Private helper methods:
int calibrate(int adc, int col, int row)
long double T
constexpr int row() const
def move(src, dest)
Definition: eostools.py:510
const std::vector< Pixel > pixels() const
void copy_to_buffer(DigiIterator begin, DigiIterator end)
Copy adc counts from PixelDigis into the buffer, identify seeds.