test
CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
EGExtraInfoModifierFromDB.cc
Go to the documentation of this file.
6 
9 
14 
17 
19 
20 #include <vdt/vdtMath.h>
21 
22 namespace {
23  const edm::InputTag empty_tag;
24 }
25 
26 #include <unordered_map>
27 
29 public:
32  typedef std::pair<edm::InputTag, ValMapFloatToken> ValMapFloatTagTokenPair;
33  typedef std::pair<edm::InputTag, ValMapIntToken> ValMapIntTagTokenPair;
34 
35  struct electron_config {
38  std::unordered_map<std::string, ValMapFloatTagTokenPair> tag_float_token_map;
39  std::unordered_map<std::string, ValMapIntTagTokenPair> tag_int_token_map;
40 
41  std::vector<std::string> condnames_mean_50ns;
42  std::vector<std::string> condnames_sigma_50ns;
43  std::vector<std::string> condnames_mean_25ns;
44  std::vector<std::string> condnames_sigma_25ns;
47  };
48 
49  struct photon_config {
52  std::unordered_map<std::string, ValMapFloatTagTokenPair> tag_float_token_map;
53  std::unordered_map<std::string, ValMapIntTagTokenPair> tag_int_token_map;
54 
55  std::vector<std::string> condnames_mean_50ns;
56  std::vector<std::string> condnames_sigma_50ns;
57  std::vector<std::string> condnames_mean_25ns;
58  std::vector<std::string> condnames_sigma_25ns;
59  };
60 
63 
64  void setEvent(const edm::Event&) override final;
65  void setEventContent(const edm::EventSetup&) override final;
66  void setConsumes(edm::ConsumesCollector&) override final;
67 
68  void modifyObject(reco::GsfElectron&) const override final;
69  void modifyObject(reco::Photon&) const override final;
70 
71  // just calls reco versions
72  void modifyObject(pat::Electron&) const override final;
73  void modifyObject(pat::Photon&) const override final;
74 
75 private:
78  std::unordered_map<unsigned,edm::Ptr<reco::GsfElectron> > eles_by_oop; // indexed by original object ptr
79  std::unordered_map<unsigned,edm::Handle<edm::ValueMap<float> > > ele_vmaps;
80  std::unordered_map<unsigned,edm::Handle<edm::ValueMap<int> > > ele_int_vmaps;
81  std::unordered_map<unsigned,edm::Ptr<reco::Photon> > phos_by_oop;
82  std::unordered_map<unsigned,edm::Handle<edm::ValueMap<float> > > pho_vmaps;
83  std::unordered_map<unsigned,edm::Handle<edm::ValueMap<int> > > pho_int_vmaps;
84 
88  edm::EDGetTokenT<unsigned int> bunchSpacingToken_;
89  float rhoValue_;
91  edm::EDGetTokenT<double> rhoToken_;
92  int nVtx_;
94  edm::EDGetTokenT<reco::VertexCollection> vtxToken_;
97 
99 
105 };
106 
109  "EGExtraInfoModifierFromDB");
110 
111 EGExtraInfoModifierFromDB::EGExtraInfoModifierFromDB(const edm::ParameterSet& conf) :
112  ModifyObjectValueBase(conf) {
113 
114  bunchspacing_ = 450;
115  autoDetectBunchSpacing_ = conf.getParameter<bool>("autoDetectBunchSpacing");
116  applyExtraHighEnergyProtection_ = conf.getParameter<bool>("applyExtraHighEnergyProtection");
117 
118  rhoTag_ = conf.getParameter<edm::InputTag>("rhoCollection");
119  vtxTag_ = conf.getParameter<edm::InputTag>("vertexCollection");
120 
121  if (autoDetectBunchSpacing_) {
122  bunchspacingTag_ = conf.getParameter<edm::InputTag>("bunchSpacingTag");
123  } else {
124  bunchspacing_ = conf.getParameter<int>("manualBunchSpacing");
125  }
126 
127  constexpr char electronSrc[] = "electronSrc";
128  constexpr char photonSrc[] = "photonSrc";
129 
130  if(conf.exists("electron_config")) {
131  const edm::ParameterSet& electrons = conf.getParameter<edm::ParameterSet>("electron_config");
132  if( electrons.exists(electronSrc) )
133  e_conf.electron_src = electrons.getParameter<edm::InputTag>(electronSrc);
134 
135  std::vector<std::string> intValueMaps;
136  if ( electrons.existsAs<std::vector<std::string> >("intValueMaps"))
137  intValueMaps = electrons.getParameter<std::vector<std::string> >("intValueMaps");
138 
139  const std::vector<std::string> parameters = electrons.getParameterNames();
140  for( const std::string& name : parameters ) {
141  if( std::string(electronSrc) == name )
142  continue;
143  if( electrons.existsAs<edm::InputTag>(name)) {
144  for (auto vmp : intValueMaps) {
145  if (name == vmp) {
147  break;
148  }
149  }
151  }
152  }
153 
154  e_conf.condnames_mean_50ns = electrons.getParameter<std::vector<std::string> >("regressionKey_50ns");
155  e_conf.condnames_sigma_50ns = electrons.getParameter<std::vector<std::string> >("uncertaintyKey_50ns");
156  e_conf.condnames_mean_25ns = electrons.getParameter<std::vector<std::string> >("regressionKey_25ns");
157  e_conf.condnames_sigma_25ns = electrons.getParameter<std::vector<std::string> >("uncertaintyKey_25ns");
158  e_conf.condnames_weight_50ns = electrons.getParameter<std::string>("combinationKey_50ns");
159  e_conf.condnames_weight_25ns = electrons.getParameter<std::string>("combinationKey_25ns");
160  }
161 
162  if( conf.exists("photon_config") ) {
163  const edm::ParameterSet& photons = conf.getParameter<edm::ParameterSet>("photon_config");
164 
165  if( photons.exists(photonSrc) )
166  ph_conf.photon_src = photons.getParameter<edm::InputTag>(photonSrc);
167 
168  std::vector<std::string> intValueMaps;
169  if ( photons.existsAs<std::vector<std::string> >("intValueMaps"))
170  intValueMaps = photons.getParameter<std::vector<std::string> >("intValueMaps");
171 
172  const std::vector<std::string> parameters = photons.getParameterNames();
173  for( const std::string& name : parameters ) {
174  if( std::string(photonSrc) == name )
175  continue;
176  if( photons.existsAs<edm::InputTag>(name)) {
177  for (auto vmp : intValueMaps) {
178  if (name == vmp) {
180  break;
181  }
182  }
184  }
185  }
186 
187  ph_conf.condnames_mean_50ns = photons.getParameter<std::vector<std::string>>("regressionKey_50ns");
188  ph_conf.condnames_sigma_50ns = photons.getParameter<std::vector<std::string>>("uncertaintyKey_50ns");
189  ph_conf.condnames_mean_25ns = photons.getParameter<std::vector<std::string>>("regressionKey_25ns");
190  ph_conf.condnames_sigma_25ns = photons.getParameter<std::vector<std::string>>("uncertaintyKey_25ns");
191  }
192 }
193 
194 namespace {
195  template<typename T>
196  inline void get_product(const edm::Event& evt,
197  const edm::EDGetTokenT<edm::ValueMap<T> >& tok,
198  std::unordered_map<unsigned, edm::Handle<edm::ValueMap<T> > >& map) {
199  evt.getByToken(tok,map[tok.index()]);
200  }
201 }
202 
204  eles_by_oop.clear();
205  phos_by_oop.clear();
206  ele_vmaps.clear();
207  ele_int_vmaps.clear();
208  pho_vmaps.clear();
209  pho_int_vmaps.clear();
210 
214 
215  for( unsigned i = 0; i < eles->size(); ++i ) {
216  edm::Ptr<pat::Electron> ptr = eles->ptrAt(i);
217  eles_by_oop[ptr->originalObjectRef().key()] = ptr;
218  }
219  }
220 
221  for (std::unordered_map<std::string, ValMapFloatTagTokenPair>::iterator imap = e_conf.tag_float_token_map.begin();
222  imap != e_conf.tag_float_token_map.end();
223  imap++) {
224  get_product(evt, imap->second.second, ele_vmaps);
225  }
226 
227  for (std::unordered_map<std::string, ValMapIntTagTokenPair>::iterator imap = e_conf.tag_int_token_map.begin();
228  imap != e_conf.tag_int_token_map.end();
229  imap++) {
230  get_product(evt, imap->second.second, ele_int_vmaps);
231  }
232 
236 
237  for( unsigned i = 0; i < phos->size(); ++i ) {
238  edm::Ptr<pat::Photon> ptr = phos->ptrAt(i);
239  phos_by_oop[ptr->originalObjectRef().key()] = ptr;
240  }
241  }
242 
243 
244  for (std::unordered_map<std::string, ValMapFloatTagTokenPair>::iterator imap = ph_conf.tag_float_token_map.begin();
245  imap != ph_conf.tag_float_token_map.end();
246  imap++) {
247  get_product(evt, imap->second.second, pho_vmaps);
248  }
249 
250  for (std::unordered_map<std::string, ValMapIntTagTokenPair>::iterator imap = ph_conf.tag_int_token_map.begin();
251  imap != ph_conf.tag_int_token_map.end();
252  imap++) {
253  get_product(evt, imap->second.second, pho_int_vmaps);
254  }
255 
257  edm::Handle<unsigned int> bunchSpacingH;
258  evt.getByToken(bunchSpacingToken_,bunchSpacingH);
259  bunchspacing_ = *bunchSpacingH;
260  }
261 
262  edm::Handle<double> rhoH;
263  evt.getByToken(rhoToken_, rhoH);
264  rhoValue_ = *rhoH;
265 
266  evt.getByToken(vtxToken_, vtxH_);
267  nVtx_ = vtxH_->size();
268 }
269 
271 
272  iSetup_ = &evs;
273 
274  edm::ESHandle<GBRForestD> forestDEH;
275  edm::ESHandle<GBRForest> forestEH;
276 
277  const std::vector<std::string> ph_condnames_mean = (bunchspacing_ == 25) ? ph_conf.condnames_mean_25ns : ph_conf.condnames_mean_50ns;
278  const std::vector<std::string> ph_condnames_sigma = (bunchspacing_ == 25) ? ph_conf.condnames_sigma_25ns : ph_conf.condnames_sigma_50ns;
279 
280  unsigned int ncor = ph_condnames_mean.size();
281  for (unsigned int icor=0; icor<ncor; ++icor) {
282  evs.get<GBRDWrapperRcd>().get(ph_condnames_mean[icor], forestDEH);
283  ph_forestH_mean_.push_back(forestDEH.product());
284  evs.get<GBRDWrapperRcd>().get(ph_condnames_sigma[icor], forestDEH);
285  ph_forestH_sigma_.push_back(forestDEH.product());
286  }
287 
288  const std::vector<std::string> e_condnames_mean = (bunchspacing_ == 25) ? e_conf.condnames_mean_25ns : e_conf.condnames_mean_50ns;
289  const std::vector<std::string> e_condnames_sigma = (bunchspacing_ == 25) ? e_conf.condnames_sigma_25ns : e_conf.condnames_sigma_50ns;
290  const std::string ep_condnames_weight = (bunchspacing_ == 25) ? e_conf.condnames_weight_25ns : e_conf.condnames_weight_50ns;
291 
292  unsigned int encor = e_condnames_mean.size();
293  evs.get<GBRWrapperRcd>().get(ep_condnames_weight, forestEH);
294  ep_forestH_weight_ = forestEH.product();
295 
296  for (unsigned int icor=0; icor<encor; ++icor) {
297  evs.get<GBRDWrapperRcd>().get(e_condnames_mean[icor], forestDEH);
298  e_forestH_mean_.push_back(forestDEH.product());
299  evs.get<GBRDWrapperRcd>().get(e_condnames_sigma[icor], forestDEH);
300  e_forestH_sigma_.push_back(forestDEH.product());
301  }
302 }
303 
304 namespace {
305  template<typename T, typename U, typename V>
306  inline void make_consumes(T& tag,U& tok,V& sume) {
307  if(!(empty_tag == tag))
308  tok = sume.template consumes<edm::ValueMap<float> >(tag);
309  }
310 
311  template<typename T, typename U, typename V>
312  inline void make_int_consumes(T& tag,U& tok,V& sume) {
313  if(!(empty_tag == tag))
314  tok = sume.template consumes<edm::ValueMap<int> >(tag);
315  }
316 }
317 
319 
320  rhoToken_ = sumes.consumes<double>(rhoTag_);
322 
324  bunchSpacingToken_ = sumes.consumes<unsigned int>(bunchspacingTag_);
325 
326  //setup electrons
327  if(!(empty_tag == e_conf.electron_src))
329 
330  for ( std::unordered_map<std::string, ValMapFloatTagTokenPair>::iterator imap = e_conf.tag_float_token_map.begin();
331  imap != e_conf.tag_float_token_map.end();
332  imap++) {
333  make_consumes(imap->second.first, imap->second.second, sumes);
334  }
335 
336  for ( std::unordered_map<std::string, ValMapIntTagTokenPair>::iterator imap = e_conf.tag_int_token_map.begin();
337  imap != e_conf.tag_int_token_map.end();
338  imap++) {
339  make_int_consumes(imap->second.first, imap->second.second, sumes);
340  }
341 
342  // setup photons
343  if(!(empty_tag == ph_conf.photon_src))
345 
346  for ( std::unordered_map<std::string, ValMapFloatTagTokenPair>::iterator imap = ph_conf.tag_float_token_map.begin();
347  imap != ph_conf.tag_float_token_map.end();
348  imap++) {
349  make_consumes(imap->second.first, imap->second.second, sumes);
350  }
351 
352  for ( std::unordered_map<std::string, ValMapIntTagTokenPair>::iterator imap = ph_conf.tag_int_token_map.begin();
353  imap != ph_conf.tag_int_token_map.end();
354  imap++) {
355  make_int_consumes(imap->second.first, imap->second.second, sumes);
356  }
357 }
358 
359 namespace {
360  template<typename T, typename U, typename V, typename Z>
361  inline void assignValue(const T& ptr, const U& tok, const V& map, Z& value) {
362  if( !tok.isUninitialized() ) value = map.find(tok.index())->second->get(ptr.id(),ptr.key());
363  }
364 }
365 
367  // regression calculation needs no additional valuemaps
368 
369  const reco::SuperClusterRef& the_sc = ele.superCluster();
370  const edm::Ptr<reco::CaloCluster>& theseed = the_sc->seed();
371  const int numberOfClusters = the_sc->clusters().size();
372  const bool missing_clusters = !the_sc->clusters()[numberOfClusters-1].isAvailable();
373 
374 
375  //skip HGCal for now
376  if( theseed->seed().det() == DetId::Forward ) return;
377  if( missing_clusters ) return ; // do not apply corrections in case of missing info (slimmed MiniAOD electrons)
378 
379  std::array<float, 33> eval;
380  const double raw_energy = the_sc->rawEnergy();
381  const auto& ess = ele.showerShape();
382 
383  // SET INPUTS
384  eval[0] = nVtx_;
385  eval[1] = raw_energy;
386  eval[2] = the_sc->eta();
387  eval[3] = the_sc->phi();
388  eval[4] = the_sc->etaWidth();
389  eval[5] = the_sc->phiWidth();
390  eval[6] = ess.r9;
391  eval[7] = theseed->energy()/raw_energy;
392  eval[8] = ess.eMax/raw_energy;
393  eval[9] = ess.e2nd/raw_energy;
394  eval[10] = (ess.eLeft + ess.eRight != 0.f ? (ess.eLeft-ess.eRight)/(ess.eLeft+ess.eRight) : 0.f);
395  eval[11] = (ess.eTop + ess.eBottom != 0.f ? (ess.eTop-ess.eBottom)/(ess.eTop+ess.eBottom) : 0.f);
396  eval[12] = ess.sigmaIetaIeta;
397  eval[13] = ess.sigmaIetaIphi;
398  eval[14] = ess.sigmaIphiIphi;
399  eval[15] = std::max(0,numberOfClusters-1);
400 
401  // calculate sub-cluster variables
402  std::vector<float> clusterRawEnergy;
403  clusterRawEnergy.resize(std::max(3, numberOfClusters), 0);
404  std::vector<float> clusterDEtaToSeed;
405  clusterDEtaToSeed.resize(std::max(3, numberOfClusters), 0);
406  std::vector<float> clusterDPhiToSeed;
407  clusterDPhiToSeed.resize(std::max(3, numberOfClusters), 0);
408  float clusterMaxDR = 999.;
409  float clusterMaxDRDPhi = 999.;
410  float clusterMaxDRDEta = 999.;
411  float clusterMaxDRRawEnergy = 0.;
412 
413  size_t iclus = 0;
414  float maxDR = 0;
416  // loop over all clusters that aren't the seed
417  auto clusend = the_sc->clustersEnd();
418  for( auto clus = the_sc->clustersBegin(); clus != clusend; ++clus ) {
419  pclus = *clus;
420 
421  if(theseed == pclus )
422  continue;
423  clusterRawEnergy[iclus] = pclus->energy();
424  clusterDPhiToSeed[iclus] = reco::deltaPhi(pclus->phi(),theseed->phi());
425  clusterDEtaToSeed[iclus] = pclus->eta() - theseed->eta();
426 
427  // find cluster with max dR
428  const auto the_dr = reco::deltaR(*pclus, *theseed);
429  if(the_dr > maxDR) {
430  maxDR = the_dr;
431  clusterMaxDR = maxDR;
432  clusterMaxDRDPhi = clusterDPhiToSeed[iclus];
433  clusterMaxDRDEta = clusterDEtaToSeed[iclus];
434  clusterMaxDRRawEnergy = clusterRawEnergy[iclus];
435  }
436  ++iclus;
437  }
438 
439  eval[16] = clusterMaxDR;
440  eval[17] = clusterMaxDRDPhi;
441  eval[18] = clusterMaxDRDEta;
442  eval[19] = clusterMaxDRRawEnergy/raw_energy;
443  eval[20] = clusterRawEnergy[0]/raw_energy;
444  eval[21] = clusterRawEnergy[1]/raw_energy;
445  eval[22] = clusterRawEnergy[2]/raw_energy;
446  eval[23] = clusterDPhiToSeed[0];
447  eval[24] = clusterDPhiToSeed[1];
448  eval[25] = clusterDPhiToSeed[2];
449  eval[26] = clusterDEtaToSeed[0];
450  eval[27] = clusterDEtaToSeed[1];
451  eval[28] = clusterDEtaToSeed[2];
452 
453  // calculate coordinate variables
454  const bool iseb = ele.isEB();
455  float dummy;
456  int iPhi;
457  int iEta;
458  float cryPhi;
459  float cryEta;
460  EcalClusterLocal _ecalLocal;
461  if (ele.isEB())
462  _ecalLocal.localCoordsEB(*theseed, *iSetup_, cryEta, cryPhi, iEta, iPhi, dummy, dummy);
463  else
464  _ecalLocal.localCoordsEE(*theseed, *iSetup_, cryEta, cryPhi, iEta, iPhi, dummy, dummy);
465 
466  if (iseb) {
467  eval[29] = cryEta;
468  eval[30] = cryPhi;
469  eval[31] = iEta;
470  eval[32] = iPhi;
471  } else {
472  eval[29] = the_sc->preshowerEnergy()/the_sc->rawEnergy();
473  }
474 
475  //magic numbers for MINUIT-like transformation of BDT output onto limited range
476  //(These should be stored inside the conditions object in the future as well)
477  constexpr double meanlimlow = 0.2;
478  constexpr double meanlimhigh = 2.0;
479  constexpr double meanoffset = meanlimlow + 0.5*(meanlimhigh-meanlimlow);
480  constexpr double meanscale = 0.5*(meanlimhigh-meanlimlow);
481 
482  constexpr double sigmalimlow = 0.0002;
483  constexpr double sigmalimhigh = 0.5;
484  constexpr double sigmaoffset = sigmalimlow + 0.5*(sigmalimhigh-sigmalimlow);
485  constexpr double sigmascale = 0.5*(sigmalimhigh-sigmalimlow);
486 
487  int coridx = 0;
488  if (!iseb)
489  coridx = 1;
490 
491  //these are the actual BDT responses
492  double rawmean = e_forestH_mean_[coridx]->GetResponse(eval.data());
493  double rawsigma = e_forestH_sigma_[coridx]->GetResponse(eval.data());
494 
495  //apply transformation to limited output range (matching the training)
496  double mean = meanoffset + meanscale*vdt::fast_sin(rawmean);
497  double sigma = sigmaoffset + sigmascale*vdt::fast_sin(rawsigma);
498 
499  //regression target is ln(Etrue/Eraw)
500  //so corrected energy is ecor=exp(mean)*e, uncertainty is exp(mean)*eraw*sigma=ecor*sigma
501  double ecor = mean*(eval[1]);
502  if (!iseb)
503  ecor = mean*(eval[1]+the_sc->preshowerEnergy());
504  const double sigmacor = sigma*ecor;
505 
506  ele.setCorrectedEcalEnergy(ecor);
507  ele.setCorrectedEcalEnergyError(sigmacor);
508 
509  // E-p combination
510  //std::array<float, 11> eval_ep;
511  float eval_ep[11];
512 
513  const float ep = ele.trackMomentumAtVtx().R();
514  const float tot_energy = the_sc->rawEnergy()+the_sc->preshowerEnergy();
515  const float momentumError = ele.trackMomentumError();
516  const float trkMomentumRelError = ele.trackMomentumError()/ep;
517  const float eOverP = tot_energy*mean/ep;
518  eval_ep[0] = tot_energy*mean;
519  eval_ep[1] = sigma/mean;
520  eval_ep[2] = ep;
521  eval_ep[3] = trkMomentumRelError;
522  eval_ep[4] = sigma/mean/trkMomentumRelError;
523  eval_ep[5] = tot_energy*mean/ep;
524  eval_ep[6] = tot_energy*mean/ep*sqrt(sigma/mean*sigma/mean+trkMomentumRelError*trkMomentumRelError);
525  eval_ep[7] = ele.ecalDriven();
526  eval_ep[8] = ele.trackerDrivenSeed();
527  eval_ep[9] = int(ele.classification());//eleClass;
528  eval_ep[10] = iseb;
529 
530  // CODE FOR FUTURE SEMI_PARAMETRIC
531  //double rawweight = ep_forestH_mean_[coridx]->GetResponse(eval_ep.data());
533  //double weight = meanoffset + meanscale*vdt::fast_sin(rawweight);
535 
536  // CODE FOR STANDARD BDT
537  double weight = 0.;
538  if ( eOverP > 0.025 &&
539  std::abs(ep-ecor) < 15.*std::sqrt( momentumError*momentumError + sigmacor*sigmacor ) &&
540  (!applyExtraHighEnergyProtection_ || ((momentumError < 10.*ep) || (ecor < 200.)))
541  ) {
542  // protection against crazy track measurement
543  weight = ep_forestH_weight_->GetResponse(eval_ep);
544  if(weight>1.)
545  weight = 1.;
546  else if(weight<0.)
547  weight = 0.;
548  }
549 
550  double combinedMomentum = weight*ele.trackMomentumAtVtx().R() + (1.-weight)*ecor;
551  double combinedMomentumError = sqrt(weight*weight*ele.trackMomentumError()*ele.trackMomentumError() + (1.-weight)*(1.-weight)*sigmacor*sigmacor);
552 
553  math::XYZTLorentzVector oldMomentum = ele.p4();
554  math::XYZTLorentzVector newMomentum = math::XYZTLorentzVector(oldMomentum.x()*combinedMomentum/oldMomentum.t(),
555  oldMomentum.y()*combinedMomentum/oldMomentum.t(),
556  oldMomentum.z()*combinedMomentum/oldMomentum.t(),
557  combinedMomentum);
558 
559  //ele.correctEcalEnergy(combinedMomentum, combinedMomentumError);
560  ele.correctMomentum(newMomentum, ele.trackMomentumError(), combinedMomentumError);
561 }
562 
564  modifyObject(static_cast<reco::GsfElectron&>(ele));
565 }
566 
568  // regression calculation needs no additional valuemaps
569 
570  std::array<float, 35> eval;
571  const reco::SuperClusterRef& the_sc = pho.superCluster();
572  const edm::Ptr<reco::CaloCluster>& theseed = the_sc->seed();
573 
574  const int numberOfClusters = the_sc->clusters().size();
575  const bool missing_clusters = !the_sc->clusters()[numberOfClusters-1].isAvailable();
576 
577  // skip HGCal for now
578  if( theseed->seed().det() == DetId::Forward ) return;
579  if( missing_clusters ) return ; // do not apply corrections in case of missing info (slimmed MiniAOD electrons)
580 
581  const double raw_energy = the_sc->rawEnergy();
582  const auto& ess = pho.showerShapeVariables();
583 
584  // SET INPUTS
585  eval[0] = raw_energy;
586  eval[1] = pho.r9();
587  eval[2] = the_sc->etaWidth();
588  eval[3] = the_sc->phiWidth();
589  eval[4] = std::max(0,numberOfClusters - 1);
590  eval[5] = pho.hadronicOverEm();
591  eval[6] = rhoValue_;
592  eval[7] = nVtx_;
593  eval[8] = theseed->eta()-the_sc->position().Eta();
594  eval[9] = reco::deltaPhi(theseed->phi(),the_sc->position().Phi());
595  eval[10] = theseed->energy()/raw_energy;
596  eval[11] = ess.e3x3/ess.e5x5;
597  eval[12] = ess.sigmaIetaIeta;
598  eval[13] = ess.sigmaIphiIphi;
599  eval[14] = ess.sigmaIetaIphi/(ess.sigmaIphiIphi*ess.sigmaIetaIeta);
600  eval[15] = ess.maxEnergyXtal/ess.e5x5;
601  eval[16] = ess.e2nd/ess.e5x5;
602  eval[17] = ess.eTop/ess.e5x5;
603  eval[18] = ess.eBottom/ess.e5x5;
604  eval[19] = ess.eLeft/ess.e5x5;
605  eval[20] = ess.eRight/ess.e5x5;
606  eval[21] = ess.e2x5Max/ess.e5x5;
607  eval[22] = ess.e2x5Left/ess.e5x5;
608  eval[23] = ess.e2x5Right/ess.e5x5;
609  eval[24] = ess.e2x5Top/ess.e5x5;
610  eval[25] = ess.e2x5Bottom/ess.e5x5;
611 
612  const bool iseb = pho.isEB();
613  if (iseb) {
614  EBDetId ebseedid(theseed->seed());
615  eval[26] = pho.e5x5()/theseed->energy();
616  int ieta = ebseedid.ieta();
617  int iphi = ebseedid.iphi();
618  eval[27] = ieta;
619  eval[28] = iphi;
620  int signieta = ieta > 0 ? +1 : -1;
621  eval[29] = (ieta-signieta)%5;
622  eval[30] = (iphi-1)%2;
623  // eval[31] = (abs(ieta)<=25)*((ieta-signieta)%25) + (abs(ieta)>25)*((ieta-26*signieta)%20); //%25 is unnescessary in this formula
624  eval[31] = (abs(ieta)<=25)*((ieta-signieta)) + (abs(ieta)>25)*((ieta-26*signieta)%20);
625  eval[32] = (iphi-1)%20;
626  eval[33] = ieta;
627  eval[34] = iphi;
628  } else {
629  EEDetId eeseedid(theseed->seed());
630  eval[26] = the_sc->preshowerEnergy()/raw_energy;
631  eval[27] = the_sc->preshowerEnergyPlane1()/raw_energy;
632  eval[28] = the_sc->preshowerEnergyPlane2()/raw_energy;
633  eval[29] = eeseedid.ix();
634  eval[30] = eeseedid.iy();
635  }
636 
637  //magic numbers for MINUIT-like transformation of BDT output onto limited range
638  //(These should be stored inside the conditions object in the future as well)
639  const double meanlimlow = 0.2;
640  const double meanlimhigh = 2.0;
641  const double meanoffset = meanlimlow + 0.5*(meanlimhigh-meanlimlow);
642  const double meanscale = 0.5*(meanlimhigh-meanlimlow);
643 
644  const double sigmalimlow = 0.0002;
645  const double sigmalimhigh = 0.5;
646  const double sigmaoffset = sigmalimlow + 0.5*(sigmalimhigh-sigmalimlow);
647  const double sigmascale = 0.5*(sigmalimhigh-sigmalimlow);
648 
649  int coridx = 0;
650  if (!iseb)
651  coridx = 1;
652 
653  //these are the actual BDT responses
654  double rawmean = ph_forestH_mean_[coridx]->GetResponse(eval.data());
655  double rawsigma = ph_forestH_sigma_[coridx]->GetResponse(eval.data());
656  //apply transformation to limited output range (matching the training)
657  double mean = meanoffset + meanscale*vdt::fast_sin(rawmean);
658  double sigma = sigmaoffset + sigmascale*vdt::fast_sin(rawsigma);
659 
660  //regression target is ln(Etrue/Eraw)
661  //so corrected energy is ecor=exp(mean)*e, uncertainty is exp(mean)*eraw*sigma=ecor*sigma
662  double ecor = mean*eval[0];
663  if (!iseb)
664  ecor = mean*(eval[0]+the_sc->preshowerEnergy());
665 
666  double sigmacor = sigma*ecor;
667  pho.setCorrectedEnergy(reco::Photon::P4type::regression2, ecor, sigmacor, true);
668 }
669 
671  modifyObject(static_cast<reco::Photon&>(pho));
672 }
const double Z[kNumberCalorimeter]
double GetResponse(const float *vector) const
Definition: GBRForest.h:59
const ShowerShape & showerShape() const
Definition: GsfElectron.h:429
EDGetTokenT< ProductType > consumes(edm::InputTag const &tag)
bool isAvailable() const
Definition: Ref.h:576
T getParameter(std::string const &) const
int i
Definition: DBlmapReader.cc:9
Analysis-level Photon class.
Definition: Photon.h:47
float trackMomentumError() const
Definition: GsfElectron.h:773
bool existsAs(std::string const &parameterName, bool trackiness=true) const
checks if a parameter exists as a given type
Definition: ParameterSet.h:186
std::unordered_map< std::string, ValMapIntTagTokenPair > tag_int_token_map
const LorentzVector & p4(P4Kind kind) const
Definition: GsfElectron.cc:224
reco::SuperClusterRef superCluster() const
Ref to SuperCluster.
key_type key() const
Definition: Ptr.h:186
void setCorrectedEnergy(P4type type, float E, float dE, bool toCand=true)
float e5x5() const
Definition: Photon.h:221
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:457
std::unordered_map< std::string, ValMapIntTagTokenPair > tag_int_token_map
std::unordered_map< unsigned, edm::Ptr< reco::Photon > > phos_by_oop
void correctMomentum(const LorentzVector &p4, float trackMomentumError, float p4Error)
Definition: GsfElectron.h:795
math::XYZVectorF trackMomentumAtVtx() const
Definition: GsfElectron.h:289
std::unordered_map< std::string, ValMapFloatTagTokenPair > tag_float_token_map
bool exists(std::string const &parameterName) const
checks if a parameter exists
std::vector< const GBRForestD * > ph_forestH_sigma_
std::vector< Vertex > VertexCollection
collection of Vertex objects
Definition: VertexFwd.h:9
std::unordered_map< std::string, ValMapFloatTagTokenPair > tag_float_token_map
std::unordered_map< unsigned, edm::Handle< edm::ValueMap< int > > > pho_int_vmaps
#define constexpr
bool isEB() const
Definition: GsfElectron.h:350
U second(std::pair< T, U > const &p)
XYZTLorentzVectorD XYZTLorentzVector
Lorentz vector with cylindrical internal representation using pseudorapidity.
Definition: LorentzVector.h:29
std::unordered_map< unsigned, edm::Handle< edm::ValueMap< float > > > pho_vmaps
void setCorrectedEcalEnergyError(float newEnergyError)
Definition: GsfElectron.cc:178
const std::string & name() const
void setConsumes(edm::ConsumesCollector &) overridefinal
std::pair< edm::InputTag, ValMapFloatToken > ValMapFloatTagTokenPair
T sqrt(T t)
Definition: SSEVec.h:18
virtual SuperClusterRef superCluster() const
reference to a SuperCluster
Definition: GsfElectron.h:182
std::unordered_map< unsigned, edm::Ptr< reco::GsfElectron > > eles_by_oop
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
auto deltaR(const T1 &t1, const T2 &t2) -> decltype(t1.eta())
Definition: deltaR.h:28
float hadronicOverEm() const
the total hadronic over electromagnetic fraction
Definition: Photon.h:203
std::vector< std::string > getParameterNames() const
std::unordered_map< unsigned, edm::Handle< edm::ValueMap< float > > > ele_vmaps
edm::EDGetTokenT< edm::ValueMap< int > > ValMapIntToken
std::vector< const GBRForestD * > ph_forestH_mean_
void setEvent(const edm::Event &) overridefinal
double deltaPhi(double phi1, double phi2)
Definition: deltaPhi.h:22
edm::EDGetTokenT< edm::View< pat::Photon > > tok_photon_src
std::pair< edm::InputTag, ValMapIntToken > ValMapIntTagTokenPair
Classification classification() const
Definition: GsfElectron.h:694
const T & get() const
Definition: EventSetup.h:56
T const * product() const
Definition: ESHandle.h:86
edm::EDGetTokenT< unsigned int > bunchSpacingToken_
edm::EDGetTokenT< edm::ValueMap< float > > ValMapFloatToken
Analysis-level electron class.
Definition: Electron.h:52
edm::Handle< reco::VertexCollection > vtxH_
string const
Definition: compareJSON.py:14
std::vector< const GBRForestD * > e_forestH_mean_
void setEventContent(const edm::EventSetup &) overridefinal
void localCoordsEB(const reco::CaloCluster &bclus, const edm::EventSetup &es, float &etacry, float &phicry, int &ieta, int &iphi, float &thetatilt, float &phitilt) const
return(e1-e2)*(e1-e2)+dp *dp
bool isEB() const
Definition: Photon.h:120
void setCorrectedEcalEnergy(float newEnergy)
Definition: GsfElectron.cc:181
void modifyObject(reco::GsfElectron &) const overridefinal
edm::EDGetTokenT< reco::VertexCollection > vtxToken_
float r9() const
Definition: Photon.h:227
bool trackerDrivenSeed() const
Definition: GsfElectron.h:187
bool isUninitialized() const
Definition: EDGetToken.h:73
std::unordered_map< unsigned, edm::Handle< edm::ValueMap< int > > > ele_int_vmaps
#define DEFINE_EDM_PLUGIN(factory, type, name)
int weight
Definition: histoStyle.py:50
void localCoordsEE(const reco::CaloCluster &bclus, const edm::EventSetup &es, float &xcry, float &ycry, int &ix, int &iy, float &thetatilt, float &phitilt) const
long double T
const ShowerShape & showerShapeVariables() const
Definition: Photon.h:196
bool ecalDriven() const
Definition: GsfElectron.cc:173
std::vector< const GBRForestD * > e_forestH_sigma_
edm::EDGetTokenT< double > rhoToken_
EGExtraInfoModifierFromDB(const edm::ParameterSet &conf)
edm::EDGetTokenT< edm::View< pat::Electron > > tok_electron_src