CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Functions
VVIObjDetails Namespace Reference

Functions

double cosint (double x)
 Private version of the cosine and sine integral. More...
 
template<typename F >
int dzero (double a, double b, double &x0, double &rv, double eps, int mxf, F func)
 Private version of the exponential integral. More...
 
double expint (double x)
 Private version of the sine integral. More...
 
void sincosint (double x, double &sint, double &cint)
 
double sinint (double x)
 Private version of the cosine integral. More...
 

Function Documentation

double VVIObjDetails::cosint ( double  x)

Private version of the cosine and sine integral.

Definition at line 193 of file VVIObj.cc.

References funct::cos(), alignCSCRings::e, dqm-mbProfile::log, AlCaHLTBitMon_ParallelJobs::p, createTree::pp, lumiQueryAPI::q, and funct::sin().

193  {
194  // Initialized data
195 
196  const double zero = 0.;
197  const double one = 1.;
198  const double two = 2.;
199  const double eight = 8.;
200  const double ce = .57721566490153;
201  const double c__[14] = { 1.9405491464836,.9413409132865,
202  -.579845034293,.3091572011159,-.0916101792208,.0164437407515,
203  -.0019713091952,1.692538851e-4,-1.09393296e-5,5.522386e-7,
204  -2.23995e-8,7.465e-10,-2.08e-11,5e-13 };
205  const double p[23] = { .96074783975204,-.0371138962124,
206  .00194143988899,-1.7165988425e-4,2.112637753e-5,-3.27163257e-6,
207  6.0069212e-7,-1.2586794e-7,2.932563e-8,-7.45696e-9,2.04105e-9,
208  -5.9502e-10,1.8323e-10,-5.921e-11,1.997e-11,-7e-12,2.54e-12,
209  -9.5e-13,3.7e-13,-1.4e-13,6e-14,-2e-14,1e-14 };
210  const double q[20] = { .98604065696238,-.0134717382083,
211  4.5329284117e-4,-3.067288652e-5,3.13199198e-6,-4.2110196e-7,
212  6.907245e-8,-1.318321e-8,2.83697e-9,-6.7329e-10,1.734e-10,
213  -4.787e-11,1.403e-11,-4.33e-12,1.4e-12,-4.7e-13,1.7e-13,-6e-14,
214  2e-14,-1e-14 };
215 
216  // System generated locals
217  double d__1;
218 
219  // Local variables
220  double h__;
221  int i__;
222  double r__, y, b0, b1, b2, pp, qq, alfa;
223 
224  // If x==0, return same
225 
226  if (x == zero) {
227  return zero;
228  }
229  if (fabs(x) <= eight) {
230  y = x / eight;
231  // Computing 2nd power
232  d__1 = y;
233  h__ = two * (d__1 * d__1) - one;
234  alfa = -two * h__;
235  b1 = zero;
236  b2 = zero;
237  for (i__ = 13; i__ >= 0; --i__) {
238  b0 = c__[i__] - alfa * b1 - b2;
239  b2 = b1;
240  b1 = b0;
241  }
242  b1 = ce + log((fabs(x))) - b0 + h__ * b2;
243  } else {
244  r__ = one / x;
245  y = eight * r__;
246  // Computing 2nd power
247  d__1 = y;
248  h__ = two * (d__1 * d__1) - one;
249  alfa = -two * h__;
250  b1 = zero;
251  b2 = zero;
252  for (i__ = 22; i__ >= 0; --i__) {
253  b0 = p[i__] - alfa * b1 - b2;
254  b2 = b1;
255  b1 = b0;
256  }
257  pp = b0 - h__ * b2;
258  b1 = zero;
259  b2 = zero;
260  for (i__ = 19; i__ >= 0; --i__) {
261  b0 = q[i__] - alfa * b1 - b2;
262  b2 = b1;
263  b1 = b0;
264  }
265  qq = b0 - h__ * b2;
266  b1 = r__ * (qq * sin(x) - r__ * pp * cos(x));
267  }
268  return b1;
269  } // cosint
tuple pp
Definition: createTree.py:15
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
T x() const
Cartesian x coordinate.
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
template<typename F >
int VVIObjDetails::dzero ( double  a,
double  b,
double &  x0,
double &  rv,
double  eps,
int  mxf,
F  func 
)

Private version of the exponential integral.

Definition at line 570 of file VVIObj.cc.

References f, validate-o2o-wbm::f1, validate-o2o-wbm::f2, connectstrParser::f3, benchmark_cfg::fa, benchmark_cfg::fb, alignCSCRings::ff, bookConverter::max, min(), MetAnalyzer::u1, and MetAnalyzer::u2.

Referenced by VVIObj::VVIObj().

571  {
572  /* System generated locals */
573  double d__1, d__2, d__3, d__4;
574 
575  // Local variables
576  double f1, f2, f3, u1, u2, x1, x2, u3, u4, x3, ca, cb, cc, fa, fb, ee, ff;
577  int mc;
578  double xa, xb, fx, xx, su4;
579 
580  xa = std::min(a,b);
581  xb = std::max(a,b);
582  fa = func(xa);
583  fb = func(xb);
584  if (fa * fb > 0.) {
585  rv = (xb - xa) * -2;
586  x0 = 0.;
587  return 1;
588  }
589  mc = 0;
590  L1:
591  x0 = (xa + xb) * .5;
592  rv = x0 - xa;
593  ee = eps * (fabs(x0) + 1);
594  if (rv <= ee) {
595  rv = ee;
596  ff = func(x0);
597  return 0;
598  }
599  f1 = fa;
600  x1 = xa;
601  f2 = fb;
602  x2 = xb;
603  L2:
604  fx = func(x0);
605  ++mc;
606  if (mc > mxf) {
607  rv = (d__1 = xb - xa, fabs(d__1)) * -.5;
608  x0 = 0.;
609  return 0;
610  }
611  if (fx * fa > 0.) {
612  xa = x0;
613  fa = fx;
614  } else {
615  xb = x0;
616  fb = fx;
617  }
618  L3:
619  u1 = f1 - f2;
620  u2 = x1 - x2;
621  u3 = f2 - fx;
622  u4 = x2 - x0;
623  if (u2 == 0. || u4 == 0.) {goto L1;}
624  f3 = fx;
625  x3 = x0;
626  u1 /= u2;
627  u2 = u3 / u4;
628  ca = u1 - u2;
629  cb = (x1 + x2) * u2 - (x2 + x0) * u1;
630  cc = (x1 - x0) * f1 - x1 * (ca * x1 + cb);
631  if (ca == 0.) {
632  if (cb == 0.) {goto L1;}
633  x0 = -cc / cb;
634  } else {
635  u3 = cb / (ca * 2);
636  u4 = u3 * u3 - cc / ca;
637  if (u4 < 0.) {goto L1;}
638  su4 = fabs(u4);
639  if (x0 + u3 < 0.f) {su4 = -su4;}
640  x0 = -u3 + su4;
641  }
642  if (x0 < xa || x0 > xb) {goto L1;}
643  // Computing MIN
644  d__3 = (d__1 = x0 - x3, fabs(d__1)), d__4 = (d__2 = x0 - x2, fabs(d__2));
645  rv = std::min(d__3,d__4);
646  ee = eps * (fabs(x0) + 1);
647  if (rv > ee) {
648  f1 = f2;
649  x1 = x2;
650  f2 = f3;
651  x2 = x3;
652  goto L2;
653  }
654  fx = func(x0);
655  if (fx == 0.) {
656  rv = ee;
657  ff = func(x0);
658  return 0;
659  }
660  if (fx * fa < 0.) {
661  xx = x0 - ee;
662  if (xx <= xa) {
663  rv = ee;
664  ff = func(x0);
665  return 0;
666  }
667  ff = func(xx);
668  fb = ff;
669  xb = xx;
670  } else {
671  xx = x0 + ee;
672  if (xx >= xb) {
673  rv = ee;
674  ff = func(x0);
675  return 0;
676  }
677  ff = func(xx);
678  fa = ff;
679  xa = xx;
680  }
681  if (fx * ff > 0.) {
682  mc += 2;
683  if (mc > mxf) {
684  rv = (d__1 = xb - xa, fabs(d__1)) * -.5;
685  x0 = 0.;
686  return 0;
687  }
688  f1 = f3;
689  x1 = x3;
690  f2 = fx;
691  x2 = x0;
692  x0 = xx;
693  fx = ff;
694  goto L3;
695  }
696  /* L4: */
697  rv = ee;
698  ff = func(x0);
699  return 0;
700  } // dzero
double f[11][100]
T min(T a, T b)
Definition: MathUtil.h:58
double b
Definition: hdecay.h:120
double a
Definition: hdecay.h:121
double VVIObjDetails::expint ( double  x)

Private version of the sine integral.

Definition at line 448 of file VVIObj.cc.

References reco::dp, create_public_lumi_plots::exp, dqm-mbProfile::log, p1, p2, p3, p4, q1, q2, and findQualityFiles::v.

Referenced by VVIObj::VVIObj().

448  {
449 
450  // Initialized data
451 
452  const double zero = 0.;
453  const double q2[7] = { .10340013040487,3.319092135933,
454  20.449478501379,41.280784189142,32.426421069514,10.041164382905,
455  1. };
456  const double p3[6] = { -2.3909964453136,-147.98219500504,
457  -254.3763397689,-119.55761038372,-19.630408535939,-.9999999999036
458  };
459  const double q3[6] = { 177.60070940351,530.68509610812,
460  462.23027156148,156.81843364539,21.630408494238,1. };
461  const double p4[8] = { -8.6693733995107,-549.14226552109,
462  -4210.0161535707,-249301.39345865,-119623.66934925,
463  -22174462.775885,3892804.213112,-391546073.8091 };
464  const double q4[8] = { 34.171875,-1607.0892658722,35730.029805851,
465  -483547.43616216,4285596.2461175,-24903337.574054,89192576.757561,
466  -165254299.72521 };
467  const double a1[8] = { -2.1808638152072,-21.901023385488,
468  9.3081638566217,25.076281129356,-33.184253199722,60.121799083008,
469  -43.253113287813,1.0044310922808 };
470  const double b1[8] = { 0.,3.9370770185272,300.89264837292,
471  -6.2504116167188,1003.6743951673,14.325673812194,2736.2411988933,
472  .52746885196291 };
473  const double a2[8] = { -3.4833465360285,-18.65454548834,
474  -8.2856199414064,-32.34673303054,17.960168876925,1.7565631546961,
475  -1.9502232128966,.99999429607471 };
476  const double b2[8] = { 0.,69.500065588743,57.283719383732,
477  25.777638423844,760.76114800773,28.951672792514,-3.4394226689987,
478  1.0008386740264 };
479  const double a3[6] = { -27.780928934438,-10.10479081576,
480  -9.1483008216736,-5.0223317461851,-3.0000077799358,
481  1.0000000000704 };
482  const double one = 1.;
483  const double b3[6] = { 0.,122.39993926823,2.7276100778779,
484  -7.1897518395045,-2.9990118065262,1.999999942826 };
485  const double two = 2.;
486  const double three = 3.;
487  const double x0 = .37250741078137;
488  const double xl[6] = { -24.,-12.,-6.,0.,1.,4. };
489  const double p1[5] = { 4.293125234321,39.894153870321,
490  292.52518866921,425.69682638592,-434.98143832952 };
491  const double q1[5] = { 1.,18.899288395003,150.95038744251,
492  568.05252718987,753.58564359843 };
493  const double p2[7] = { .43096783946939,6.9052252278444,
494  23.019255939133,24.378408879132,9.0416155694633,.99997957705159,
495  4.656271079751e-7 };
496 
497  /* Local variables */
498  double v, y, ap, bp, aq, dp, bq, dq;
499 
500  if (x <= xl[0]) {
501  ap = a3[0] - x;
502  for ( int i__ = 2; i__ <= 5; ++i__) {
503  /* L1: */
504  ap = a3[i__ - 1] - x + b3[i__ - 1] / ap;
505  }
506  y = exp(-x) / x * (one - (a3[5] + b3[5] / ap) / x);
507  } else if (x <= xl[1]) {
508  ap = a2[0] - x;
509  for ( int i__ = 2; i__ <= 7; ++i__) {
510  ap = a2[i__ - 1] - x + b2[i__ - 1] / ap;
511  }
512  y = exp(-x) / x * (a2[7] + b2[7] / ap);
513  } else if (x <= xl[2]) {
514  ap = a1[0] - x;
515  for ( int i__ = 2; i__ <= 7; ++i__) {
516  ap = a1[i__ - 1] - x + b1[i__ - 1] / ap;
517  }
518  y = exp(-x) / x * (a1[7] + b1[7] / ap);
519  } else if (x < xl[3]) {
520  v = -two * (x / three + one);
521  bp = zero;
522  dp = p4[0];
523  for ( int i__ = 2; i__ <= 8; ++i__) {
524  ap = bp;
525  bp = dp;
526  dp = p4[i__ - 1] - ap + v * bp;
527  }
528  bq = zero;
529  dq = q4[0];
530  for ( int i__ = 2; i__ <= 8; ++i__) {
531  aq = bq;
532  bq = dq;
533  dq = q4[i__ - 1] - aq + v * bq;
534  }
535  y = -log(-x / x0) + (x + x0) * (dp - ap) / (dq - aq);
536  } else if (x == xl[3]) {
537  return zero;
538  } else if (x < xl[4]) {
539  ap = p1[0];
540  aq = q1[0];
541  for ( int i__ = 2; i__ <= 5; ++i__) {
542  ap = p1[i__ - 1] + x * ap;
543  aq = q1[i__ - 1] + x * aq;
544  }
545  y = -log(x) + ap / aq;
546  } else if (x <= xl[5]) {
547  y = one / x;
548  ap = p2[0];
549  aq = q2[0];
550  for ( int i__ = 2; i__ <= 7; ++i__) {
551  ap = p2[i__ - 1] + y * ap;
552  aq = q2[i__ - 1] + y * aq;
553  }
554  y = exp(-x) * ap / aq;
555  } else {
556  y = one / x;
557  ap = p3[0];
558  aq = q3[0];
559  for ( int i__ = 2; i__ <= 6; ++i__) {
560  ap = p3[i__ - 1] + y * ap;
561  aq = q3[i__ - 1] + y * aq;
562  }
563  y = exp(-x) * y * (one + y * ap / aq);
564  }
565  return y;
566 } // expint
double q2[4]
Definition: TauolaWrapper.h:88
T x() const
Cartesian x coordinate.
double p4[4]
Definition: TauolaWrapper.h:92
double p2[4]
Definition: TauolaWrapper.h:90
double q1[4]
Definition: TauolaWrapper.h:87
auto dp
Definition: deltaR.h:22
double p1[4]
Definition: TauolaWrapper.h:89
double p3[4]
Definition: TauolaWrapper.h:91
void VVIObjDetails::sincosint ( double  x,
double &  sint,
double &  cint 
)

Definition at line 345 of file VVIObj.cc.

References funct::cos(), alignCSCRings::e, dqm-mbProfile::log, AlCaHLTBitMon_ParallelJobs::p, createTree::pp, lumiQueryAPI::q, and funct::sin().

Referenced by VVIObj::VVIObj().

345  {
346  // Initialized data
347 
348  const double zero = 0.;
349  const double one = 1.;
350  const double two = 2.;
351  const double eight = 8.;
352  const double ce = .57721566490153;
353  const double pih = 1.5707963267949;
354  const double s__[14] = { 1.9522209759531,-.6884042321257,
355  .4551855132256,-.1804571236838,.0410422133759,-.0059586169556,
356  6.001427414e-4,-4.44708329e-5,2.5300782e-6,-1.141308e-7,4.1858e-9,
357  -1.273e-10,3.3e-12,-1e-13 };
358 
359  const double c__[14] = { 1.9405491464836,.9413409132865,
360  -.579845034293,.3091572011159,-.0916101792208,.0164437407515,
361  -.0019713091952,1.692538851e-4,-1.09393296e-5,5.522386e-7,
362  -2.23995e-8,7.465e-10,-2.08e-11,5e-13 };
363 
364  const double p[23] = { .96074783975204,-.0371138962124,
365  .00194143988899,-1.7165988425e-4,2.112637753e-5,-3.27163257e-6,
366  6.0069212e-7,-1.2586794e-7,2.932563e-8,-7.45696e-9,2.04105e-9,
367  -5.9502e-10,1.8323e-10,-5.921e-11,1.997e-11,-7e-12,2.54e-12,
368  -9.5e-13,3.7e-13,-1.4e-13,6e-14,-2e-14,1e-14 };
369  const double q[20] = { .98604065696238,-.0134717382083,
370  4.5329284117e-4,-3.067288652e-5,3.13199198e-6,-4.2110196e-7,
371  6.907245e-8,-1.318321e-8,2.83697e-9,-6.7329e-10,1.734e-10,
372  -4.787e-11,1.403e-11,-4.33e-12,1.4e-12,-4.7e-13,1.7e-13,-6e-14,
373  2e-14,-1e-14 };
374 
375  // System generated locals
376  double d__1;
377 
378  // Local variables
379  double h__;
380  int i__;
381  double r__, y, b0, b1, b2, pp, qq, alfa;
382 
383  sint=0;
384  cint=0;
385 
386 
387  if (fabs(x) <= eight) {
388  y = x / eight;
389  // Computing 2nd power
390  d__1 = y;
391  h__ = two * (d__1 * d__1) - one;
392  alfa = -two * h__;
393 
394  // cos
395  if (x!=0) {
396  b1 = zero;
397  b2 = zero;
398  for (i__ = 13; i__ >= 0; --i__) {
399  b0 = c__[i__] - alfa * b1 - b2;
400  b2 = b1;
401  b1 = b0;
402  }
403  cint = ce + log((fabs(x))) - b0 + h__ * b2;
404  }
405  // sin
406  b1 = zero;
407  b2 = zero;
408  for (i__ = 13; i__ >= 0; --i__) {
409  b0 = s__[i__] - alfa * b1 - b2;
410  b2 = b1;
411  b1 = b0;
412  }
413  sint = y * (b0 - b2);
414 
415  } else {
416  r__ = one / x;
417  y = eight * r__;
418  // Computing 2nd power
419  d__1 = y;
420  h__ = two * (d__1 * d__1) - one;
421  alfa = -two * h__;
422  b1 = zero;
423  b2 = zero;
424  for (i__ = 22; i__ >= 0; --i__) {
425  b0 = p[i__] - alfa * b1 - b2;
426  b2 = b1;
427  b1 = b0;
428  }
429  pp = b0 - h__ * b2;
430  b1 = zero;
431  b2 = zero;
432  for (i__ = 19; i__ >= 0; --i__) {
433  b0 = q[i__] - alfa * b1 - b2;
434  b2 = b1;
435  b1 = b0;
436  }
437  qq = b0 - h__ * b2;
438  // cos
439  cint = r__ * (qq * sin(x) - r__ * pp * cos(x));
440  // sin
441  d__1 = pih;
442  if(x < 0.) d__1 = -d__1;
443  sint = d__1 - r__ * (r__ * pp * sin(x) + qq * cos(x));
444  }
445  }
tuple pp
Definition: createTree.py:15
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
T x() const
Cartesian x coordinate.
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
double VVIObjDetails::sinint ( double  x)

Private version of the cosine integral.

Definition at line 271 of file VVIObj.cc.

References funct::cos(), alignCSCRings::e, AlCaHLTBitMon_ParallelJobs::p, createTree::pp, lumiQueryAPI::q, alignCSCRings::s, and funct::sin().

271  {
272  // Initialized data
273 
274  const double zero = 0.;
275  const double one = 1.;
276  const double two = 2.;
277  const double eight = 8.;
278  const double pih = 1.5707963267949;
279  const double s[14] = { 1.9522209759531,-.6884042321257,
280  .4551855132256,-.1804571236838,.0410422133759,-.0059586169556,
281  6.001427414e-4,-4.44708329e-5,2.5300782e-6,-1.141308e-7,4.1858e-9,
282  -1.273e-10,3.3e-12,-1e-13 };
283  const double p[23] = { .96074783975204,-.0371138962124,
284  .00194143988899,-1.7165988425e-4,2.112637753e-5,-3.27163257e-6,
285  6.0069212e-7,-1.2586794e-7,2.932563e-8,-7.45696e-9,2.04105e-9,
286  -5.9502e-10,1.8323e-10,-5.921e-11,1.997e-11,-7e-12,2.54e-12,
287  -9.5e-13,3.7e-13,-1.4e-13,6e-14,-2e-14,1e-14 };
288  const double q[20] = { .98604065696238,-.0134717382083,
289  4.5329284117e-4,-3.067288652e-5,3.13199198e-6,-4.2110196e-7,
290  6.907245e-8,-1.318321e-8,2.83697e-9,-6.7329e-10,1.734e-10,
291  -4.787e-11,1.403e-11,-4.33e-12,1.4e-12,-4.7e-13,1.7e-13,-6e-14,
292  2e-14,-1e-14 };
293 
294  // System generated locals
295  double d__1;
296 
297  // Local variables
298  double h__;
299  int i__;
300  double r__, y, b0, b1, b2, pp, qq, alfa;
301 
302  if (fabs(x) <= eight) {
303  y = x / eight;
304  d__1 = y;
305  h__ = two * (d__1 * d__1) - one;
306  alfa = -two * h__;
307  b1 = zero;
308  b2 = zero;
309  for (i__ = 13; i__ >= 0; --i__) {
310  b0 = s[i__] - alfa * b1 - b2;
311  b2 = b1;
312  b1 = b0;
313  }
314  b1 = y * (b0 - b2);
315  } else {
316  r__ = one / x;
317  y = eight * r__;
318  d__1 = y;
319  h__ = two * (d__1 * d__1) - one;
320  alfa = -two * h__;
321  b1 = zero;
322  b2 = zero;
323  for (i__ = 22; i__ >= 0; --i__) {
324  b0 = p[i__] - alfa * b1 - b2;
325  b2 = b1;
326  b1 = b0;
327  }
328  pp = b0 - h__ * b2;
329  b1 = zero;
330  b2 = zero;
331  for (i__ = 19; i__ >= 0; --i__) {
332  b0 = q[i__] - alfa * b1 - b2;
333  b2 = b1;
334  b1 = b0;
335  }
336  qq = b0 - h__ * b2;
337  d__1 = fabs(pih);
338  if(x < 0.) d__1 = -d__1;
339  b1 = d__1 - r__ * (r__ * pp * sin(x) + qq * cos(x));
340  }
341 
342  return b1;
343  } // sinint
tuple pp
Definition: createTree.py:15
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
T x() const
Cartesian x coordinate.
Cos< T >::type cos(const T &t)
Definition: Cos.h:22