CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
ReferenceTrajectory.cc
Go to the documentation of this file.
1 // Author : Gero Flucke (based on code by Edmund Widl replacing ORCA's TkReferenceTrack)
2 // date : 2006/09/17
3 // last update: $Date: 2012/12/25 16:42:04 $
4 // by : $Author: innocent $
5 
6 #include <memory>
7 
9 
12 
14 
19 
22 
26 
29 
32 
40 
42 
45 
46 //__________________________________________________________________________________
47 using namespace gbl;
48 
49 
52  &recHits, bool hitsAreReverse,
53  const MagneticField *magField,
54  MaterialEffects materialEffects,
55  PropagationDirection propDir,
56  double mass,
57  bool useBeamSpot, const reco::BeamSpot &beamSpot)
59  (materialEffects >= brokenLinesCoarse) ? 1 : refTsos.localParameters().mixedFormatVector().kSize,
60  (useBeamSpot == true) ? recHits.size()+1 : recHits.size(),
61  (materialEffects >= brokenLinesCoarse) ?
62  2*((useBeamSpot == true) ? recHits.size()+1 : recHits.size()) :
63  ( (materialEffects == breakPoints) ? 2*((useBeamSpot == true) ? recHits.size()+1 : recHits.size())-2 : 0) ,
64  (materialEffects >= brokenLinesCoarse) ?
65  2*((useBeamSpot == true) ? recHits.size()+1 : recHits.size())-4 :
66  ( (materialEffects == breakPoints) ? 2*((useBeamSpot == true) ? recHits.size()+1 : recHits.size())-2 : 0) )
67 {
68  // no check against magField == 0
69  theParameters = asHepVector<5>( refTsos.localParameters().mixedFormatVector() );
70 
71  if (hitsAreReverse) {
73  fwdRecHits.reserve(recHits.size());
74  for (TransientTrackingRecHit::ConstRecHitContainer::const_reverse_iterator it=recHits.rbegin();
75  it != recHits.rend(); ++it) {
76  fwdRecHits.push_back(*it);
77  }
78  theValidityFlag = this->construct(refTsos, fwdRecHits, mass, materialEffects,
79  propDir, magField,
80  useBeamSpot, beamSpot);
81  } else {
82  theValidityFlag = this->construct(refTsos, recHits, mass, materialEffects,
83  propDir, magField,
84  useBeamSpot, beamSpot);
85  }
86 }
87 
88 
89 //__________________________________________________________________________________
90 
91 ReferenceTrajectory::ReferenceTrajectory( unsigned int nPar, unsigned int nHits,
92  MaterialEffects materialEffects)
94  (materialEffects >= brokenLinesCoarse) ? 1 : nPar,
95  nHits,
96  (materialEffects >= brokenLinesCoarse) ? 2*nHits : ( (materialEffects == breakPoints) ? 2*nHits-2 : 0 ),
97  (materialEffects >= brokenLinesCoarse) ? 2*nHits-4 : ( (materialEffects == breakPoints) ? 2*nHits-2 : 0 ) )
98 {}
99 
100 
101 //__________________________________________________________________________________
102 
105  double mass, MaterialEffects materialEffects,
106  const PropagationDirection propDir,
107  const MagneticField *magField,
108  bool useBeamSpot,
109  const reco::BeamSpot &beamSpot)
110 {
111  TrajectoryStateOnSurface theRefTsos = refTsos;
112 
113  const SurfaceSide surfaceSide = this->surfaceSide(propDir);
114  // auto_ptr to avoid memory leaks in case of not reaching delete at end of method:
115  std::auto_ptr<MaterialEffectsUpdator> aMaterialEffectsUpdator
116  (this->createUpdator(materialEffects, mass));
117  if (!aMaterialEffectsUpdator.get()) return false; // empty auto_ptr
118 
119  AlgebraicMatrix fullJacobian(theParameters.num_row(), theParameters.num_row());
120  std::vector<AlgebraicMatrix> allJacobians;
121  allJacobians.reserve(theNumberOfHits);
122 
124  TrajectoryStateOnSurface previousTsos;
125  AlgebraicSymMatrix previousChangeInCurvature(theParameters.num_row(), 1);
126  std::vector<AlgebraicSymMatrix> allCurvatureChanges;
127  allCurvatureChanges.reserve(theNumberOfHits);
128 
129  const LocalTrajectoryError zeroErrors(0., 0., 0., 0., 0.);
130 
131  std::vector<AlgebraicMatrix> allProjections;
132  allProjections.reserve(theNumberOfHits);
133  std::vector<AlgebraicSymMatrix> allDeltaParameterCovs;
134  allDeltaParameterCovs.reserve(theNumberOfHits);
135 
136  // CHK
137  std::vector<AlgebraicMatrix> allLocalToCurv;
138  allLocalToCurv.reserve(theNumberOfHits);
139  std::vector<double> allSteps;
140  allSteps.reserve(theNumberOfHits);
141  std::vector<AlgebraicMatrix> allCurvlinJacobians;
142  allCurvlinJacobians.reserve(theNumberOfHits);
143 
144  AlgebraicMatrix firstCurvlinJacobian(5, 5, 1);
145 
146  unsigned int iRow = 0;
147 
148  theNomField = magField->nominalValue(); // nominal magnetic field in kGauss
149  // local storage vector of all rechits (including rechit for beam spot in case it is used)
151 
152  if (useBeamSpot && propDir==alongMomentum) {
153 
154  GlobalPoint bs(beamSpot.x0(), beamSpot.y0(), beamSpot.z0());
155 
156  TrajectoryStateClosestToBeamLine tsctbl(TSCBLBuilderNoMaterial()(*(refTsos.freeState()), beamSpot));
157  if (!tsctbl.isValid()) {
158  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::construct"
159  << "TrajectoryStateClostestToBeamLine invalid. Skip track.";
160  return false;
161  }
162 
163  FreeTrajectoryState pcaFts = tsctbl.trackStateAtPCA();
164  GlobalVector bd(beamSpot.dxdz(), beamSpot.dydz(), 1.0);
165 
166  //propagation FIXME: Should use same propagator everywhere...
168  std::pair< TrajectoryStateOnSurface, double > tsosWithPath =
169  propagator.propagateWithPath(pcaFts, refTsos.surface());
170 
171  if (!tsosWithPath.first.isValid()) return false;
172 
173  GlobalVector momDir(pcaFts.momentum());
174  GlobalVector perpDir(bd.cross(momDir));
175  Plane::RotationType rotation(perpDir, bd);
176 
177  BeamSpotGeomDet * bsGeom = new BeamSpotGeomDet(Plane::build(bs, rotation));
178 
179  // There is also a constructor taking the magentic field. Use this one instead?
180  theRefTsos = TrajectoryStateOnSurface(pcaFts, bsGeom->surface());
181 
183  bsGeom,
184  theRefTsos.freeState()->momentum().phi()));
185  allRecHits.push_back(bsRecHit);
186 
187  }
188 
189  // copy all rechits to the local storage vector
190  TransientTrackingRecHit::ConstRecHitContainer::const_iterator itRecHit;
191  for ( itRecHit = recHits.begin(); itRecHit != recHits.end(); ++itRecHit ) {
192  const TransientTrackingRecHit::ConstRecHitPointer &hitPtr = *itRecHit;
193  allRecHits.push_back(hitPtr);
194  }
195 
196  for ( itRecHit = allRecHits.begin(); itRecHit != allRecHits.end(); ++itRecHit ) {
197 
198  const TransientTrackingRecHit::ConstRecHitPointer &hitPtr = *itRecHit;
199  theRecHits.push_back(hitPtr);
200 
201  if (0 == iRow) {
202 
203  // compute the derivatives of the reference-track's parameters w.r.t. the initial ones
204  // derivative of the initial reference-track parameters w.r.t. themselves is of course the identity
205  fullJacobian = AlgebraicMatrix(theParameters.num_row(), theParameters.num_row(), 1);
206  allJacobians.push_back(fullJacobian);
207  theTsosVec.push_back(theRefTsos);
208  const JacobianLocalToCurvilinear startTrafo(hitPtr->det()->surface(), theRefTsos.localParameters(), *magField);
209  const AlgebraicMatrix localToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
210  if (materialEffects <= breakPoints) {
211  theInnerTrajectoryToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
213  }
214  allLocalToCurv.push_back(localToCurvilinear);
215  allSteps.push_back(0.);
216  allCurvlinJacobians.push_back(firstCurvlinJacobian);
217 
218  } else {
219 
220  AlgebraicMatrix nextJacobian;
221  AlgebraicMatrix nextCurvlinJacobian;
222  double nextStep = 0.;
223  TrajectoryStateOnSurface nextTsos;
224 
225  if (!this->propagate(previousHitPtr->det()->surface(), previousTsos,
226  hitPtr->det()->surface(), nextTsos,
227  nextJacobian, nextCurvlinJacobian, nextStep, propDir, magField)) {
228  return false; // stop if problem...// no delete aMaterialEffectsUpdator needed
229  }
230 
231  allJacobians.push_back(nextJacobian);
232  fullJacobian = nextJacobian * previousChangeInCurvature * fullJacobian;
233  theTsosVec.push_back(nextTsos);
234 
235  const JacobianLocalToCurvilinear startTrafo(hitPtr->det()->surface(), nextTsos.localParameters(), *magField);
236  const AlgebraicMatrix localToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
237  allLocalToCurv.push_back(localToCurvilinear);
238  if (nextStep == 0.) {
239  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::construct"
240  << "step 0. from id " << previousHitPtr->geographicalId()
241  << " to " << hitPtr->det()->geographicalId() << ".";
242  // brokenLinesFine will not work, brokenLinesCoarse combines close by layers
243  if (materialEffects == brokenLinesFine) {
244  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::construct" << "Skip track.";
245  return false;
246  }
247  }
248  allSteps.push_back(nextStep);
249  allCurvlinJacobians.push_back(nextCurvlinJacobian);
250 
251  }
252 
253  // take material effects into account. since trajectory-state is constructed with errors equal zero,
254  // the updated state contains only the uncertainties due to interactions in the current layer.
255  const TrajectoryStateOnSurface tmpTsos(theTsosVec.back().localParameters(), zeroErrors,
256  theTsosVec.back().surface(), magField, surfaceSide);
257  const TrajectoryStateOnSurface updatedTsos = aMaterialEffectsUpdator->updateState(tmpTsos, propDir);
258 
259  if ( !updatedTsos.isValid() ) return false;// no delete aMaterialEffectsUpdator needed
260 
261  if ( theTsosVec.back().localParameters().charge() )
262  {
263  previousChangeInCurvature[0][0] = updatedTsos.localParameters().signedInverseMomentum()
264  / theTsosVec.back().localParameters().signedInverseMomentum();
265  }
266 
267  // get multiple-scattering covariance-matrix
268  allDeltaParameterCovs.push_back( asHepMatrix<5>(updatedTsos.localError().matrix()) );
269  allCurvatureChanges.push_back(previousChangeInCurvature);
270 
271  // projection-matrix tsos-parameters -> measurement-coordinates
272  allProjections.push_back(this->getHitProjectionMatrix(hitPtr));
273  // set start-parameters for next propagation. trajectory-state without error
274  // - no error propagation needed here.
275  previousHitPtr = hitPtr;
276  previousTsos = TrajectoryStateOnSurface(updatedTsos.globalParameters(),
277  updatedTsos.surface(), surfaceSide);
278 
279  if (materialEffects < brokenLinesCoarse) {
280  this->fillDerivatives(allProjections.back(), fullJacobian, iRow);
281  }
282 
283  AlgebraicVector mixedLocalParams = asHepVector<5>(theTsosVec.back().localParameters().mixedFormatVector());
284  this->fillTrajectoryPositions(allProjections.back(), mixedLocalParams, iRow);
285  if ( useRecHit( hitPtr ) ) this->fillMeasurementAndError(hitPtr, iRow, updatedTsos);
286 
287  iRow += nMeasPerHit;
288  } // end of loop on hits
289 
290  bool msOK = true;
291  switch (materialEffects) {
292  case none:
293  break;
294  case multipleScattering:
295  case energyLoss:
296  case combined:
297  msOK = this->addMaterialEffectsCov(allJacobians, allProjections, allCurvatureChanges,
298  allDeltaParameterCovs);
299  break;
300  case breakPoints:
301  msOK = this->addMaterialEffectsBp(allJacobians, allProjections, allCurvatureChanges,
302  allDeltaParameterCovs, allLocalToCurv);
303  break;
304  case brokenLinesCoarse:
305  msOK = this->addMaterialEffectsBrl(allProjections, allDeltaParameterCovs, allLocalToCurv,
306  allSteps, refTsos.globalParameters());
307  break;
308  case brokenLinesFine:
309  msOK = this->addMaterialEffectsBrl(allCurvlinJacobians, allProjections, allCurvatureChanges,
310  allDeltaParameterCovs, allLocalToCurv, refTsos.globalParameters());
311  break;
312  case localGBL:
313  msOK = this->addMaterialEffectsLocalGbl(allJacobians, allProjections, allCurvatureChanges,
314  allDeltaParameterCovs);
315  break;
316  case curvlinGBL:
317  msOK = this->addMaterialEffectsCurvlinGbl(allCurvlinJacobians, allProjections, allCurvatureChanges,
318  allDeltaParameterCovs, allLocalToCurv);
319  }
320  if (!msOK) return false;
321 
322  if (refTsos.hasError()) {
323  AlgebraicSymMatrix parameterCov = asHepMatrix<5>(refTsos.localError().matrix());
324  AlgebraicMatrix parDeriv;
325  if (theNumberOfVirtualPars>0) {
326  parDeriv = theDerivatives.sub( 1, nMeasPerHit*allJacobians.size(), 1, theParameters.num_row() );
327  } else {
328  parDeriv = theDerivatives;
329  }
330  theTrajectoryPositionCov = parameterCov.similarity(parDeriv);
331  } else {
333  }
334 
335  return true;
336 }
337 
338 //__________________________________________________________________________________
339 
341 ReferenceTrajectory::createUpdator(MaterialEffects materialEffects, double mass) const
342 {
343  switch (materialEffects) {
344  // MultipleScatteringUpdator doesn't change the trajectory-state
345  // during update and can therefore be used if material effects should be ignored:
346  case none:
347  case multipleScattering:
348  return new MultipleScatteringUpdator(mass);
349  case energyLoss:
350  return new EnergyLossUpdator(mass);
351  case combined:
352  return new CombinedMaterialEffectsUpdator(mass);
353  case breakPoints:
354  return new CombinedMaterialEffectsUpdator(mass);
355  case brokenLinesCoarse:
356  case brokenLinesFine:
357  case localGBL:
358  case curvlinGBL:
359  return new CombinedMaterialEffectsUpdator(mass);
360 }
361 
362  return 0;
363 }
364 
365 //__________________________________________________________________________________
366 
367 bool ReferenceTrajectory::propagate(const Plane &previousSurface, const TrajectoryStateOnSurface &previousTsos,
368  const Plane &newSurface, TrajectoryStateOnSurface &newTsos, AlgebraicMatrix &newJacobian,
369  AlgebraicMatrix &newCurvlinJacobian, double &nextStep,
370  const PropagationDirection propDir, const MagneticField *magField) const
371 {
372  // propagate to next layer
376  //AnalyticalPropagator aPropagator(magField, propDir);
377  // Hard coded RungeKutta instead Analytical (avoid bias in TEC), but
378  // work around TrackPropagation/RungeKutta/interface/RKTestPropagator.h and
379  // http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.9
380  defaultRKPropagator::Product rkprod(magField, propDir); //double tolerance = 5.e-5)
381  Propagator &aPropagator = rkprod.propagator;
382  const std::pair<TrajectoryStateOnSurface, double> tsosWithPath =
383  aPropagator.propagateWithPath(previousTsos, newSurface);
384 
385  // stop if propagation wasn't successful
386  if (!tsosWithPath.first.isValid()) return false;
387 
388  nextStep = tsosWithPath.second;
389  // calculate derivative of reference-track parameters on the actual layer w.r.t. the ones
390  // on the previous layer (both in global coordinates)
391  const AnalyticalCurvilinearJacobian aJacobian(previousTsos.globalParameters(),
392  tsosWithPath.first.globalPosition(),
393  tsosWithPath.first.globalMomentum(),
394  tsosWithPath.second);
395  const AlgebraicMatrix curvilinearJacobian = asHepMatrix<5,5>(aJacobian.jacobian());
396 
397  // jacobian of the track parameters on the previous layer for local->global transformation
398  const JacobianLocalToCurvilinear startTrafo(previousSurface, previousTsos.localParameters(), *magField);
399  const AlgebraicMatrix localToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
400 
401  // jacobian of the track parameters on the actual layer for global->local transformation
402  const JacobianCurvilinearToLocal endTrafo(newSurface, tsosWithPath.first.localParameters(), *magField);
403  const AlgebraicMatrix curvilinearToLocal = asHepMatrix<5>(endTrafo.jacobian());
404 
405  // compute derivative of reference-track parameters on the actual layer w.r.t. the ones on
406  // the previous layer (both in their local representation)
407  newCurvlinJacobian = curvilinearJacobian;
408  newJacobian = curvilinearToLocal * curvilinearJacobian * localToCurvilinear;
409  newTsos = tsosWithPath.first;
410 
411  return true;
412 }
413 
414 //__________________________________________________________________________________
415 
417  unsigned int iRow,
418  const TrajectoryStateOnSurface &updatedTsos)
419 {
420  // get the measurements and their errors, use information updated with tsos if improving
421  // (GF: Also for measurements or only for errors or do the former not change?)
422  // GF 10/2008: I doubt that it makes sense to update the hit with the tsos here:
423  // That is an analytical extrapolation and not the best guess of the real
424  // track state on the module, but the latter should be better to get the best
425  // hit uncertainty estimate!
426 
427  // FIXME FIXME CLONE
428  auto newHitPtr = hitPtr;
429 // TransientTrackingRecHit::ConstRecHitPointer newHitPtr(hitPtr->canImproveWithTrack() ?
430 // hitPtr->clone(updatedTsos) : hitPtr);
431 
432  const LocalPoint localMeasurement = newHitPtr->localPosition();
433  const LocalError localMeasurementCov = newHitPtr->localPositionError();
434 
435  theMeasurements[iRow] = localMeasurement.x();
436  theMeasurements[iRow+1] = localMeasurement.y();
437  theMeasurementsCov[iRow][iRow] = localMeasurementCov.xx();
438  theMeasurementsCov[iRow][iRow+1] = localMeasurementCov.xy();
439  theMeasurementsCov[iRow+1][iRow+1] = localMeasurementCov.yy();
440  // GF: Should be a loop once the hit dimension is not hardcoded as nMeasPerHit (to be checked):
441  // for (int i = 0; i < hitPtr->dimension(); ++i) {
442  // theMeasurements[iRow+i] = hitPtr->parameters()[i]; // fixme: parameters() is by value!
443  // for (int j = i; j < hitPtr->dimension(); ++j) {
444  // theMeasurementsCov[iRow+i][iRow+j] = hitPtr->parametersError()[i][j];
445  // }
446  // }
447 }
448 
449 //__________________________________________________________________________________
450 
452  const AlgebraicMatrix &fullJacobian,
453  unsigned int iRow)
454 {
455  // derivatives of the local coordinates of the reference track w.r.t. to the inital track-parameters
456  const AlgebraicMatrix projectedJacobian(projection * fullJacobian);
457  for (int i = 0; i < parameters().num_row(); ++i) {
458  theDerivatives[iRow ][i] = projectedJacobian[0][i];
459  theDerivatives[iRow+1][i] = projectedJacobian[1][i];
460  // GF: Should be a loop once the hit dimension is not hardcoded as nMeasPerHit (to be checked):
461  // for (int j = 0; j < projection.num_col(); ++j) {
462  // theDerivatives[iRow+j][i] = projectedJacobian[j][i];
463  // }
464  }
465 }
466 
467 //__________________________________________________________________________________
468 
470  const AlgebraicVector &mixedLocalParams,
471  unsigned int iRow)
472 {
473  // get the local coordinates of the reference trajectory
474  const AlgebraicVector localPosition(projection * mixedLocalParams);
475  theTrajectoryPositions[iRow] = localPosition[0];
476  theTrajectoryPositions[iRow+1] = localPosition[1];
477  // GF: Should be a loop once the hit dimension is not hardcoded as nMeasPerHit (to be checked):
478  // for (int j = 0; j < projection.num_col(); ++j) {
479  // theTrajectoryPositions[iRow+j] = localPosition[j];
480  // }
481 }
482 
483 //__________________________________________________________________________________
484 
485 bool ReferenceTrajectory::addMaterialEffectsCov(const std::vector<AlgebraicMatrix> &allJacobians,
486  const std::vector<AlgebraicMatrix> &allProjections,
487  const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
488  const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs)
489 {
490  // the uncertainty due to multiple scattering is 'transferred' to the error matrix of the hits
491 
492  // GF: Needs update once hit dimension is not hardcoded as nMeasPerHit!
493 
494  AlgebraicSymMatrix materialEffectsCov(nMeasPerHit * allJacobians.size(), 0);
495 
496  // additional covariance-matrix of the measurements due to material-effects (single measurement)
497  AlgebraicSymMatrix deltaMaterialEffectsCov;
498 
499  // additional covariance-matrix of the parameters due to material-effects
500  AlgebraicSymMatrix paramMaterialEffectsCov(allDeltaParameterCovs[0]); //initialization
501  // error-propagation to state after energy loss
502  //GFback paramMaterialEffectsCov = paramMaterialEffectsCov.similarity(allCurvatureChanges[0]);
503 
504  AlgebraicMatrix tempParameterCov;
505  AlgebraicMatrix tempMeasurementCov;
506 
507  for (unsigned int k = 1; k < allJacobians.size(); ++k) {
508  // error-propagation to next layer
509  paramMaterialEffectsCov = paramMaterialEffectsCov.similarity(allJacobians[k]);
510 
511  // get dependences for the measurements
512  deltaMaterialEffectsCov = paramMaterialEffectsCov.similarity(allProjections[k]);
513  materialEffectsCov[nMeasPerHit*k ][nMeasPerHit*k ] = deltaMaterialEffectsCov[0][0];
514  materialEffectsCov[nMeasPerHit*k ][nMeasPerHit*k+1] = deltaMaterialEffectsCov[0][1];
515  materialEffectsCov[nMeasPerHit*k+1][nMeasPerHit*k ] = deltaMaterialEffectsCov[1][0];
516  materialEffectsCov[nMeasPerHit*k+1][nMeasPerHit*k+1] = deltaMaterialEffectsCov[1][1];
517 
518  // GFback add uncertainties for the following layers due to scattering at this layer
519  paramMaterialEffectsCov += allDeltaParameterCovs[k];
520  // end GFback
521  tempParameterCov = paramMaterialEffectsCov;
522 
523  // compute "inter-layer-dependencies"
524  for (unsigned int l = k+1; l < allJacobians.size(); ++l) {
525  tempParameterCov = allJacobians[l] * allCurvatureChanges[l] * tempParameterCov;
526  tempMeasurementCov = allProjections[l] * tempParameterCov * allProjections[k].T();
527 
528  materialEffectsCov[nMeasPerHit*l][nMeasPerHit*k] = tempMeasurementCov[0][0];
529  materialEffectsCov[nMeasPerHit*k][nMeasPerHit*l] = tempMeasurementCov[0][0];
530 
531  materialEffectsCov[nMeasPerHit*l][nMeasPerHit*k+1] = tempMeasurementCov[0][1];
532  materialEffectsCov[nMeasPerHit*k+1][nMeasPerHit*l] = tempMeasurementCov[0][1];
533 
534  materialEffectsCov[nMeasPerHit*l+1][nMeasPerHit*k] = tempMeasurementCov[1][0];
535  materialEffectsCov[nMeasPerHit*k][nMeasPerHit*l+1] = tempMeasurementCov[1][0];
536 
537  materialEffectsCov[nMeasPerHit*l+1][nMeasPerHit*k+1] = tempMeasurementCov[1][1];
538  materialEffectsCov[nMeasPerHit*k+1][nMeasPerHit*l+1] = tempMeasurementCov[1][1];
539  }
540  // add uncertainties for the following layers due to scattering at this layer
541  // GFback paramMaterialEffectsCov += allDeltaParameterCovs[k];
542  // error-propagation to state after energy loss
543  paramMaterialEffectsCov = paramMaterialEffectsCov.similarity(allCurvatureChanges[k]);
544 
545  }
546  theMeasurementsCov += materialEffectsCov;
547 
548  return true; // cannot fail
549 }
550 
551 //__________________________________________________________________________________
552 
553 bool ReferenceTrajectory::addMaterialEffectsBp(const std::vector<AlgebraicMatrix> &allJacobians,
554  const std::vector<AlgebraicMatrix> &allProjections,
555  const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
556  const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
557  const std::vector<AlgebraicMatrix> &allLocalToCurv)
558 {
559 //CHK: add material effects using break points
560  int offsetPar = theNumberOfPars;
561  int offsetMeas = nMeasPerHit * allJacobians.size();
562  int ierr = 0;
563 
564  AlgebraicMatrix tempJacobian;
565  AlgebraicMatrix MSprojection(2,5);
566  MSprojection[0][1] = 1;
567  MSprojection[1][2] = 1;
568  AlgebraicSymMatrix tempMSCov;
569  AlgebraicSymMatrix tempMSCovProj;
570  AlgebraicMatrix tempMSJacProj;
571 
572  for (unsigned int k = 1; k < allJacobians.size(); ++k) {
573 // CHK
574  int kbp = k-1;
575  tempJacobian = allJacobians[k] * allCurvatureChanges[k];
576  tempMSCov = allDeltaParameterCovs[k-1].similarity(allLocalToCurv[k-1]);
577  tempMSCovProj = tempMSCov.similarity(MSprojection);
578  theMeasurementsCov[offsetMeas+nMeasPerHit*kbp ][offsetMeas+nMeasPerHit*kbp ] = tempMSCovProj[0][0];
579  theMeasurementsCov[offsetMeas+nMeasPerHit*kbp+1][offsetMeas+nMeasPerHit*kbp+1]= tempMSCovProj[1][1];
580  theDerivatives[offsetMeas+nMeasPerHit*kbp ][offsetPar+2*kbp ] = 1.0;
581  theDerivatives[offsetMeas+nMeasPerHit*kbp+1][offsetPar+2*kbp+1] = 1.0 ;
582 
583  tempMSJacProj = (allProjections[k] * ( tempJacobian * allLocalToCurv[k-1].inverse(ierr) )) * MSprojection.T();
584  if (ierr) {
585  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBp"
586  << "Inversion 1 for break points failed: " << ierr;
587  return false;
588  }
589  theDerivatives[nMeasPerHit*k ][offsetPar+2*kbp ] = tempMSJacProj[0][0];
590  theDerivatives[nMeasPerHit*k ][offsetPar+2*kbp+1] = tempMSJacProj[0][1];
591  theDerivatives[nMeasPerHit*k+1][offsetPar+2*kbp ] = tempMSJacProj[1][0];
592  theDerivatives[nMeasPerHit*k+1][offsetPar+2*kbp+1] = tempMSJacProj[1][1];
593 
594  for (unsigned int l = k+1; l < allJacobians.size(); ++l) {
595 // CHK
596  int kbp = k-1;
597  tempJacobian = allJacobians[l] * allCurvatureChanges[l] * tempJacobian;
598  tempMSJacProj = (allProjections[l] * ( tempJacobian * allLocalToCurv[k-1].inverse(ierr) )) * MSprojection.T();
599  if (ierr) {
600  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBp"
601  << "Inversion 2 for break points failed: " << ierr;
602  return false;
603  }
604  theDerivatives[nMeasPerHit*l ][offsetPar+2*kbp ] = tempMSJacProj[0][0];
605  theDerivatives[nMeasPerHit*l ][offsetPar+2*kbp+1] = tempMSJacProj[0][1];
606  theDerivatives[nMeasPerHit*l+1][offsetPar+2*kbp ] = tempMSJacProj[1][0];
607  theDerivatives[nMeasPerHit*l+1][offsetPar+2*kbp+1] = tempMSJacProj[1][1];
608 
609  }
610 
611  }
612 
613  return true;
614 }
615 
616 //__________________________________________________________________________________
617 
618 bool ReferenceTrajectory::addMaterialEffectsBrl(const std::vector<AlgebraicMatrix> &allCurvlinJacobians,
619  const std::vector<AlgebraicMatrix> &allProjections,
620  const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
621  const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
622  const std::vector<AlgebraicMatrix> &allLocalToCurv,
623  const GlobalTrajectoryParameters &gtp)
624 {
625 //CHK: add material effects using broken lines
626 //fine: use exact Jacobians, all detectors
627 //broken lines: pair of offsets (u1,u2) = (xt,yt) (in curvilinear frame (q/p,lambda,phi,xt,yt)) at each layer
628 // scattering angles (alpha1,alpha2) = (cosLambda*dPhi, dLambda) (cosLambda cancels in Chi2)
629 // DU' = (dU'/dU)*DU + (dU'/dAlpha)*DAlpha + (dU'/dQbyp)*DQbyp (propagation of U)
630 // = J*DU + S*DAlpha + d*DQbyp
631 // => DAlpha = S^-1 (DU' - J*DU - d*DQbyp)
632 
633  int offsetPar = theNumberOfPars;
634  int offsetMeas = nMeasPerHit*allCurvlinJacobians.size();
635  int ierr = 0;
636 
637  GlobalVector p = gtp.momentum();
638  double cosLambda = sqrt((p.x()*p.x()+p.y()*p.y())/(p.x()*p.x()+p.y()*p.y()+p.z()*p.z()));
639 
640 // transformations Curvilinear <-> BrokenLines
641  AlgebraicMatrix QbypToCurv(5,1); // dCurv/dQbyp
642  QbypToCurv[0][0] = 1.; // dQbyp/dQbyp
643  AlgebraicMatrix AngleToCurv(5,2); // dCurv/dAlpha
644  AngleToCurv[1][1] = 1.; // dlambda/dalpha2
645  AngleToCurv[2][0] = 1./cosLambda; // dphi/dalpha1
646  AlgebraicMatrix CurvToAngle(2,5); // dAlpha/dCurv
647  CurvToAngle[1][1] = 1.; // dalpha2/dlambda
648  CurvToAngle[0][2] = cosLambda; // dalpha1/dphi
649  AlgebraicMatrix OffsetToCurv(5,2); // dCurv/dU
650  OffsetToCurv[3][0] = 1.; // dxt/du1
651  OffsetToCurv[4][1] = 1.; // dyt/du2
652  AlgebraicMatrix CurvToOffset(2,5); // dU/dCurv
653  CurvToOffset[0][3] = 1.; // du1/dxt
654  CurvToOffset[1][4] = 1.; // du2/dyt
655 
656 // transformations trajectory to components (Qbyp, U1, U2)
657  AlgebraicMatrix TrajToQbyp(1,5);
658  TrajToQbyp[0][0] = 1.;
659  AlgebraicMatrix TrajToOff1(2,5);
660  TrajToOff1[0][1] = 1.;
661  TrajToOff1[1][2] = 1.;
662  AlgebraicMatrix TrajToOff2(2,5);
663  TrajToOff2[0][3] = 1.;
664  TrajToOff2[1][4] = 1.;
665 
666  AlgebraicMatrix JacOffsetToAngleC, JacQbypToAngleC;
667  AlgebraicMatrix JacCurvToOffsetL, JacOffsetToOffsetL, JacAngleToOffsetL, JacQbypToOffsetL, JacOffsetToAngleL;
668  AlgebraicMatrix JacCurvToOffsetN, JacOffsetToOffsetN, JacAngleToOffsetN, JacQbypToOffsetN, JacOffsetToAngleN;
669 
670 // transformation from trajectory to curvilinear parameters
671 
672  JacCurvToOffsetN = CurvToOffset * allCurvlinJacobians[1]; // (dU'/dCurv') * (dCurv'/dCurv) @ 2nd point
673  JacOffsetToOffsetN = JacCurvToOffsetN * OffsetToCurv; // J: (dU'/dU) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dU)
674  JacAngleToOffsetN = JacCurvToOffsetN * AngleToCurv; // S: (dU'/dAlpha) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dAlpha)
675  JacQbypToOffsetN = JacCurvToOffsetN * QbypToCurv; // d: (dU'/dQbyp) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dQbyp)
676  JacOffsetToAngleN = JacAngleToOffsetN.inverse(ierr); // W
677  if (ierr) {
678  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
679  << "Inversion 1 for fine broken lines failed: " << ierr;
680  return false;
681  }
682  JacOffsetToAngleC = -(JacOffsetToAngleN * JacOffsetToOffsetN); // (dAlpha/dU)
683  JacQbypToAngleC = -(JacOffsetToAngleN * JacQbypToOffsetN); // (dAlpha/dQbyp)
684  // (dAlpha/dTraj) = (dAlpha/dQbyp) * (dQbyp/dTraj) + (dAlpha/dU1) * (dU1/dTraj) + (dAlpha/dU2) * (dU2/dTraj)
685  AlgebraicMatrix JacTrajToAngle = JacQbypToAngleC * TrajToQbyp + JacOffsetToAngleC * TrajToOff1 + JacOffsetToAngleN * TrajToOff2;
686  // (dCurv/dTraj) = (dCurv/dQbyp) * (dQbyp/dTraj) + (dCurv/dAlpha) * (dAlpha/dTraj) + (dCurv/dU) * (dU/dTraj)
687  theInnerTrajectoryToCurvilinear = QbypToCurv * TrajToQbyp + AngleToCurv * JacTrajToAngle + OffsetToCurv * TrajToOff1;
688  theInnerLocalToTrajectory = theInnerTrajectoryToCurvilinear.inverse(ierr) * allLocalToCurv[0];
689  if (ierr) {
690  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
691  << "Inversion 2 for fine broken lines failed: " << ierr;
692  return false;
693  }
694 
695  AlgebraicMatrix tempJacobian(allCurvatureChanges[0]);
696  AlgebraicSymMatrix tempMSCov;
697  AlgebraicSymMatrix tempMSCovProj;
698  AlgebraicMatrix tempJacL, tempJacN;
699  AlgebraicMatrix JacOffsetToMeas;
700 
701 // measurements from hits
702  for (unsigned int k = 0; k < allCurvlinJacobians.size(); ++k) {
703 // (dMeas/dU) = (dMeas/dLoc) * (dLoc/dCurv) * (dCurv/dU)
704  JacOffsetToMeas = (allProjections[k] * allLocalToCurv[k].inverse(ierr) ) * OffsetToCurv;
705  if (ierr) {
706  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
707  << "Inversion 3 for fine broken lines failed: " << ierr;
708  return false;
709  }
710  theDerivatives[nMeasPerHit*k ][offsetPar+2*k ] = JacOffsetToMeas[0][0];
711  theDerivatives[nMeasPerHit*k ][offsetPar+2*k+1] = JacOffsetToMeas[0][1];
712  theDerivatives[nMeasPerHit*k+1][offsetPar+2*k ] = JacOffsetToMeas[1][0];
713  theDerivatives[nMeasPerHit*k+1][offsetPar+2*k+1] = JacOffsetToMeas[1][1];
714  }
715 
716 // measurement of MS kink
717  for (unsigned int k = 1; k < allCurvlinJacobians.size()-1; ++k) {
718 // CHK
719  int iMsMeas = k-1;
720  int l = k-1; // last hit
721  int n = k+1; // next hit
722 
723 // amount of multiple scattering in layer k (angular error perp to direction)
724  tempMSCov = allDeltaParameterCovs[k].similarity(allLocalToCurv[k]);
725  tempMSCovProj = tempMSCov.similarity(CurvToAngle);
726  theMeasurementsCov[offsetMeas+nMeasPerHit*iMsMeas ][offsetMeas+nMeasPerHit*iMsMeas ] = tempMSCovProj[1][1];
727  theMeasurementsCov[offsetMeas+nMeasPerHit*iMsMeas+1][offsetMeas+nMeasPerHit*iMsMeas+1] = tempMSCovProj[0][0];
728 
729 // transformation matices for offsets ( l <- k -> n )
730  tempJacL = allCurvlinJacobians[k] * tempJacobian;
731  JacCurvToOffsetL = CurvToOffset * tempJacL.inverse(ierr); // (dU'/dCurv') * (dCurv'/dCurv) @ last point
732 
733  if (ierr) {
734  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
735  << "Inversion 4 for fine broken lines failed: " << ierr;
736  return false;
737  }
738  JacOffsetToOffsetL = JacCurvToOffsetL * OffsetToCurv; // J-: (dU'/dU) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dU)
739  JacAngleToOffsetL = JacCurvToOffsetL * AngleToCurv; // S-: (dU'/dAlpha) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dAlpha)
740  JacQbypToOffsetL = JacCurvToOffsetL * QbypToCurv; // d-: (dU'/dQbyp) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dQbyp)
741  JacOffsetToAngleL =-JacAngleToOffsetL.inverse(ierr); // W-
742  if (ierr) {
743  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
744  << "Inversion 5 for fine broken lines failed: " << ierr;
745  return false;
746  }
747  tempJacobian = tempJacobian * allCurvatureChanges[k];
748  tempJacN = allCurvlinJacobians[n] * tempJacobian;
749  JacCurvToOffsetN = CurvToOffset * tempJacN; // (dU'/dCurv') * (dCurv'/dCurv) @ next point
750  JacOffsetToOffsetN = JacCurvToOffsetN * OffsetToCurv; // J+: (dU'/dU) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dU)
751  JacAngleToOffsetN = JacCurvToOffsetN * AngleToCurv; // S+: (dU'/dAlpha) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dAlpha)
752  JacQbypToOffsetN = JacCurvToOffsetN * QbypToCurv; // d+: (dU'/dQbyp) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dQbyp)
753  JacOffsetToAngleN = JacAngleToOffsetN.inverse(ierr); // W+
754  if (ierr) {
755  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
756  << "Inversion 6 for fine broken lines failed: " << ierr;
757  return false;
758  }
759  JacOffsetToAngleC = -(JacOffsetToAngleL * JacOffsetToOffsetL + JacOffsetToAngleN * JacOffsetToOffsetN);
760  JacQbypToAngleC = -(JacOffsetToAngleL * JacQbypToOffsetL + JacOffsetToAngleN * JacQbypToOffsetN);
761 
762  // bending
763  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][ 0] = JacQbypToAngleC[0][0];
764  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][ 0] = JacQbypToAngleC[1][0];
765  // last layer
766  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*l ] = JacOffsetToAngleL[0][0];
767  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*l+1] = JacOffsetToAngleL[0][1];
768  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*l ] = JacOffsetToAngleL[1][0];
769  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*l+1] = JacOffsetToAngleL[1][1];
770  // current layer
771  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*k ] = JacOffsetToAngleC[0][0];
772  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*k+1] = JacOffsetToAngleC[0][1];
773  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*k ] = JacOffsetToAngleC[1][0];
774  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*k+1] = JacOffsetToAngleC[1][1];
775 
776  // next layer
777  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*n ] = JacOffsetToAngleN[0][0];
778  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*n+1] = JacOffsetToAngleN[0][1];
779  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*n ] = JacOffsetToAngleN[1][0];
780  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*n+1] = JacOffsetToAngleN[1][1];
781 
782  }
783 
784  return true;
785 }
786 
787 //__________________________________________________________________________________
788 
789 bool ReferenceTrajectory::addMaterialEffectsBrl(const std::vector<AlgebraicMatrix> &allProjections,
790  const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
791  const std::vector<AlgebraicMatrix> &allLocalToCurv,
792  const std::vector<double> &allSteps,
793  const GlobalTrajectoryParameters &gtp,
794  const double minStep)
795 {
796 //CHK: add material effects using broken lines
797 //BrokenLinesCoarse: combine close by detectors,
798 // use approximate Jacobians from Steps (limit Qbyp -> 0),
799 // bending only in RPhi (B=(0,0,Bz)), no energy loss correction
800 
801  int offsetPar = theNumberOfPars;
802  int offsetMeas = nMeasPerHit*allSteps.size();
803  int ierr = 0;
804 
805  GlobalVector p = gtp.momentum();
806  double cosLambda = sqrt((p.x()*p.x()+p.y()*p.y())/(p.x()*p.x()+p.y()*p.y()+p.z()*p.z()));
807  double bFac = -gtp.magneticFieldInInverseGeV(gtp.position()).mag();
808 
809  // transformation from trajectory to curvilinear parameters at refTsos
810  double delta (1.0/allSteps[1]);
814  theInnerTrajectoryToCurvilinear[2][0] = -0.5*bFac/delta;
815  theInnerTrajectoryToCurvilinear[2][1] = -delta/cosLambda;
816  theInnerTrajectoryToCurvilinear[2][3] = delta/cosLambda;
819  theInnerLocalToTrajectory = theInnerTrajectoryToCurvilinear.inverse(ierr) * allLocalToCurv[0];
820  if (ierr) {
821  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
822  << "Inversion 1 for coarse broken lines failed: " << ierr;
823  return false;
824  }
825 
826  AlgebraicMatrix CurvToAngle(2,5); // dAlpha/dCurv
827  CurvToAngle[1][1] = 1.; // dalpha2/dlambda
828  CurvToAngle[0][2] = cosLambda; // dalpha1/dphi
829  AlgebraicMatrix OffsetToCurv(5,2); // dCurv/dU
830  OffsetToCurv[3][0] = 1.; // dxt/du1
831  OffsetToCurv[4][1] = 1.; // dyt/du2
832 
833  AlgebraicSymMatrix tempMSCov;
834  AlgebraicSymMatrix tempMSCovProj;
835  AlgebraicMatrix JacOffsetToMeas;
836 
837  // combine closeby detectors into single plane
838  std::vector<unsigned int> first(allSteps.size());
839  std::vector<unsigned int> last (allSteps.size());
840  std::vector<unsigned int> plane(allSteps.size());
841  std::vector<double> sPlane(allSteps.size());
842  unsigned int nPlane = 0;
843  double sTot = 0;
844 
845  for (unsigned int k = 1; k < allSteps.size(); ++k) {
846  sTot += allSteps[k];
847  if (fabs(allSteps[k])>minStep) { nPlane += 1; first[nPlane] = k; }
848  last[nPlane] = k;
849  plane[k] = nPlane;
850  sPlane[nPlane] += sTot;
851  }
852  if (nPlane < 2) return false; // pathological cases: need at least 2 planes
853 
854  theNumberOfVirtualPars = 2*(nPlane+1);
855  theNumberOfVirtualMeas = 2*(nPlane-1);// unsigned underflow for nPlane == 0...
856  for (unsigned int k = 0; k <= nPlane; ++k) { sPlane[k] /= (double) (last[k]-first[k]+1); }
857 
858  // measurements from hits
859  sTot = 0;
860  for (unsigned int k = 0; k < allSteps.size(); ++k) {
861  sTot += allSteps[k];
862 // (dMeas/dU) = (dMeas/dLoc) * (dLoc/dCurv) * (dCurv/dU)
863  JacOffsetToMeas = (allProjections[k] * allLocalToCurv[k].inverse(ierr) ) * OffsetToCurv;
864  if (ierr) {
865  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
866  << "Inversion 2 for coarse broken lines failed: " << ierr;
867  return false;
868  }
869 
870  unsigned int iPlane = plane[k];
871  if (last[iPlane] == first[iPlane])
872  { // single plane
873  theDerivatives[nMeasPerHit*k ][offsetPar+2*iPlane ] = JacOffsetToMeas[0][0];
874  theDerivatives[nMeasPerHit*k ][offsetPar+2*iPlane+1] = JacOffsetToMeas[0][1];
875  theDerivatives[nMeasPerHit*k+1][offsetPar+2*iPlane ] = JacOffsetToMeas[1][0];
876  theDerivatives[nMeasPerHit*k+1][offsetPar+2*iPlane+1] = JacOffsetToMeas[1][1];
877  } else
878  { // combined plane: (linear) interpolation
879  unsigned int jPlane; // neighbor plane for interpolation
880  if (fabs(sTot) < fabs(sPlane[iPlane])) { jPlane = (iPlane>0) ? iPlane - 1 : 1; }
881  else { jPlane = (iPlane<nPlane) ? iPlane + 1 : nPlane -1 ;}
882  // interpolation weights
883  double sDiff = sPlane[iPlane] - sPlane[jPlane];
884  double iFrac = (sTot - sPlane[jPlane]) / sDiff;
885  double jFrac = 1.0 - iFrac;
886  theDerivatives[nMeasPerHit*k ][offsetPar+2*iPlane ] = JacOffsetToMeas[0][0]*iFrac;
887  theDerivatives[nMeasPerHit*k ][offsetPar+2*iPlane+1] = JacOffsetToMeas[0][1]*iFrac;
888  theDerivatives[nMeasPerHit*k+1][offsetPar+2*iPlane ] = JacOffsetToMeas[1][0]*iFrac;
889  theDerivatives[nMeasPerHit*k+1][offsetPar+2*iPlane+1] = JacOffsetToMeas[1][1]*iFrac;
890  theDerivatives[nMeasPerHit*k ][offsetPar+2*jPlane ] = JacOffsetToMeas[0][0]*jFrac;
891  theDerivatives[nMeasPerHit*k ][offsetPar+2*jPlane+1] = JacOffsetToMeas[0][1]*jFrac;
892  theDerivatives[nMeasPerHit*k+1][offsetPar+2*jPlane ] = JacOffsetToMeas[1][0]*jFrac;
893  theDerivatives[nMeasPerHit*k+1][offsetPar+2*jPlane+1] = JacOffsetToMeas[1][1]*jFrac;
894  // 2nd order neglected
895  // theDerivatives[nMeasPerHit*k ][ 0] = -0.5*bFac*sDiff*iFrac*sDiff*jFrac*cosLambda;
896  }
897  }
898 
899 // measurement of MS kink
900  for (unsigned int i = 1; i < nPlane; ++i) {
901 // CHK
902  int iMsMeas = i-1;
903  int l = i-1; // last hit
904  int n = i+1; // next hit
905 
906 // amount of multiple scattering in plane k
907  for (unsigned int k = first[i]; k <= last[i]; ++k) {
908  tempMSCov = allDeltaParameterCovs[k].similarity(allLocalToCurv[k]);
909  tempMSCovProj = tempMSCov.similarity(CurvToAngle);
910  theMeasurementsCov[offsetMeas+nMeasPerHit*iMsMeas ][offsetMeas+nMeasPerHit*iMsMeas ] += tempMSCovProj[0][0];
911  theMeasurementsCov[offsetMeas+nMeasPerHit*iMsMeas+1][offsetMeas+nMeasPerHit*iMsMeas+1] += tempMSCovProj[1][1];
912  }
913 // broken line measurements for layer k, correlations between both planes neglected
914  double stepK = sPlane[i] - sPlane[l];
915  double stepN = sPlane[n] - sPlane[i];
916  double deltaK (1.0/stepK);
917  double deltaN (1.0/stepN);
918  // bending (only in RPhi)
919  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][ 0] = -0.5*bFac*(stepK+stepN)*cosLambda;
920  // last layer
921  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*l ] = deltaK;
922  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*l+1] = deltaK;
923  // current layer
924  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*i ] = -(deltaK + deltaN);
925  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*i+1] = -(deltaK + deltaN);
926  // next layer
927  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas ][offsetPar+2*n ] = deltaN;
928  theDerivatives[offsetMeas+nMeasPerHit*iMsMeas+1][offsetPar+2*n+1] = deltaN;
929  }
930 
931  return true;
932 }
933 
934 //__________________________________________________________________________________
935 
936 bool ReferenceTrajectory::addMaterialEffectsLocalGbl(const std::vector<AlgebraicMatrix> &allJacobians,
937  const std::vector<AlgebraicMatrix> &allProjections,
938  const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
939  const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs)
940 {
941 //CHK: add material effects using general broken lines, no initial kinks
942 // local track parameters are defined in the TSO system
943 
944  const double minPrec = 1.0; // minimum precision to use measurement (reject measurements in strip direction)
945 
946  AlgebraicMatrix OffsetToLocal(5,2); // dLocal/dU
947  OffsetToLocal[3][0] = 1.;
948  OffsetToLocal[4][1] = 1.;
949  AlgebraicMatrix SlopeToLocal(5,2); // dLocal/dU'
950  SlopeToLocal[1][0] = 1.;
951  SlopeToLocal[2][1] = 1.;
952 
953  // GBL uses ROOT matrices as interface
954  TMatrixDSym covariance(2), measPrecision(2), scatPrecision(2);
955  TMatrixD jacPointToPoint(5,5), identity(5,5), proLocalToMeas(2,2);
956  identity.UnitMatrix();
957  TVectorD measurement(2), scatterer(2), measPrecDiag(2);
958  scatterer.Zero();
959  //bool initialKinks = (allCurvlinKinks.size()>0);
960 
961 // measurements and scatterers from hits
962  unsigned int numHits = allJacobians.size();
963  std::vector<GblPoint> GblPointList;
964  GblPointList.reserve(numHits);
965  for (unsigned int k = 0; k < numHits; ++k) {
966 
967  // GBL point to point jacobian
968  clhep2root(allJacobians[k] * allCurvatureChanges[k], jacPointToPoint);
969 
970  // GBL point
971  GblPoint aGblPoint( jacPointToPoint );
972 
973  // GBL projection from local to measurement system
974  clhep2root(allProjections[k] * OffsetToLocal, proLocalToMeas);
975 
976  // GBL measurement (residuum to initial trajectory)
977  clhep2root(theMeasurements.sub(2*k+1,2*k+2) - theTrajectoryPositions.sub(2*k+1,2*k+2), measurement);
978 
979  // GBL measurement covariance matrix
980  clhep2root(theMeasurementsCov.sub(2*k+1,2*k+2), covariance);
981 
982  // GBL add measurement to point
983  if (covariance(0,1) == 0.) {
984  // covariance matrix is diagonal, independent measurements
985  for (unsigned int row = 0; row < 2; ++row) {
986  measPrecDiag(row) = ( 0. < covariance(row,row) ? 1.0/covariance(row,row) : 0. );
987  }
988  aGblPoint.addMeasurement(proLocalToMeas, measurement, measPrecDiag, minPrec);
989  } else
990  {
991  // covariance matrix needs diagonalization
992  measPrecision = covariance; measPrecision.InvertFast();
993  aGblPoint.addMeasurement(proLocalToMeas, measurement, measPrecision, minPrec);
994  }
995 
996  // GBL multiple scattering (full matrix in local system)
997  clhep2root(allDeltaParameterCovs[k].similarityT(SlopeToLocal), scatPrecision);
998  scatPrecision.InvertFast();
999 
1000  // GBL add scatterer to point
1001  aGblPoint.addScatterer(scatterer, scatPrecision);
1002 
1003  // add point to list
1004  GblPointList.push_back( aGblPoint );
1005  }
1006  // add list of points and transformation local to fit (=local) system at first hit
1007  theGblInput.push_back(std::make_pair(GblPointList, identity));
1008 
1009  return true;
1010 }
1011 
1012 //__________________________________________________________________________________
1013 
1014 bool ReferenceTrajectory::addMaterialEffectsCurvlinGbl(const std::vector<AlgebraicMatrix> &allCurvlinJacobians,
1015  const std::vector<AlgebraicMatrix> &allProjections,
1016  const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
1017  const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
1018  const std::vector<AlgebraicMatrix> &allLocalToCurv)
1019 {
1020 //CHK: add material effects using general broken lines
1021 // local track parameters are defined in the curvilinear system
1022 
1023  const double minPrec = 1.0; // minimum precision to use measurement (reject measurements in strip direction)
1024  int ierr = 0;
1025 
1026  AlgebraicMatrix OffsetToCurv(5,2); // dCurv/dU
1027  OffsetToCurv[3][0] = 1.; // dxt/du1
1028  OffsetToCurv[4][1] = 1.; // dyt/du2
1029 
1030  AlgebraicMatrix JacOffsetToMeas, tempMSCov;
1031 
1032  // GBL uses ROOT matrices as interface
1033  TMatrixDSym covariance(2), measPrecision(2);
1034  TMatrixD jacPointToPoint(5,5), firstLocalToCurv(5,5), proLocalToMeas(2,2);
1035  TVectorD measurement(2), scatterer(2), measPrecDiag(2), scatPrecDiag(2);
1036  scatterer.Zero();
1037 
1038 // measurements and scatterers from hits
1039  unsigned int numHits = allCurvlinJacobians.size();
1040  std::vector<GblPoint> GblPointList;
1041  GblPointList.reserve(numHits);
1042  for (unsigned int k = 0; k < numHits; ++k) {
1043 // (dMeas/dU) = (dMeas/dLoc) * (dLoc/dCurv) * (dCurv/dU)
1044  JacOffsetToMeas = (allProjections[k] * allLocalToCurv[k].inverse(ierr) ) * OffsetToCurv;
1045  if (ierr) {
1046  edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsGbl"
1047  << "Inversion 1 for general broken lines failed: " << ierr;
1048  return false;
1049  }
1050 
1051  // GBL point to point jacobian
1052  clhep2root(allCurvlinJacobians[k] * allCurvatureChanges[k], jacPointToPoint);
1053 
1054  // GBL point
1055  GblPoint aGblPoint( jacPointToPoint );
1056 
1057  // GBL projection from local to measurement system
1058  clhep2root(JacOffsetToMeas, proLocalToMeas);
1059 
1060  // GBL measurement (residuum to initial trajectory)
1061  clhep2root(theMeasurements.sub(2*k+1,2*k+2) - theTrajectoryPositions.sub(2*k+1,2*k+2), measurement);
1062 
1063  // GBL measurement covariance matrix
1064  clhep2root(theMeasurementsCov.sub(2*k+1,2*k+2), covariance);
1065 
1066  // GBL add measurement to point
1067  if (covariance(0,1) == 0.) {
1068  // covariance matrix is diagonal, independent measurements
1069  for (unsigned int row = 0; row < 2; ++row) {
1070  measPrecDiag(row) = ( 0. < covariance(row,row) ? 1.0/covariance(row,row) : 0. );
1071  }
1072  aGblPoint.addMeasurement(proLocalToMeas, measurement, measPrecDiag, minPrec);
1073  } else
1074  {
1075  // covariance matrix needs diagonalization
1076  measPrecision = covariance; measPrecision.InvertFast();
1077  aGblPoint.addMeasurement(proLocalToMeas, measurement, measPrecision, minPrec);
1078  }
1079 
1080  // GBL multiple scattering (diagonal matrix in curvilinear system)
1081  tempMSCov = allDeltaParameterCovs[k].similarity(allLocalToCurv[k]);
1082  for (unsigned int row = 0; row < 2; ++row) {
1083  scatPrecDiag(row) = 1.0/tempMSCov[row+1][row+1];
1084  }
1085 
1086  // GBL add scatterer to point
1087  aGblPoint.addScatterer(scatterer, scatPrecDiag);
1088 
1089  // add point to list
1090  GblPointList.push_back( aGblPoint );
1091  }
1092  // add list of points and transformation local to fit (=curvilinear) system at first hit
1093  clhep2root(allLocalToCurv[0], firstLocalToCurv);
1094  theGblInput.push_back(std::make_pair(GblPointList, firstLocalToCurv));
1095 
1096  return true;
1097 }
1098 
1099 //__________________________________________________________________________________
1100 
1102  // convert from CLHEP to ROOT matrix
1103  for (int row = 0; row < in.num_row(); ++row) {
1104  out[row] = in[row];
1105  }
1106 }
1107 
1109  // convert from CLHEP to ROOT matrix
1110  for (int row = 0; row < in.num_row(); ++row) {
1111  for (int col = 0; col < in.num_col(); ++col) {
1112  out[row][col] = in[row][col];
1113  }
1114  }
1115 }
1116 
1118  // convert from CLHEP to ROOT matrix
1119  for (int row = 0; row < in.num_row(); ++row) {
1120  for (int col = 0; col < in.num_col(); ++col) {
1121  out[row][col] = in[row][col];
1122  }
1123  }
1124 }
1125 
1126 //__________________________________________________________________________________
1127 
1131 {
1132  if (this->useRecHit(hitPtr)) {
1133  // check which templated non-member function to call:
1134  switch (hitPtr->dimension()) {
1135  case 1:
1136  return getHitProjectionMatrixT<1>(hitPtr);
1137  case 2:
1138  return getHitProjectionMatrixT<2>(hitPtr);
1139  case 3:
1140  return getHitProjectionMatrixT<3>(hitPtr);
1141  case 4:
1142  return getHitProjectionMatrixT<4>(hitPtr);
1143  case 5:
1144  return getHitProjectionMatrixT<5>(hitPtr);
1145  default:
1146  throw cms::Exception("ReferenceTrajectory::getHitProjectionMatrix")
1147  << "Unexpected hit dimension: " << hitPtr->dimension() << "\n";
1148  }
1149  }
1150  // invalid or (to please compiler) unknown dimension
1151  return AlgebraicMatrix(2, 5, 0); // get size from ???
1152 }
1153 
1154 //__________________________________________________________________________________
1155 
1156 template<unsigned int N>
1160 {
1161  // define variables that will be used to setup the KfComponentsHolder
1162  // (their allocated memory is needed by 'hitPtr->getKfComponents(..)'
1163 
1165  typename AlgebraicROOTObject<N>::Vector r, rMeas;
1166  typename AlgebraicROOTObject<N,N>::SymMatrix V, VMeas;
1167  // input for the holder - but dummy is OK here to just get the projection matrix:
1168  const AlgebraicVector5 dummyPars;
1169  const AlgebraicSymMatrix55 dummyErr;
1170 
1171  // setup the holder with the correct dimensions and get the values
1172  KfComponentsHolder holder;
1173  holder.setup<N>(&r, &V, &pf, &rMeas, &VMeas, dummyPars, dummyErr);
1174  hitPtr->getKfComponents(holder);
1175 
1176  return asHepMatrix<N,5>(holder.projection<N>());
1177 }
1178 
void setup(typename AlgebraicROOTObject< D >::Vector *params, typename AlgebraicROOTObject< D, D >::SymMatrix *errors, ProjectMatrix< double, 5, D > *projFunc, typename AlgebraicROOTObject< D >::Vector *measuredParams, typename AlgebraicROOTObject< D, D >::SymMatrix *measuredErrors, const AlgebraicVector5 &tsosLocalParameters, const AlgebraicSymMatrix55 &tsosLocalErrors)
dbl * delta
Definition: mlp_gen.cc:36
AlgebraicMatrix theInnerTrajectoryToCurvilinear
double z0() const
z coordinate
Definition: BeamSpot.h:68
tuple propagator
int i
Definition: DBlmapReader.cc:9
float xx() const
Definition: LocalError.h:24
void addMeasurement(const TMatrixD &aProjection, const TVectorD &aResiduals, const TVectorD &aPrecision, double minPrecision=0.)
Add a measurement to a point.
Definition: GblPoint.cc:47
AlgebraicMatrix getHitProjectionMatrix(const TransientTrackingRecHit::ConstRecHitPointer &recHit) const
tuple MultipleScatteringUpdator
ROOT::Math::SMatrix< double, D1, D1, ROOT::Math::MatRepSym< double, D1 > > SymMatrix
virtual bool addMaterialEffectsBrl(const std::vector< AlgebraicMatrix > &allJacobians, const std::vector< AlgebraicMatrix > &allProjections, const std::vector< AlgebraicSymMatrix > &allCurvChanges, const std::vector< AlgebraicSymMatrix > &allDeltaParaCovs, const std::vector< AlgebraicMatrix > &allLocalToCurv, const GlobalTrajectoryParameters &gtp)
const LocalTrajectoryParameters & localParameters() const
virtual bool construct(const TrajectoryStateOnSurface &referenceTsos, const TransientTrackingRecHit::ConstRecHitContainer &recHits, double mass, MaterialEffects materialEffects, const PropagationDirection propDir, const MagneticField *magField, bool useBeamSpot, const reco::BeamSpot &beamSpot)
AlgebraicMatrix theInnerLocalToTrajectory
tuple EnergyLossUpdator
int nominalValue() const
The nominal field value for this map in kGauss.
Definition: MagneticField.h:56
virtual void fillMeasurementAndError(const TransientTrackingRecHit::ConstRecHitPointer &hitPtr, unsigned int iRow, const TrajectoryStateOnSurface &updatedTsos)
static const unsigned int nMeasPerHit
T mag() const
The vector magnitude. Equivalent to sqrt(vec.mag2())
Geom::Phi< T > phi() const
Definition: PV3DBase.h:69
T y() const
Definition: PV3DBase.h:63
virtual bool addMaterialEffectsLocalGbl(const std::vector< AlgebraicMatrix > &allJacobians, const std::vector< AlgebraicMatrix > &allProjections, const std::vector< AlgebraicSymMatrix > &allCurvatureChanges, const std::vector< AlgebraicSymMatrix > &allDeltaParameterCovs)
ROOT::Math::SMatrix< double, 5, 5, ROOT::Math::MatRepSym< double, 5 > > AlgebraicSymMatrix55
PropagationDirection
SurfaceSide surfaceSide(const PropagationDirection dir) const
virtual bool addMaterialEffectsBp(const std::vector< AlgebraicMatrix > &allJacobians, const std::vector< AlgebraicMatrix > &allProjections, const std::vector< AlgebraicSymMatrix > &allCurvChanges, const std::vector< AlgebraicSymMatrix > &allDeltaParaCovs, const std::vector< AlgebraicMatrix > &allLocalToCurv)
GlobalVector magneticFieldInInverseGeV(const GlobalPoint &x) const
const Plane & surface() const
The nominal surface of the GeomDet.
Definition: GeomDet.h:40
Definition: Plane.h:17
float signedInverseMomentum() const
Signed inverse momentum q/p (zero for neutrals).
virtual bool propagate(const Plane &previousSurface, const TrajectoryStateOnSurface &previousTsos, const Plane &newSurface, TrajectoryStateOnSurface &newTsos, AlgebraicMatrix &newJacobian, AlgebraicMatrix &newCurvlinJacobian, double &nextStep, const PropagationDirection propDir, const MagneticField *magField) const
AlgebraicSymMatrix theTrajectoryPositionCov
double dydz() const
dydz slope
Definition: BeamSpot.h:84
virtual bool addMaterialEffectsCurvlinGbl(const std::vector< AlgebraicMatrix > &allJacobians, const std::vector< AlgebraicMatrix > &allProjections, const std::vector< AlgebraicSymMatrix > &allCurvChanges, const std::vector< AlgebraicSymMatrix > &allDeltaParaCovs, const std::vector< AlgebraicMatrix > &allLocalToCurv)
float xy() const
Definition: LocalError.h:25
const SurfaceType & surface() const
CLHEP::HepMatrix AlgebraicMatrix
float yy() const
Definition: LocalError.h:26
std::shared_ptr< TrackingRecHit const > ConstRecHitPointer
T sqrt(T t)
Definition: SSEVec.h:18
ReferenceTrajectory(const TrajectoryStateOnSurface &referenceTsos, const TransientTrackingRecHit::ConstRecHitContainer &recHits, bool hitsAreReverse, const MagneticField *magField, MaterialEffects materialEffects, PropagationDirection propDir, double mass, bool useBeamSpot, const reco::BeamSpot &beamSpot)
static PlanePointer build(Args &&...args)
Definition: Plane.h:33
FreeTrajectoryState const * freeState(bool withErrors=true) const
Vector3DBase< typename PreciseFloatType< T, U >::Type, FrameTag > cross(const Vector3DBase< U, FrameTag > &v) const
Definition: Vector3DBase.h:119
T z() const
Definition: PV3DBase.h:64
void addScatterer(const TVectorD &aResiduals, const TVectorD &aPrecision)
Add a (thin) scatterer to a point.
Definition: GblPoint.cc:188
MaterialEffectsUpdator * createUpdator(MaterialEffects materialEffects, double mass) const
const AlgebraicSymMatrix55 & matrix() const
virtual void fillDerivatives(const AlgebraicMatrix &projection, const AlgebraicMatrix &fullJacobian, unsigned int iRow)
AlgebraicROOTObject< D, 5 >::Matrix projection()
const LocalTrajectoryError & localError() const
virtual std::pair< TrajectoryStateOnSurface, double > propagateWithPath(const FreeTrajectoryState &, const Surface &) const final
Definition: Propagator.cc:15
GlobalVector momentum() const
double dxdz() const
dxdz slope
Definition: BeamSpot.h:82
TransientTrackingRecHit::ConstRecHitContainer theRecHits
std::vector< std::pair< std::vector< gbl::GblPoint >, TMatrixD > > theGblInput
std::vector< ConstRecHitPointer > ConstRecHitContainer
AlgebraicSymMatrix theMeasurementsCov
AlgebraicMatrix getHitProjectionMatrixT(const TransientTrackingRecHit::ConstRecHitPointer &recHit) const
const AlgebraicVector & parameters() const
CLHEP::HepVector AlgebraicVector
ROOT::Math::SVector< double, D1 > Vector
#define N
Definition: blowfish.cc:9
ROOT::Math::SVector< double, 5 > AlgebraicVector5
const GlobalTrajectoryParameters & globalParameters() const
void clhep2root(const AlgebraicVector &in, TVectorD &out)
AlgebraicVector5 mixedFormatVector() const
CLHEP::HepSymMatrix AlgebraicSymMatrix
std::vector< TrajectoryStateOnSurface > theTsosVec
double y0() const
y coordinate
Definition: BeamSpot.h:66
virtual bool addMaterialEffectsCov(const std::vector< AlgebraicMatrix > &allJacobians, const std::vector< AlgebraicMatrix > &allProjections, const std::vector< AlgebraicSymMatrix > &allCurvChanges, const std::vector< AlgebraicSymMatrix > &allDeltaParaCovs)
virtual void fillTrajectoryPositions(const AlgebraicMatrix &projection, const AlgebraicVector &mixedLocalParams, unsigned int iRow)
int col
Definition: cuy.py:1008
bool useRecHit(const TransientTrackingRecHit::ConstRecHitPointer &hitPtr) const
T x() const
Definition: PV3DBase.h:62
tuple size
Write out results.
double x0() const
x coordinate
Definition: BeamSpot.h:64
Point on trajectory.
Definition: GblPoint.h:46