43 float dir = (points[1].x()-points[0].x())*(points[2].
y()-points[1].y())
44 - (points[1].
y()-points[0].y())*(points[2].
x()-points[1].x());
54 return (dir>0) ? -1 : 1;
58 float dr = outer.
perp()-inner.
perp();
59 float dz = outer.
z()-inner.
z();
63 inline float phi(
float xC,
float yC,
int charge) {
64 return (charge>0) ? std::atan2(xC,-yC) : std::atan2(-xC,yC);
67 float zip(
float d0,
float phi_p,
float curv,
78 float rho2 = curv*curv;
79 float r1s = (pinner-pca).
perp2();
80 double phi1 =
std::sqrt(r1s)*(curv*0.5f)*(1.
f+r1s*(rho2*o24));
81 float r2s = (pouter-pca).
perp2();
82 double phi2 =
std::sqrt(r2s)*(curv*0.5f)*(1.
f+r2s*(rho2*o24));
83 double z1 = pinner.
z();
84 double z2 = pouter.
z();
87 return z1 - phi1/(phi1-phi2)*(z1-z2);
97 : theConfig(cfg), theField(
nullptr) {}
101 const std::vector<const TrackingRecHit * > & hits,
104 int nhits = hits.size();
105 if (nhits <2)
return 0;
119 auto const & recHit = hits[
i];
121 errors[
i] = recHit->globalPositionError();
122 isBarrel[
i] = recHit->detUnit()->type().isBarrel();
129 float valPhi, valTip, valPt;
131 int iCharge =
charge(points);
134 if ((curvature > 1.
e-4)&&
137 valPt = (invPt > 1.e-4
f) ? 1.
f/invPt : 1.e4f;
140 valPhi =
phi(center.
x(), center.
y(), iCharge);
146 valTip = -points[0].x()*
sin(valPhi) + points[0].y()*
cos(valPhi);
149 float valCotTheta = cotTheta(points[0],points[1]);
150 float valEta = std::asinh(valCotTheta);
151 float valZip =
zip(valTip, valPhi, curvature, points[0],points[1]);
154 float errValPt = param.
errPt();
155 float errValCot = param.
errCot();
156 float errValTip = param.
errTip();
157 float errValPhi = param.
errPhi();
158 float errValZip = param.
errZip();
164 float cottheta, intercept, covss, covii, covsi;
165 rzLine.
fit(cottheta, intercept, covss, covii, covsi);
166 chi2 = rzLine.
chi2(cottheta, intercept);
176 return builder.
build(pt, phi, cotTheta, tip, zip, chi2, iCharge, hits,
theField, region.
origin() );
const MagneticField * theField
GlobalPoint const & origin() const
PixelFitterByHelixProjections(const edm::ParameterSet &cfg)
bool isBarrel(GeomDetEnumerators::SubDetector m)
Sin< T >::type sin(const T &t)
Global3DPoint GlobalPoint
T mag() const
The vector magnitude. Equivalent to sqrt(vec.mag2())
virtual reco::Track * run(const edm::EventSetup &es, const std::vector< const TrackingRecHit * > &hits, const TrackingRegion ®ion) const
T inversePt(T curvature, const edm::EventSetup &iSetup)
T x() const
Cartesian x coordinate.
T curvature(T InversePt, const edm::EventSetup &iSetup)
OutputIterator zip(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp)
Cos< T >::type cos(const T &t)
reco::Track * build(const Measurement1D &pt, const Measurement1D &phi, const Measurement1D &cotTheta, const Measurement1D &tip, const Measurement1D &zip, float chi2, int charge, const std::vector< const TrackingRecHit * > &hits, const MagneticField *mf, const GlobalPoint &reference=GlobalPoint(0, 0, 0)) const
Abs< T >::type abs(const T &t)
T y() const
Cartesian y coordinate.
constexpr float fhalfPi()
T const * product() const
T perp2() const
Squared magnitude of transverse component.
Geom::Phi< T > phi() const
void fit(float &cotTheta, float &intercept, float &covss, float &covii, float &covsi) const
#define declareDynArray(T, n, x)
float chi2(float cotTheta, float intercept) const
float fieldInInvGev(const edm::EventSetup &iSetup)
const BasicVectorType & basicVector() const
T x() const
Cartesian x coordinate.