CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
PixelTripletLargeTipGenerator.cc
Go to the documentation of this file.
3 
5 #include "ThirdHitRZPrediction.h"
8 
14 
16 #include "RecoPixelVertexing/PixelTriplets/plugins/KDTreeLinkerAlgo.h" //amend to point at our version...
18 
19 #include <algorithm>
20 #include <iostream>
21 #include <vector>
22 #include <cmath>
23 #include <map>
24 
26 
28 
29 using namespace std;
30 
33 
34 namespace {
35  struct LayerRZPredictions {
37  ThirdHitRZPrediction<HelixRZ> helix1, helix2;
38  MatchedHitRZCorrectionFromBending rzPositionFixup;
39  ThirdHitCorrection correction;
40  };
41 }
42 
43 constexpr double nSigmaRZ = 3.4641016151377544; // sqrt(12.)
44 constexpr double nSigmaPhi = 3.;
46 
47 
50  useFixedPreFiltering(cfg.getParameter<bool>("useFixedPreFiltering")),
51  extraHitRZtolerance(cfg.getParameter<double>("extraHitRZtolerance")),
52  extraHitRPhitolerance(cfg.getParameter<double>("extraHitRPhitolerance")),
53  useMScat(cfg.getParameter<bool>("useMultScattering")),
54  useBend(cfg.getParameter<bool>("useBending")),
55  dphi(useFixedPreFiltering ? cfg.getParameter<double>("phiPreFiltering") : 0) {}
56 
58 
59 namespace {
60  inline
61  bool intersect(Range &range, const Range &second)
62  {
63  if ( (range.min() > second.max()) | (range.max() < second.min()) )
64  return false;
65  if (range.first < second.min())
66  range.first = second.min();
67  if (range.second > second.max())
68  range.second = second.max();
69  return range.first < range.second;
70  }
71 }
72 
75  const edm::Event & ev,
76  const edm::EventSetup& es,
78  const std::vector<SeedingLayerSetsHits::SeedingLayer>& thirdLayers)
79 {
81  es.get<TrackerDigiGeometryRecord>().get(tracker);
82 
83  //Retrieve tracker topology from geometry
85  es.get<TrackerTopologyRcd>().get(tTopoHand);
86  const TrackerTopology *tTopo=tTopoHand.product();
87 
88  auto const & doublets = thePairGenerator->doublets(region,ev,es, pairLayers);
89 
90  if (doublets.empty()) return;
91 
92  auto outSeq = doublets.detLayer(HitDoublets::outer)->seqNum();
93 
94 
95  int size = thirdLayers.size();
96 
97 
98  using NodeInfo = KDTreeNodeInfo<unsigned int>;
99  std::vector<NodeInfo > layerTree; // re-used throughout
100  std::vector<unsigned int> foundNodes; // re-used throughout
101  foundNodes.reserve(100);
102 
104  declareDynArray(LayerRZPredictions, size, mapPred);
105 
106  float rzError[size]; //save maximum errors
107 
108  const float maxDelphi = region.ptMin() < 0.3f ? float(M_PI)/4.f : float(M_PI)/8.f; // FIXME move to config??
109  const float maxphi = M_PI+maxDelphi, minphi = -maxphi; // increase to cater for any range
110  const float safePhi = M_PI-maxDelphi; // sideband
111 
112 
113  const RecHitsSortedInPhi * thirdHitMap[size];
114 
115  for(int il = 0; il < size; il++) {
116  thirdHitMap[il] = &(*theLayerCache)(thirdLayers[il], region, ev, es);
117  auto const & hits = *thirdHitMap[il];
118 
119  const DetLayer *layer = thirdLayers[il].detLayer();
120  LayerRZPredictions &predRZ = mapPred[il];
121  predRZ.line.initLayer(layer);
122  predRZ.helix1.initLayer(layer);
123  predRZ.helix2.initLayer(layer);
124  predRZ.line.initTolerance(extraHitRZtolerance);
125  predRZ.helix1.initTolerance(extraHitRZtolerance);
126  predRZ.helix2.initTolerance(extraHitRZtolerance);
127  predRZ.rzPositionFixup = MatchedHitRZCorrectionFromBending(layer,tTopo);
128  predRZ.correction.init(es, region.ptMin(), *doublets.detLayer(HitDoublets::inner), *doublets.detLayer(HitDoublets::outer), *thirdLayers[il].detLayer(), useMScat, false);
129 
130 
131  layerTree.clear();
132  float minv=999999.0; float maxv = -999999.0; // Initialise to extreme values in case no hits
133  float maxErr=0.0f;
134  for (unsigned int i=0; i!=hits.size(); ++i) {
135  auto angle = hits.phi(i);
136  auto v = hits.gv(i);
137  //use (phi,r) for endcaps rather than (phi,z)
138  minv = std::min(minv,v); maxv = std::max(maxv,v);
139  float myerr = hits.dv[i];
140  maxErr = std::max(maxErr,myerr);
141  layerTree.emplace_back(i, angle, v); // save it
142  // populate side-bands
143  if (angle>safePhi) layerTree.emplace_back(i, angle-Geom::ftwoPi(), v);
144  else if (angle<-safePhi) layerTree.emplace_back(i, angle+Geom::ftwoPi(), v);
145  }
146  KDTreeBox phiZ(minphi, maxphi, minv-0.01f, maxv+0.01f); // declare our bounds
147  //add fudge factors in case only one hit and also for floating-point inaccuracy
148  hitTree[il].build(layerTree, phiZ); // make KDtree
149  rzError[il] = maxErr; //save error
150  }
151 
152  double curv = PixelRecoUtilities::curvature(1. / region.ptMin(), es);
153 
154  for (std::size_t ip =0; ip!=doublets.size(); ip++) {
155  auto xi = doublets.x(ip,HitDoublets::inner);
156  auto yi = doublets.y(ip,HitDoublets::inner);
157  auto zi = doublets.z(ip,HitDoublets::inner);
158  // auto rvi = doublets.rv(ip,HitDoublets::inner);
159  auto xo = doublets.x(ip,HitDoublets::outer);
160  auto yo = doublets.y(ip,HitDoublets::outer);
161  auto zo = doublets.z(ip,HitDoublets::outer);
162  // auto rvo = doublets.rv(ip,HitDoublets::outer);
163  GlobalPoint gp1(xi,yi,zi);
164  GlobalPoint gp2(xo,yo,zo);
165 
166  auto toPos = std::signbit(zo-zi);
167 
168  PixelRecoLineRZ line(gp1, gp2);
169  PixelRecoPointRZ point2(gp2.perp(), zo);
170  ThirdHitPredictionFromCircle predictionRPhi(gp1, gp2, extraHitRPhitolerance);
171 
172  Range generalCurvature = predictionRPhi.curvature(region.originRBound());
173  if (!intersect(generalCurvature, Range(-curv, curv))) continue;
174 
175  for(int il = 0; il < size; il++) {
176  if (hitTree[il].empty()) continue; // Don't bother if no hits
177  const DetLayer *layer = thirdLayers[il].detLayer();
178  bool barrelLayer = layer->isBarrel();
179 
180  if ( (!barrelLayer) & (toPos != std::signbit(layer->position().z())) ) continue;
181 
182 
183  Range curvature = generalCurvature;
184 
185  LayerRZPredictions &predRZ = mapPred[il];
186  predRZ.line.initPropagator(&line);
187 
188  auto & correction = predRZ.correction;
189  correction.init(line, point2, outSeq);
190 
191 
192  Range rzRange;
193  if (useBend) {
194  // For the barrel region:
195  // swiping the helix passing through the two points across from
196  // negative to positive bending, can give us a sort of U-shaped
197  // projection onto the phi-z (barrel) or r-z plane (forward)
198  // so we checking minimum/maximum of all three possible extrema
199  //
200  // For the endcap region:
201  // Checking minimum/maximum radius of the helix projection
202  // onto an endcap plane, here we have to guard against
203  // looping tracks, when phi(delta z) gets out of control.
204  // HelixRZ::rAtZ should not follow looping tracks, but clamp
205  // to the minimum reachable r with the next-best lower |curvature|.
206  // So same procedure as for the barrel region can be applied.
207  //
208  // In order to avoid looking for potential looping tracks at all
209  // we also clamp the allowed curvature range for this layer,
210  // and potentially fail the layer entirely
211 
212  if (!barrelLayer) {
213  Range z3s = predRZ.line.detRange();
214  double z3 = z3s.first < 0 ? std::max(z3s.first, z3s.second)
215  : std::min(z3s.first, z3s.second);
216  double maxCurvature = HelixRZ::maxCurvature(&predictionRPhi,
217  gp1.z(), gp2.z(), z3);
218  if (!intersect(curvature, Range(-maxCurvature, maxCurvature)))
219  continue;
220  }
221 
222  HelixRZ helix1(&predictionRPhi, gp1.z(), gp2.z(), curvature.first);
223  HelixRZ helix2(&predictionRPhi, gp1.z(), gp2.z(), curvature.second);
224 
225  predRZ.helix1.initPropagator(&helix1);
226  predRZ.helix2.initPropagator(&helix2);
227 
228  Range rzRanges[2] = { predRZ.helix1(), predRZ.helix2() };
229  predRZ.helix1.initPropagator(nullptr);
230  predRZ.helix2.initPropagator(nullptr);
231 
232  rzRange.first = std::min(rzRanges[0].first, rzRanges[1].first);
233  rzRange.second = std::max(rzRanges[0].second, rzRanges[1].second);
234 
235  // if the allowed curvatures include a straight line,
236  // this can give us another extremum for allowed r/z
237  if (curvature.first * curvature.second < 0.0) {
238  Range rzLineRange = predRZ.line();
239  rzRange.first = std::min(rzRange.first, rzLineRange.first);
240  rzRange.second = std::max(rzRange.second, rzLineRange.second);
241  }
242  } else {
243  rzRange = predRZ.line();
244  }
245 
246  if (rzRange.first >= rzRange.second)
247  continue;
248 
249  correction.correctRZRange(rzRange);
250 
251  Range phiRange;
252  if (useFixedPreFiltering) {
253  float phi0 = doublets.phi(ip,HitDoublets::outer);
254  phiRange = Range(phi0 - dphi, phi0 + dphi);
255  } else {
256  Range radius;
257 
258  if (barrelLayer) {
259  radius = predRZ.line.detRange();
260  if (!intersect(rzRange, predRZ.line.detSize()))
261  continue;
262  } else {
263  radius = rzRange;
264  if (!intersect(radius, predRZ.line.detSize()))
265  continue;
266  }
267 
268  //gc: predictionRPhi uses the cosine rule to find the phi of the 3rd point at radius, assuming the pairCurvature range [-c,+c]
269  if ( (curvature.first<0.0f) & (curvature.second<0.0f) ) {
270  radius.swap();
271  } else if ( (curvature.first>=0.0f) & (curvature.second>=0.0f) ) {;}
272  else {
273  radius.first=radius.second;
274  }
275  auto phi12 = predictionRPhi.phi(curvature.first,radius.first);
276  auto phi22 = predictionRPhi.phi(curvature.second,radius.second);
277  phi12 = normalizedPhi(phi12);
278  phi22 = proxim(phi22,phi12);
279  phiRange = Range(phi12,phi22); phiRange.sort();
280  auto rmean = radius.mean();
281  phiRange.first *= rmean;
282  phiRange.second *= rmean;
283  correction.correctRPhiRange(phiRange);
284  phiRange.first /= rmean;
285  phiRange.second /= rmean;
286 
287  }
288 
289  foundNodes.clear(); // Now recover hits in bounding box...
290  float prmin=phiRange.min(), prmax=phiRange.max(); //get contiguous range
291 
292  if (prmax-prmin>maxDelphi) {
293  auto prm = phiRange.mean();
294  prmin = prm - 0.5f*maxDelphi;
295  prmax = prm + 0.5f*maxDelphi;
296  }
297 
298  if (barrelLayer) {
299  Range regMax = predRZ.line.detRange();
300  Range regMin = predRZ.line(regMax.min());
301  regMax = predRZ.line(regMax.max());
302  correction.correctRZRange(regMin);
303  correction.correctRZRange(regMax);
304  if (regMax.min() < regMin.min()) { std::swap(regMax, regMin);}
305  KDTreeBox phiZ(prmin, prmax,
306  regMin.min()-fnSigmaRZ*rzError[il],
307  regMax.max()+fnSigmaRZ*rzError[il]);
308  hitTree[il].search(phiZ, foundNodes);
309  }
310  else {
311  KDTreeBox phiZ(prmin, prmax,
312  rzRange.min()-fnSigmaRZ*rzError[il],
313  rzRange.max()+fnSigmaRZ*rzError[il]);
314  hitTree[il].search(phiZ, foundNodes);
315  }
316 
317  MatchedHitRZCorrectionFromBending l2rzFixup(doublets.hit(ip,HitDoublets::outer)->det()->geographicalId(), tTopo);
318  MatchedHitRZCorrectionFromBending l3rzFixup = predRZ.rzPositionFixup;
319 
320  thirdHitMap[il] = &(*theLayerCache)(thirdLayers[il], region, ev, es);
321  auto const & hits = *thirdHitMap[il];
322  for (auto KDdata : foundNodes) {
323  GlobalPoint p3 = hits.gp(KDdata);
324  double p3_r = p3.perp();
325  double p3_z = p3.z();
326  float p3_phi = hits.phi(KDdata);
327 
328  Range rangeRPhi = predictionRPhi(curvature, p3_r);
329  correction.correctRPhiRange(rangeRPhi);
330 
331  float ir = 1.f/p3_r;
332  float phiErr = nSigmaPhi * hits.drphi[KDdata]*ir;
333  if (!checkPhiInRange(p3_phi, rangeRPhi.first*ir-phiErr, rangeRPhi.second*ir+phiErr))
334  continue;
335 
336  Basic2DVector<double> thc(p3.x(), p3.y());
337 
338  auto curv_ = predictionRPhi.curvature(thc);
339  double p2_r = point2.r(); double p2_z = point2.z(); // they will be modified!
340 
341  l2rzFixup(predictionRPhi, curv_, *doublets.hit(ip,HitDoublets::outer), p2_r, p2_z, tTopo);
342  l3rzFixup(predictionRPhi, curv_, *hits.theHits[KDdata].hit(), p3_r, p3_z, tTopo);
343 
344  Range rangeRZ;
345  if (useBend) {
346  HelixRZ updatedHelix(&predictionRPhi, gp1.z(), p2_z, curv_);
347  rangeRZ = predRZ.helix1(barrelLayer ? p3_r : p3_z, updatedHelix);
348  } else {
349  float tIP = predictionRPhi.transverseIP(thc);
350  PixelRecoPointRZ updatedPoint2(p2_r, p2_z);
351  PixelRecoLineRZ updatedLine(line.origin(), point2, tIP);
352  rangeRZ = predRZ.line(barrelLayer ? p3_r : p3_z, line);
353  }
354  correction.correctRZRange(rangeRZ);
355 
356  double err = nSigmaRZ * hits.dv[KDdata];
357 
358  rangeRZ.first -= err, rangeRZ.second += err;
359 
360  if (!rangeRZ.inside(barrelLayer ? p3_z : p3_r)) continue;
361 
362  if (theMaxElement!=0 && result.size() >= theMaxElement) {
363  result.clear();
364  edm::LogError("TooManyTriplets")<<" number of triples exceed maximum. no triplets produced.";
365  return;
366  }
367  result.emplace_back( doublets.hit(ip,HitDoublets::inner), doublets.hit(ip,HitDoublets::outer), hits.theHits[KDdata].hit());
368  }
369  }
370  }
371  // std::cout << "found triplets " << result.size() << std::endl;
372 }
373 
float originRBound() const
bounds the particle vertex in the transverse plane
int i
Definition: DBlmapReader.cc:9
tuple cfg
Definition: looper.py:293
T perp() const
Definition: PV3DBase.h:72
constexpr float ftwoPi()
Definition: Pi.h:36
PixelRecoRange< float > Range
virtual void hitTriplets(const TrackingRegion &region, OrderedHitTriplets &trs, const edm::Event &ev, const edm::EventSetup &es, SeedingLayerSetsHits::SeedingLayerSet pairLayers, const std::vector< SeedingLayerSetsHits::SeedingLayer > &thirdLayers) override
T y() const
Definition: PV3DBase.h:63
T r() const
Radius, same as mag()
bool ev
LineOrigin origin() const
#define constexpr
tuple result
Definition: mps_fire.py:84
U second(std::pair< T, U > const &p)
T curvature(T InversePt, const edm::EventSetup &iSetup)
void swap(edm::DataFrameContainer &lhs, edm::DataFrameContainer &rhs)
T z() const
Definition: PV3DBase.h:64
PixelTripletLargeTipGenerator(const edm::ParameterSet &cfg, edm::ConsumesCollector &iC)
double f[11][100]
T min(T a, T b)
Definition: MathUtil.h:58
#define M_PI
bool isBarrel() const
Definition: DetLayer.h:32
static double maxCurvature(const ThirdHitPredictionFromCircle *circle, double z1, double z2, double z3)
std::unique_ptr< HitPairGeneratorFromLayerPair > thePairGenerator
T proxim(T b, T a)
Definition: normalizedPhi.h:13
virtual const Surface::PositionType & position() const
Returns position of the surface.
const T & get() const
Definition: EventSetup.h:56
T const * product() const
Definition: ESHandle.h:86
float ptMin() const
minimal pt of interest
bool checkPhiInRange(T phi, T phi1, T phi2)
Definition: normalizedPhi.h:21
#define declareDynArray(T, n, x)
Definition: DynArray.h:58
virtual unsigned int size() const
T x() const
Definition: PV3DBase.h:62
tuple size
Write out results.
T normalizedPhi(T phi)
Definition: normalizedPhi.h:8
double p3[4]
Definition: TauolaWrapper.h:91
T angle(T x1, T y1, T z1, T x2, T y2, T z2)
Definition: angle.h:11