CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Functions
QStatisticalTests.h File Reference

Go to the source code of this file.

Functions

void BinLogLikelihoodRatio (long, long, double, double *, double *)
 
void PoissionLogLikelihoodRatio (double, double, double, double, double *, double *)
 

Function Documentation

void BinLogLikelihoodRatio ( long  ,
long  ,
double  ,
double *  ,
double *   
)

Definition at line 7 of file QStatisticalTests.cc.

References N, gen::n, and mathSSE::sqrt().

9 {
10 /*--------------------------------------------------------------------------+
11  | Description: Log-likelihood Ratio for Binomial PDF |
12  +--------------------------------------------------------------------------+
13  | Input to this function |
14  +--------------------------------------------------------------------------+
15  |int Nentries : The number of attempts |
16  |int Nfailures : The number of failures |
17  |double epsilon_max, : maximum allowed failure rate fraction |
18  |double* S_fail_obs : uninitialised Significance of failure |
19  |double* S_pass_obs : uninitialised Significance of Success |
20  +--------------------------------------------------------------------------+
21  | Return values for this function |
22  +--------------------------------------------------------------------------+
23  |double* S_fail_obs : the observed Significance of failure |
24  |double* S_pass_obs : the observed Significance of Success |
25  +--------------------------------------------------------------------------+
26  | Author: Richard Cavanaugh, University of Florida |
27  | email: Richard.Cavanaugh@cern.ch |
28  | Creation Date: 11.July.2005 |
29  | Last Modified: 17.Jan.2006 |
30  | Comments: |
31  +--------------------------------------------------------------------------*/
32  long N = Nentries, n = Nfailures;
33  if( n == 0 ) n = 1; //protect against no failures: approx. 0 by 1
34  if( n == N ) n -= 1; //protect against all failures: approx. n by (n - 1)
35  double epsilon_meas = (double) n / (double) N;
36 
37  double LogQ =
38  ((double) n ) * ( Log(epsilon_meas) - Log(epsilon_max) ) +
39  ((double) (N - n)) * ( Log(1.0 - epsilon_meas) - Log(1.0 - epsilon_max) );
40 
41  //x-check: var of binomial = epsilon_max * (1 - epsilon_max) / N
42  if( Nentries <= 1 ) //guard against insufficient entries
43  {
44  *S_fail_obs = 0.0;
45  *S_pass_obs = 0.0;
46  }
47  else if( Nfailures == 0 && ( epsilon_max <= 1.0 / (double) Nentries ) )
48  {
49  *S_fail_obs = 0.0;
50  *S_pass_obs = 0.0;
51  }
52  else if( Nfailures == 0 )
53  {
54  *S_fail_obs = 0.0;
55  *S_pass_obs = sqrt( 2.0 * LogQ );
56  }
57  else if( Nfailures == Nentries )
58  {
59  *S_fail_obs = sqrt( 2.0 * LogQ );
60  *S_pass_obs = 0.0;
61  }
62  else if( epsilon_meas >= epsilon_max )
63  {
64  *S_fail_obs = sqrt( 2.0 * LogQ );
65  *S_pass_obs = 0.0;
66  }
67  else
68  {
69  *S_fail_obs = 0.0;
70  *S_pass_obs = sqrt( 2.0 * LogQ );
71  }
72 }
T sqrt(T t)
Definition: SSEVec.h:18
#define N
Definition: blowfish.cc:9
void PoissionLogLikelihoodRatio ( double  ,
double  ,
double  ,
double  ,
double *  ,
double *   
)

Definition at line 76 of file QStatisticalTests.cc.

References data, and mathSSE::sqrt().

79 {
80 /*--------------------------------------------------------------------------+
81  | Description: Log-likelihood Ratio for Poission PDF |
82  +--------------------------------------------------------------------------+
83  | Input to this function |
84  +--------------------------------------------------------------------------+
85  |double data, : The observed number of entries |
86  |double sigma, : The uncertainty on, data, the observed entries |
87  |double hypothesis, : The assumed hypothese, tested against data |
88  |double epsilon_max, : Maximum tolerance above fraction of fitted line |
89  |double epsilon_min, : Minimum tolerance below fraction of fitted line |
90  |double* S_fail_obs : uninitialised Significance of failure |
91  |double* S_pass_obs : uninitialised Significance of Success |
92  +--------------------------------------------------------------------------+
93  | Return values for this function |
94  +--------------------------------------------------------------------------+
95  |double* S_fail_obs : the observed Significance of failure |
96  |double* S_pass_obs : the observed Significance of Success |
97  +--------------------------------------------------------------------------+
98  | Author: Richard Cavanaugh, University of Florida |
99  | email: Richard.Cavanaugh@cern.ch |
100  | Creation Date: 14.Jan.2006 |
101  | Last Modified: 16.Jan.2006 |
102  | Comments: |
103  +--------------------------------------------------------------------------*/
104  double tolerance_min = hypothesis*(1.0-epsilon_min);
105  double tolerance_max = hypothesis*(1.0+epsilon_max);
106  *S_pass_obs = 0.0;
107  *S_fail_obs = 0.0;
108  if( data > tolerance_max )
109  {
110  double Nsig = data - tolerance_max;
111  double Nbak = tolerance_max;
112  double LogQ = (double) (Nsig + Nbak) *
113  Log( 1.0 + (double) Nsig / (double) Nbak ) - (double) Nsig;
114  *S_fail_obs = sqrt( 2.0 * LogQ );
115  }
116  else if( tolerance_min < data && data < tolerance_max )
117  {
118  if( data - hypothesis > 0.0 )
119  {
120  double Nsig = tolerance_max - data;
121  double Nbak = tolerance_max;
122  double LogQ = (double) (Nsig + Nbak) *
123  Log( 1.0 + (double) Nsig / (double) Nbak ) - (double) Nsig;
124  *S_pass_obs = sqrt( 2.0 * LogQ );
125  }
126  else
127  {
128  double Nsig = data - tolerance_min;
129  double Nbak = tolerance_min;
130  double LogQ = (double) (Nsig + Nbak) *
131  Log( 1.0 + (double) Nsig / (double) Nbak ) - (double) Nsig;
132  *S_pass_obs = sqrt( 2.0 * LogQ );
133  }
134  }
135  else // data < tolerance_min
136  {
137  double Nsig = tolerance_min - data;
138  double Nbak = tolerance_min;
139  double LogQ = (double) (Nsig + Nbak) *
140  Log( 1.0 + (double) Nsig / (double) Nbak ) - (double) Nsig;
141  *S_fail_obs = sqrt( 2.0 * LogQ );
142  }
143 }
T sqrt(T t)
Definition: SSEVec.h:18
char data[epos_bytes_allocation]
Definition: EPOS_Wrapper.h:82