test
CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
UrbanMscModel93.cc
Go to the documentation of this file.
1 // -------------------------------------------------------------------
2 //
3 // GEANT4 Class file
4 //
5 //
6 // File name: UrbanMscModel93
7 //
8 // Original author: Laszlo Urban,
9 //
10 // V.Ivanchenko have copied from G4UrbanMscModel93 class
11 // of Geant4 global tag geant4-09-06-ref-07
12 // and have adopted to CMSSW
13 //
14 // -------------------------------------------------------------------
15 //
16 
17 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
18 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
19 
21 #include "G4PhysicalConstants.hh"
22 #include "Randomize.hh"
23 #include "G4Electron.hh"
24 #include "G4LossTableManager.hh"
25 #include "G4ParticleChangeForMSC.hh"
26 
27 #include "G4Poisson.hh"
28 #include "globals.hh"
29 
30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
31 
32 using namespace std;
33 
34 static const G4double kappa = 2.5;
35 static const G4double kappapl1 = 3.5;
36 static const G4double kappami1 = 1.5;
37 
39  : G4VMscModel(nam)
40 {
41  masslimite = 0.6*MeV;
42  lambdalimit = 1.*mm;
43  fr = 0.02;
44  taubig = 8.0;
45  tausmall = 1.e-16;
46  taulim = 1.e-6;
48  tlimitminfix = 1.e-6*mm;
50  smallstep = 1.e10;
51  currentRange = 0. ;
52  rangeinit = 0.;
53  tlimit = 1.e10*mm;
54  tlimitmin = 10.*tlimitminfix;
55  tgeom = 1.e50*mm;
56  geombig = 1.e50*mm;
57  geommin = 1.e-3*mm;
59  presafety = 0.*mm;
60 
61  y = 0.;
62 
63  Zold = 0.;
64  Zeff = 1.;
65  Z2 = 1.;
66  Z23 = 1.;
67  lnZ = 0.;
68  coeffth1 = 0.;
69  coeffth2 = 0.;
70  coeffc1 = 0.;
71  coeffc2 = 0.;
72  scr1ini = fine_structure_const*fine_structure_const*
73  electron_mass_c2*electron_mass_c2/(0.885*0.885*4.*pi);
74  scr2ini = 3.76*fine_structure_const*fine_structure_const;
75  scr1 = 0.;
76  scr2 = 0.;
77 
78  theta0max = pi/6.;
79  rellossmax = 0.50;
80  third = 1./3.;
81  particle = 0;
82  theManager = G4LossTableManager::Instance();
83  firstStep = true;
84  inside = false;
85  insideskin = false;
86 
87  numlim = 0.01;
88  xsi = 3.;
89  ea = G4Exp(-xsi);
90  eaa = 1.-ea ;
91 
92  skindepth = skin*stepmin;
93 
94  mass = proton_mass_c2;
95  charge = ChargeSquare = 1.0;
97  = zPathLength = par1 = par2 = par3 = 0;
98 
100  fParticleChange = 0;
101  couple = 0;
102  SetSampleZ(false);
103 }
104 
105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
106 
108 {}
109 
110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111 
112 void UrbanMscModel93::Initialise(const G4ParticleDefinition* p,
113  const G4DataVector&)
114 {
115  skindepth = skin*stepmin;
116 
117  // set values of some data members
118  SetParticle(p);
119 
120  if(p->GetPDGMass() > MeV) {
121  G4cout << "### WARNING: UrbanMscModel93 model is used for "
122  << p->GetParticleName() << " !!! " << G4endl;
123  G4cout << "### This model should be used only for e+-"
124  << G4endl;
125  }
126 
127  fParticleChange = GetParticleChangeForMSC(p);
128 }
129 
130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
131 
133  const G4ParticleDefinition* part,
134  G4double KineticEnergy,
135  G4double AtomicNumber,G4double,
136  G4double, G4double)
137 {
138  static const G4double sigmafactor =
139  twopi*classic_electr_radius*classic_electr_radius;
140  static const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
141  Bohr_radius*Bohr_radius/(hbarc*hbarc);
142  static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
143 
144  static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47.,
145  50., 56., 64., 74., 79., 82. };
146 
147  static const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV,
148  1*keV, 2*keV, 4*keV, 7*keV,
149  10*keV, 20*keV, 40*keV, 70*keV,
150  100*keV, 200*keV, 400*keV, 700*keV,
151  1*MeV, 2*MeV, 4*MeV, 7*MeV,
152  10*MeV, 20*MeV};
153 
154  // corr. factors for e-/e+ lambda for T <= Tlim
155  static const G4double celectron[15][22] =
156  {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
157  1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
158  1.112,1.108,1.100,1.093,1.089,1.087 },
159  {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
160  1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
161  1.109,1.105,1.097,1.090,1.086,1.082 },
162  {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
163  1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
164  1.131,1.124,1.113,1.104,1.099,1.098 },
165  {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
166  1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
167  1.112,1.105,1.096,1.089,1.085,1.098 },
168  {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
169  1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
170  1.073,1.070,1.064,1.059,1.056,1.056 },
171  {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
172  1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
173  1.074,1.070,1.063,1.059,1.056,1.052 },
174  {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
175  1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
176  1.068,1.064,1.059,1.054,1.051,1.050 },
177  {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
178  1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
179  1.039,1.037,1.034,1.031,1.030,1.036 },
180  {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
181  1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
182  1.031,1.028,1.024,1.022,1.021,1.024 },
183  {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
184  1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
185  1.020,1.017,1.015,1.013,1.013,1.020 },
186  {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
187  1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
188  0.995,0.993,0.993,0.993,0.993,1.011 },
189  {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
190  1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
191  0.974,0.972,0.973,0.974,0.975,0.987 },
192  {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
193  1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
194  0.950,0.947,0.949,0.952,0.954,0.963 },
195  {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
196  1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
197  0.941,0.938,0.940,0.944,0.946,0.954 },
198  {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
199  1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
200  0.933,0.930,0.933,0.936,0.939,0.949 }};
201 
202  static const G4double cpositron[15][22] = {
203  {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
204  1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
205  1.131,1.126,1.117,1.108,1.103,1.100 },
206  {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
207  1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
208  1.138,1.132,1.122,1.113,1.108,1.102 },
209  {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
210  1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
211  1.203,1.190,1.173,1.159,1.151,1.145 },
212  {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
213  1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
214  1.225,1.210,1.191,1.175,1.166,1.174 },
215  {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
216  1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
217  1.217,1.203,1.184,1.169,1.160,1.151 },
218  {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
219  1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
220  1.237,1.222,1.201,1.184,1.174,1.159 },
221  {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
222  1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
223  1.252,1.234,1.212,1.194,1.183,1.170 },
224  {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
225  2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
226  1.254,1.237,1.214,1.195,1.185,1.179 },
227  {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
228  2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
229  1.312,1.288,1.258,1.235,1.221,1.205 },
230  {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
231  2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
232  1.320,1.294,1.264,1.240,1.226,1.214 },
233  {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
234  2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
235  1.328,1.302,1.270,1.245,1.231,1.233 },
236  {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
237  2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
238  1.361,1.330,1.294,1.267,1.251,1.239 },
239  {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
240  3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
241  1.409,1.372,1.330,1.298,1.280,1.258 },
242  {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
243  3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
244  1.442,1.400,1.354,1.319,1.299,1.272 },
245  {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
246  3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
247  1.456,1.412,1.364,1.328,1.307,1.282 }};
248 
249  //data/corrections for T > Tlim
250  static const G4double Tlim = 10.*MeV;
251  static const G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
252  ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
253  static const G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/
254  (electron_mass_c2*electron_mass_c2);
255 
256  static const G4double sig0[15] = {
257  0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn,
258  11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn ,
259  35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn ,
260  91.15*barn , 104.4*barn , 113.1*barn};
261 
262  static const G4double hecorr[15] = {
263  120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
264  57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
265  -22.30};
266 
267  G4double sigma;
268  SetParticle(part);
269 
270  Z23 = pow(AtomicNumber,2./3.);
271 
272  // correction if particle .ne. e-/e+
273  // compute equivalent kinetic energy
274  // lambda depends on p*beta ....
275 
276  G4double eKineticEnergy = KineticEnergy;
277 
278  if(mass > electron_mass_c2)
279  {
280  G4double TAU = KineticEnergy/mass ;
281  G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
282  G4double w = c-2. ;
283  G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
284  eKineticEnergy = electron_mass_c2*tau ;
285  }
286 
287  G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
288  G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
289  /(eTotalEnergy*eTotalEnergy);
290  G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
291  /(electron_mass_c2*electron_mass_c2);
292 
293  G4double eps = epsfactor*bg2/Z23;
294 
295  if (eps<epsmin) sigma = 2.*eps*eps;
296  else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
297  else sigma = G4Log(2.*eps)-1.+1./eps;
298 
299  sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
300 
301  // interpolate in AtomicNumber and beta2
302  G4double c1,c2,cc1,cc2,corr;
303 
304  // get bin number in Z
305  G4int iZ = 14;
306  while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
307  if (iZ==14) iZ = 13;
308  if (iZ==-1) iZ = 0 ;
309 
310  G4double ZZ1 = Zdat[iZ];
311  G4double ZZ2 = Zdat[iZ+1];
312  G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
313  ((ZZ2-ZZ1)*(ZZ2+ZZ1));
314 
315  if(eKineticEnergy <= Tlim)
316  {
317  // get bin number in T (beta2)
318  G4int iT = 21;
319  while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
320  if(iT==21) iT = 20;
321  if(iT==-1) iT = 0 ;
322 
323  // calculate betasquare values
324  G4double T = Tdat[iT], E = T + electron_mass_c2;
325  G4double b2small = T*(E+electron_mass_c2)/(E*E);
326 
327  T = Tdat[iT+1]; E = T + electron_mass_c2;
328  G4double b2big = T*(E+electron_mass_c2)/(E*E);
329  G4double ratb2 = (beta2-b2small)/(b2big-b2small);
330 
331  if (charge < 0.)
332  {
333  c1 = celectron[iZ][iT];
334  c2 = celectron[iZ+1][iT];
335  cc1 = c1+ratZ*(c2-c1);
336 
337  c1 = celectron[iZ][iT+1];
338  c2 = celectron[iZ+1][iT+1];
339  cc2 = c1+ratZ*(c2-c1);
340 
341  corr = cc1+ratb2*(cc2-cc1);
342 
343  sigma *= sigmafactor/corr;
344  }
345  else
346  {
347  c1 = cpositron[iZ][iT];
348  c2 = cpositron[iZ+1][iT];
349  cc1 = c1+ratZ*(c2-c1);
350 
351  c1 = cpositron[iZ][iT+1];
352  c2 = cpositron[iZ+1][iT+1];
353  cc2 = c1+ratZ*(c2-c1);
354 
355  corr = cc1+ratb2*(cc2-cc1);
356 
357  sigma *= sigmafactor/corr;
358  }
359  }
360  else
361  {
362  c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
363  c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
364  if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
365  sigma = c1+ratZ*(c2-c1) ;
366  else if(AtomicNumber < ZZ1)
367  sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
368  else if(AtomicNumber > ZZ2)
369  sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
370  }
371  return sigma;
372 
373 }
374 
375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
376 
377 void UrbanMscModel93::StartTracking(G4Track* track)
378 {
379  SetParticle(track->GetDynamicParticle()->GetDefinition());
380  firstStep = true;
381  inside = false;
382  insideskin = false;
383  tlimit = geombig;
385  tlimitmin = 10.*stepmin ;
386 }
387 
388 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
389 
391  const G4Track& track,
392  G4double& currentMinimalStep)
393 {
394  tPathLength = currentMinimalStep;
395  const G4DynamicParticle* dp = track.GetDynamicParticle();
396  G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
397  G4StepStatus stepStatus = sp->GetStepStatus();
398  couple = track.GetMaterialCutsCouple();
399  SetCurrentCouple(couple);
400  currentMaterialIndex = couple->GetIndex();
401  currentKinEnergy = dp->GetKineticEnergy();
403  lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
404 
405  // stop here if small range particle
406  if(inside || tPathLength < tlimitminfix) {
407  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
408  }
409 
411 
412  presafety = sp->GetSafety();
413 
414  // G4cout << "Urban2::StepLimit tPathLength= "
415  // <<tPathLength<<" safety= " << presafety
416  // << " range= " <<currentRange<< " lambda= "<<lambda0
417  // << " Alg: " << steppingAlgorithm <<G4endl;
418 
419  // far from geometry boundary
420  if(currentRange < presafety)
421  {
422  inside = true;
423  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
424  }
425 
426  // standard version
427  //
428  if (steppingAlgorithm == fUseDistanceToBoundary)
429  {
430  //compute geomlimit and presafety
431  geomlimit = ComputeGeomLimit(track, presafety, currentRange);
432 
433  // is it far from boundary ?
434  if(currentRange < presafety)
435  {
436  inside = true;
437  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
438  }
439 
440  smallstep += 1.;
441  insideskin = false;
442 
443  if(firstStep || stepStatus == fGeomBoundary)
444  {
446  if(firstStep) smallstep = 1.e10;
447  else smallstep = 1.;
448 
449  //define stepmin here (it depends on lambda!)
450  //rough estimation of lambda_elastic/lambda_transport
451  G4double rat = currentKinEnergy/MeV ;
452  rat = 1.e-3/(rat*(10.+rat)) ;
453  //stepmin ~ lambda_elastic
454  stepmin = rat*lambda0;
455  skindepth = skin*stepmin;
456  //define tlimitmin
457  tlimitmin = 10.*stepmin;
459  //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
460  // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
461  // constraint from the geometry
462  if((geomlimit < geombig) && (geomlimit > geommin))
463  {
464  // geomlimit is a geometrical step length
465  // transform it to true path length (estimation)
466  if((1.-geomlimit/lambda0) > 0.)
467  geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
468 
469  if(stepStatus == fGeomBoundary)
470  tgeom = geomlimit/facgeom;
471  else
472  tgeom = 2.*geomlimit/facgeom;
473  }
474  else
475  tgeom = geombig;
476  }
477 
478 
479  //step limit
480  tlimit = facrange*rangeinit;
481  if(tlimit < facsafety*presafety)
482  tlimit = facsafety*presafety;
483 
484  //lower limit for tlimit
486 
487  if(tlimit > tgeom) tlimit = tgeom;
488 
489  //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
490  // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
491 
492  // shortcut
493  if((tPathLength < tlimit) && (tPathLength < presafety) &&
494  (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
495  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
496 
497  // step reduction near to boundary
498  if(smallstep < skin)
499  {
500  tlimit = stepmin;
501  insideskin = true;
502  }
503  else if(geomlimit < geombig)
504  {
505  if(geomlimit > skindepth)
506  {
507  if(tlimit > geomlimit-0.999*skindepth)
508  tlimit = geomlimit-0.999*skindepth;
509  }
510  else
511  {
512  insideskin = true;
513  if(tlimit > stepmin) tlimit = stepmin;
514  }
515  }
516 
517  if(tlimit < stepmin) tlimit = stepmin;
518 
519  // randomize 1st step or 1st 'normal' step in volume
520  if(firstStep || ((smallstep == skin) && !insideskin))
521  {
522  G4double temptlimit = tlimit;
523  if(temptlimit > tlimitmin)
524  {
525  do {
526  temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);
527  } while ((temptlimit < tlimitmin) ||
528  (temptlimit > 2.*tlimit-tlimitmin));
529  }
530  else
531  temptlimit = tlimitmin;
532  if(tPathLength > temptlimit) tPathLength = temptlimit;
533  }
534  else
535  {
537  }
538 
539  }
540  // for 'normal' simulation with or without magnetic field
541  // there no small step/single scattering at boundaries
542  else if(steppingAlgorithm == fUseSafety)
543  {
544  // compute presafety again if presafety <= 0 and no boundary
545  // i.e. when it is needed for optimization purposes
546  if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
547  presafety = ComputeSafety(sp->GetPosition(),tPathLength);
548 
549  // is far from boundary
550  if(currentRange < presafety)
551  {
552  inside = true;
553  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
554  }
555 
556  if(firstStep || stepStatus == fGeomBoundary)
557  {
559  fr = facrange;
560  // 9.1 like stepping for e+/e- only (not for muons,hadrons)
561  if(mass < masslimite)
562  {
563  if(lambda0 > currentRange)
564  rangeinit = lambda0;
565  if(lambda0 > lambdalimit)
566  fr *= 0.75+0.25*lambda0/lambdalimit;
567  }
568 
569  //lower limit for tlimit
570  G4double rat = currentKinEnergy/MeV ;
571  rat = 1.e-3/(rat*(10.+rat)) ;
572  tlimitmin = 10.*lambda0*rat;
574  }
575  //step limit
576  tlimit = fr*rangeinit;
577 
578  if(tlimit < facsafety*presafety)
579  tlimit = facsafety*presafety;
580 
581  //lower limit for tlimit
583 
585 
586  }
587 
588  // version similar to 7.1 (needed for some experiments)
589  else
590  {
591  if (stepStatus == fGeomBoundary)
592  {
593  if (currentRange > lambda0) tlimit = facrange*currentRange;
594  else tlimit = facrange*lambda0;
595 
598  }
599  }
600  //G4cout << "tPathLength= " << tPathLength
601  // << " currentMinimalStep= " << currentMinimalStep << G4endl;
602  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
603 }
604 
605 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
606 
608 {
609  firstStep = false;
610  lambdaeff = lambda0;
611  par1 = -1. ;
612  par2 = par3 = 0. ;
613 
614  // do the true -> geom transformation
616 
617  // z = t for very small tPathLength
618  if(tPathLength < tlimitminfix) return zPathLength;
619 
620  // this correction needed to run MSC with eIoni and eBrem inactivated
621  // and makes no harm for a normal run
624 
625  G4double tau = tPathLength/lambda0 ;
626 
627  if ((tau <= tausmall) || insideskin) {
630  return zPathLength;
631  }
632 
633  G4double zmean;
634  if (tPathLength < currentRange*dtrl) {
635  if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
636  else zmean = lambda0*(1.-G4Exp(-tau));
637  } else if(currentKinEnergy < mass || tPathLength == currentRange) {
638  par1 = 1./currentRange ;
639  par2 = 1./(par1*lambda0) ;
640  par3 = 1.+par2 ;
642  zmean = (1.-G4Exp(par3*G4Log(1.-tPathLength/currentRange)))/(par1*par3) ;
643  else
644  zmean = 1./(par1*par3) ;
645  } else {
646  G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple);
647  G4double lambda1 = GetTransportMeanFreePath(particle,T1);
648 
649  par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
650  par2 = 1./(par1*lambda0) ;
651  par3 = 1.+par2 ;
652  zmean = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3) ;
653  }
654 
655  zPathLength = zmean ;
656 
657  // sample z
658  if(samplez)
659  {
660  const G4double ztmax = 0.99 ;
661  G4double zt = zmean/tPathLength ;
662 
663  if (tPathLength > stepmin && zt < ztmax)
664  {
665  G4double u,cz1;
666  if(zt >= third)
667  {
668  G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
669  cz1 = 1.+cz ;
670  G4double u0 = cz/cz1 ;
671  G4double grej ;
672  do {
673  u = G4Exp(G4Log(G4UniformRand())/cz1) ;
674  grej = G4Exp(cz*G4Log(u/u0))*(1.-u)/(1.-u0) ;
675  } while (grej < G4UniformRand()) ;
676  }
677  else
678  {
679  cz1 = 1./zt-1.;
680  u = 1.-G4Exp(G4Log(G4UniformRand())/cz1) ;
681  }
683  }
684  }
685 
687  //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda0 << G4endl;
688  return zPathLength;
689 }
690 
691 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
692 
693 G4double UrbanMscModel93::ComputeTrueStepLength(G4double geomStepLength)
694 {
695  // step defined other than transportation
696  if(geomStepLength == zPathLength && tPathLength <= currentRange)
697  return tPathLength;
698 
699  // t = z for very small step
700  zPathLength = geomStepLength;
701  tPathLength = geomStepLength;
702  if(geomStepLength < tlimitminfix) return tPathLength;
703 
704  // recalculation
705  if((geomStepLength > lambda0*tausmall) && !insideskin)
706  {
707  if(par1 < 0.)
708  tPathLength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
709  else
710  {
711  if(par1*par3*geomStepLength < 1.)
712  tPathLength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
713  else
715  }
716  }
717  if(tPathLength < geomStepLength) tPathLength = geomStepLength;
718 
719  //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl;
720 
721  return tPathLength;
722 }
723 
724 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
725 
726 G4ThreeVector&
727 UrbanMscModel93::SampleScattering(const G4ThreeVector& oldDirection,
728  G4double safety)
729 {
730  fDisplacement.set(0.0,0.0,0.0);
731  G4double kineticEnergy = currentKinEnergy;
732  if (tPathLength > currentRange*dtrl) {
733  kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
734  } else {
735  kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
736  }
737  if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
738  (tPathLength/tausmall < lambda0)) { return fDisplacement; }
739 
740  G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
741 
742  // protection against 'bad' cth values
743  if(std::fabs(cth) > 1.) { return fDisplacement; }
744 
745  // extra protection agaist high energy particles backscattered
746  // if(cth < 1.0 - 1000*tPathLength/lambda0 && kineticEnergy > 20*MeV) {
747  //G4cout << "Warning: large scattering E(MeV)= " << kineticEnergy
748  // << " s(mm)= " << tPathLength/mm
749  // << " 1-cosTheta= " << 1.0 - cth << G4endl;
750  // do Gaussian central scattering
751  // if(kineticEnergy > 0.5*GeV && cth < 0.9) {
752  /*
753  if(cth < 1.0 - 1000*tPathLength/lambda0 &&
754  cth < 0.9 && kineticEnergy > 500*MeV) {
755  G4ExceptionDescription ed;
756  ed << particle->GetParticleName()
757  << " E(MeV)= " << kineticEnergy/MeV
758  << " Step(mm)= " << tPathLength/mm
759  << " tau= " << tPathLength/lambda0
760  << " in " << CurrentCouple()->GetMaterial()->GetName()
761  << " CosTheta= " << cth
762  << " is too big";
763  G4Exception("UrbanMscModel93::SampleScattering","em0004",
764  JustWarning, ed,"");
765  }
766  */
767 
768  G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
769  G4double phi = twopi*G4UniformRand();
770  G4double dirx = sth*cos(phi);
771  G4double diry = sth*sin(phi);
772 
773  G4ThreeVector newDirection(dirx,diry,cth);
774  newDirection.rotateUz(oldDirection);
775  fParticleChange->ProposeMomentumDirection(newDirection);
776 
777  if (latDisplasment && safety > tlimitminfix) {
778 
779  G4double r = SampleDisplacement();
780  /*
781  G4cout << "UrbanMscModel93::SampleSecondaries: e(MeV)= " << kineticEnergy
782  << " sinTheta= " << sth << " r(mm)= " << r
783  << " trueStep(mm)= " << tPathLength
784  << " geomStep(mm)= " << zPathLength
785  << G4endl;
786  */
787  if(r > 0.)
788  {
789  G4double latcorr = LatCorrelation();
790  if(latcorr > r) latcorr = r;
791 
792  // sample direction of lateral displacement
793  // compute it from the lateral correlation
794  G4double Phi = 0.;
795  if(std::abs(r*sth) < latcorr)
796  Phi = twopi*G4UniformRand();
797  else
798  {
799  G4double psi = std::acos(latcorr/(r*sth));
800  if(G4UniformRand() < 0.5)
801  Phi = phi+psi;
802  else
803  Phi = phi-psi;
804  }
805 
806  dirx = r*std::cos(Phi);
807  diry = r*std::sin(Phi);
808 
809  fDisplacement.set(dirx,diry,0.0);
810  fDisplacement.rotateUz(oldDirection);
811  }
812  }
813  return fDisplacement;
814 }
815 
816 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
817 
818 G4double UrbanMscModel93::SampleCosineTheta(G4double trueStepLength,
819  G4double KineticEnergy)
820 {
821  G4double cth = 1. ;
822  G4double tau = trueStepLength/lambda0 ;
823 
824  Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
825  couple->GetMaterial()->GetTotNbOfAtomsPerVolume() ;
826 
827  if(Zold != Zeff)
828  UpdateCache();
829 
830  if(insideskin)
831  {
832  //no scattering, single or plural scattering
833  G4double mean = trueStepLength/stepmin ;
834 
835  G4int n = G4Poisson(mean);
836  if(n > 0)
837  {
838  //screening (Moliere-Bethe)
839  G4double mom2 = KineticEnergy*(2.*mass+KineticEnergy);
840  G4double beta2 = mom2/((KineticEnergy+mass)*(KineticEnergy+mass));
841  G4double ascr = scr1/mom2;
842  ascr *= 1.13+scr2/beta2;
843  G4double ascr1 = 1.+2.*ascr;
844  G4double bp1=ascr1+1.;
845  G4double bm1=ascr1-1.;
846 
847  // single scattering from screened Rutherford x-section
848  G4double ct,st,phi;
849  G4double sx=0.,sy=0.,sz=0.;
850  for(G4int i=1; i<=n; i++)
851  {
852  ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
853  if(ct < -1.) ct = -1.;
854  if(ct > 1.) ct = 1.;
855  st = sqrt(1.-ct*ct);
856  phi = twopi*G4UniformRand();
857  sx += st*cos(phi);
858  sy += st*sin(phi);
859  sz += ct;
860  }
861  cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
862  }
863  }
864  else
865  {
866  if(trueStepLength >= currentRange*dtrl)
867  {
868  if(par1*trueStepLength < 1.)
869  tau = -par2*G4Log(1.-par1*trueStepLength) ;
870  // for the case if ioni/brems are inactivated
871  // see the corresponding condition in ComputeGeomPathLength
872  else if(1.-KineticEnergy/currentKinEnergy > taulim)
873  tau = taubig ;
874  }
875  currentTau = tau ;
876  lambdaeff = trueStepLength/currentTau;
877  currentRadLength = couple->GetMaterial()->GetRadlen();
878 
879  if (tau >= taubig) cth = -1.+2.*G4UniformRand();
880  else if (tau >= tausmall)
881  {
882  G4double xmeanth, x2meanth;
883  if(tau < numlim) {
884  xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
885  x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*third;
886  } else {
887  xmeanth = G4Exp(-tau);
888  x2meanth = (1.+2.*G4Exp(-2.5*tau))*third;
889  }
890  G4double relloss = 1.-KineticEnergy/currentKinEnergy;
891 
892  if(relloss > rellossmax)
893  return SimpleScattering(xmeanth,x2meanth);
894 
895  G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
896 
897  //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max
898  // << " sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
899 
900  // protection for very small angles
901  G4double theta2 = theta0*theta0;
902 
903  if(theta2 < tausmall) { return cth; }
904 
905  if(theta0 > theta0max) {
906  return SimpleScattering(xmeanth,x2meanth);
907  }
908 
909  G4double x = theta2*(1.0 - theta2/12.);
910  if(theta2 > numlim) {
911  G4double sth = 2.*sin(0.5*theta0);
912  x = sth*sth;
913  }
914 
915  G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
916  G4double x0 = 1. - xsi*x;
917 
918  // G4cout << " xmean1= " << xmean1 << " xmeanth= " << xmeanth << G4endl;
919 
920  if(xmean1 <= 0.999*xmeanth) {
921  return SimpleScattering(xmeanth,x2meanth);
922  }
923  // from e- and muon scattering data
924  G4double c = coeffc1+coeffc2*y;
925 
926  // tail should not be too big
927  if(c < 1.9) {
928  /*
929  if(KineticEnergy > 200*MeV && c < 1.6) {
930  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
931  << KineticEnergy/GeV
932  << " !!** c= " << c
933  << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff
934  << " " << couple->GetMaterial()->GetName()
935  << " tau= " << tau << G4endl;
936  }
937  */
938  c = 1.9;
939  }
940 
941  if(fabs(c-3.) < 0.001) { c = 3.001; }
942  else if(fabs(c-2.) < 0.001) { c = 2.001; }
943 
944  G4double c1 = c-1.;
945 
946  //from continuity of derivatives
947  G4double b = 1.+(c-xsi)*x;
948 
949  G4double b1 = b+1.;
950  G4double bx = c*x;
951 
952  G4double eb1 = pow(b1,c1);
953  G4double ebx = pow(bx,c1);
954  G4double d = ebx/eb1;
955 
956  // G4double xmean2 = (x0*eb1+ebx-(eb1*bx-b1*ebx)/(c-2.))/(eb1-ebx);
957  G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
958 
959  G4double f1x0 = ea/eaa;
960  G4double f2x0 = c1/(c*(1. - d));
961  G4double prob = f2x0/(f1x0+f2x0);
962 
963  G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
964 
965  // sampling of costheta
966  //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
967  // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
968  // << G4endl;
969  if(G4UniformRand() < qprob)
970  {
971  G4double var = 0;
972  if(G4UniformRand() < prob) {
973  cth = 1.+G4Log(ea+G4UniformRand()*eaa)*x;
974  } else {
975  var = (1.0 - d)*G4UniformRand();
976  if(var < numlim*d) {
977  var /= (d*c1);
978  cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
979  } else {
980  cth = 1. + x*(c - xsi - c*pow(var + d, -1.0/c1));
981  //b-b1*bx/G4Exp(log(ebx+(eb1-ebx)*G4UniformRand())/c1) ;
982  }
983  }
984  if(KineticEnergy > 5*GeV && cth < 0.9) {
985  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
986  << KineticEnergy/GeV
987  << " 1-cosT= " << 1 - cth
988  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
989  << " tau= " << tau
990  << " prob= " << prob << " var= " << var << G4endl;
991  G4cout << " c= " << c << " qprob= " << qprob << " eb1= " << eb1
992  << " ebx= " << ebx
993  << " c1= " << c1 << " b= " << b << " b1= " << b1
994  << " bx= " << bx << " d= " << d
995  << " ea= " << ea << " eaa= " << eaa << G4endl;
996  }
997  }
998  else {
999  cth = -1.+2.*G4UniformRand();
1000  if(KineticEnergy > 5*GeV) {
1001  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
1002  << KineticEnergy/GeV
1003  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1004  << " qprob= " << qprob << G4endl;
1005  }
1006  }
1007  }
1008  }
1009  return cth ;
1010 }
1011 
1012 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1013 
1015 {
1016  // Compute rmean = sqrt(<r**2>) from theory
1017  G4double rmean = 0.0;
1018  if ((currentTau >= tausmall) && !insideskin) {
1019  if (currentTau < taulim) {
1021  (1.-kappapl1*currentTau*0.25)/6. ;
1022 
1023  } else {
1024  G4double etau = 0.0;
1025  if (currentTau<taubig) etau = G4Exp(-currentTau);
1026  rmean = -kappa*currentTau;
1027  rmean = -G4Exp(rmean)/(kappa*kappami1);
1028  rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
1029  }
1030  if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean*third);
1031  else rmean = 0.;
1032  }
1033 
1034  if(rmean == 0.) return rmean;
1035 
1036  // protection against z > t ...........................
1037  G4double rmax = (tPathLength-zPathLength)*(tPathLength+zPathLength);
1038  if(rmax <= 0.)
1039  rmax = 0.;
1040  else
1041  rmax = sqrt(rmax);
1042 
1043  if(rmean >= rmax) return rmax;
1044 
1045  return rmean;
1046  // VI comment out for the time being
1047  /*
1048  //sample r (Gaussian distribution with a mean of rmean )
1049  G4double r = 0.;
1050  G4double sigma = min(rmean,rmax-rmean);
1051  sigma /= 3.;
1052  G4double rlow = rmean-3.*sigma;
1053  G4double rhigh = rmean+3.*sigma;
1054  do {
1055  r = G4RandGauss::shoot(rmean,sigma);
1056  } while ((r < rlow) || (r > rhigh));
1057 
1058  return r;
1059  */
1060 }
1061 
1062 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1063 
1065 {
1066  G4double latcorr = 0.;
1067  if((currentTau >= tausmall) && !insideskin)
1068  {
1069  if(currentTau < taulim)
1072  else
1073  {
1074  G4double etau = 0.;
1075  if(currentTau < taubig) etau = G4Exp(-currentTau);
1076  latcorr = -kappa*currentTau;
1077  latcorr = G4Exp(latcorr)/kappami1;
1078  latcorr += 1.-kappa*etau/kappami1 ;
1079  latcorr *= 2.*lambdaeff*third ;
1080  }
1081  }
1082 
1083  return latcorr;
1084 }
1085 
1086 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
const G4ParticleDefinition * particle
const G4MaterialCutsCouple * couple
int i
Definition: DBlmapReader.cc:9
const double GeV
Definition: MathUtil.h:16
G4ParticleChangeForMSC * fParticleChange
const double hbarc
Definition: MathUtil.h:18
const double w
Definition: UKUtility.cc:23
static const G4double kappami1
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double ComputeGeomPathLength(G4double truePathLength)
G4double currentRadLength
void SetParticle(const G4ParticleDefinition *)
std::map< std::string, int, std::less< std::string > > psi
G4double LatCorrelation()
const Double_t pi
UrbanMscModel93(const G4String &nam="UrbanMsc93")
const double MeV
tuple d
Definition: ztail.py:151
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX)
void StartTracking(G4Track *)
G4LossTableManager * theManager
T sqrt(T t)
Definition: SSEVec.h:18
G4double currentKinEnergy
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
G4double SimpleScattering(G4double xmeanth, G4double x2meanth)
G4double SampleDisplacement()
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
G4double ComputeTrueStepLength(G4double geomStepLength)
JetCorrectorParameters corr
Definition: classes.h:5
static const G4double kappapl1
auto dp
Definition: deltaR.h:22
part
Definition: HCALResponse.h:20
double b
Definition: hdecay.h:120
G4double SampleCosineTheta(G4double trueStepLength, G4double KineticEnergy)
static const G4double kappa
Definition: sp.h:21
virtual ~UrbanMscModel93()
long double T
G4ThreeVector & SampleScattering(const G4ThreeVector &, G4double safety)
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep)