CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
UrbanMscModel93.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: UrbanMscModel93.cc 69120 2013-04-18 13:41:13Z vnivanch $
28 //
29 // -------------------------------------------------------------------
30 //
31 // GEANT4 Class file
32 //
33 //
34 // File name: UrbanMscModel93
35 //
36 // Author: Laszlo Urban, V.Ivanchenko copy it from G4UrbanMscModel93
37 // geant4-09-06-ref-07a global tag
38 //
39 // Creation date: 21.08.2013
40 //
41 // Modifications:
42 //
43 
44 // Class Description:
45 //
46 // Implementation of the model of multiple scattering based on
47 // H.W.Lewis Phys Rev 78 (1950) 526 and others
48 
49 // -------------------------------------------------------------------
50 // In its present form the model can be used for simulation
51 // of the e-/e+, muon and charged hadron multiple scattering
52 //
53 
54 
55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57 
59 #include "G4PhysicalConstants.hh"
60 #include "Randomize.hh"
61 #include "G4Electron.hh"
62 #include "G4LossTableManager.hh"
63 #include "G4ParticleChangeForMSC.hh"
64 
65 #include "G4Poisson.hh"
66 #include "globals.hh"
67 
68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
69 
70 using namespace std;
71 
72 static const G4double kappa = 2.5;
73 static const G4double kappapl1 = 3.5;
74 static const G4double kappami1 = 1.5;
75 
77  : G4VMscModel(nam)
78 {
79  masslimite = 0.6*MeV;
80  lambdalimit = 1.*mm;
81  fr = 0.02;
82  taubig = 8.0;
83  tausmall = 1.e-16;
84  taulim = 1.e-6;
86  tlimitminfix = 1.e-6*mm;
88  smallstep = 1.e10;
89  currentRange = 0. ;
90  rangeinit = 0.;
91  tlimit = 1.e10*mm;
92  tlimitmin = 10.*tlimitminfix;
93  tgeom = 1.e50*mm;
94  geombig = 1.e50*mm;
95  geommin = 1.e-3*mm;
97  presafety = 0.*mm;
98 
99  y = 0.;
100 
101  Zold = 0.;
102  Zeff = 1.;
103  Z2 = 1.;
104  Z23 = 1.;
105  lnZ = 0.;
106  coeffth1 = 0.;
107  coeffth2 = 0.;
108  coeffc1 = 0.;
109  coeffc2 = 0.;
110  scr1ini = fine_structure_const*fine_structure_const*
111  electron_mass_c2*electron_mass_c2/(0.885*0.885*4.*pi);
112  scr2ini = 3.76*fine_structure_const*fine_structure_const;
113  scr1 = 0.;
114  scr2 = 0.;
115 
116  theta0max = pi/6.;
117  rellossmax = 0.50;
118  third = 1./3.;
119  particle = 0;
120  theManager = G4LossTableManager::Instance();
121  firstStep = true;
122  inside = false;
123  insideskin = false;
124 
125  numlim = 0.01;
126  xsi = 3.;
127  ea = G4Exp(-xsi);
128  eaa = 1.-ea ;
129 
130  skindepth = skin*stepmin;
131 
132  mass = proton_mass_c2;
133  charge = ChargeSquare = 1.0;
135  = zPathLength = par1 = par2 = par3 = 0;
136 
138  fParticleChange = 0;
139  couple = 0;
140  SetSampleZ(false);
141 }
142 
143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
144 
146 {}
147 
148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
149 
150 void UrbanMscModel93::Initialise(const G4ParticleDefinition* p,
151  const G4DataVector&)
152 {
153  skindepth = skin*stepmin;
154 
155  // set values of some data members
156  SetParticle(p);
157 
158  if(p->GetPDGMass() > MeV) {
159  G4cout << "### WARNING: UrbanMscModel93 model is used for "
160  << p->GetParticleName() << " !!! " << G4endl;
161  G4cout << "### This model should be used only for e+-"
162  << G4endl;
163  }
164 
165  fParticleChange = GetParticleChangeForMSC(p);
166 }
167 
168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
169 
171  const G4ParticleDefinition* part,
172  G4double KineticEnergy,
173  G4double AtomicNumber,G4double,
174  G4double, G4double)
175 {
176  static const G4double sigmafactor =
177  twopi*classic_electr_radius*classic_electr_radius;
178  static const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
179  Bohr_radius*Bohr_radius/(hbarc*hbarc);
180  static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
181 
182  static const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47.,
183  50., 56., 64., 74., 79., 82. };
184 
185  static const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV,
186  1*keV, 2*keV, 4*keV, 7*keV,
187  10*keV, 20*keV, 40*keV, 70*keV,
188  100*keV, 200*keV, 400*keV, 700*keV,
189  1*MeV, 2*MeV, 4*MeV, 7*MeV,
190  10*MeV, 20*MeV};
191 
192  // corr. factors for e-/e+ lambda for T <= Tlim
193  static const G4double celectron[15][22] =
194  {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
195  1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
196  1.112,1.108,1.100,1.093,1.089,1.087 },
197  {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
198  1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
199  1.109,1.105,1.097,1.090,1.086,1.082 },
200  {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
201  1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
202  1.131,1.124,1.113,1.104,1.099,1.098 },
203  {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
204  1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
205  1.112,1.105,1.096,1.089,1.085,1.098 },
206  {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
207  1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
208  1.073,1.070,1.064,1.059,1.056,1.056 },
209  {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
210  1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
211  1.074,1.070,1.063,1.059,1.056,1.052 },
212  {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
213  1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
214  1.068,1.064,1.059,1.054,1.051,1.050 },
215  {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
216  1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
217  1.039,1.037,1.034,1.031,1.030,1.036 },
218  {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
219  1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
220  1.031,1.028,1.024,1.022,1.021,1.024 },
221  {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
222  1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
223  1.020,1.017,1.015,1.013,1.013,1.020 },
224  {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
225  1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
226  0.995,0.993,0.993,0.993,0.993,1.011 },
227  {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
228  1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
229  0.974,0.972,0.973,0.974,0.975,0.987 },
230  {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
231  1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
232  0.950,0.947,0.949,0.952,0.954,0.963 },
233  {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
234  1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
235  0.941,0.938,0.940,0.944,0.946,0.954 },
236  {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
237  1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
238  0.933,0.930,0.933,0.936,0.939,0.949 }};
239 
240  static const G4double cpositron[15][22] = {
241  {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
242  1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
243  1.131,1.126,1.117,1.108,1.103,1.100 },
244  {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
245  1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
246  1.138,1.132,1.122,1.113,1.108,1.102 },
247  {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
248  1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
249  1.203,1.190,1.173,1.159,1.151,1.145 },
250  {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
251  1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
252  1.225,1.210,1.191,1.175,1.166,1.174 },
253  {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
254  1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
255  1.217,1.203,1.184,1.169,1.160,1.151 },
256  {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
257  1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
258  1.237,1.222,1.201,1.184,1.174,1.159 },
259  {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
260  1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
261  1.252,1.234,1.212,1.194,1.183,1.170 },
262  {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
263  2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
264  1.254,1.237,1.214,1.195,1.185,1.179 },
265  {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
266  2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
267  1.312,1.288,1.258,1.235,1.221,1.205 },
268  {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
269  2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
270  1.320,1.294,1.264,1.240,1.226,1.214 },
271  {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
272  2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
273  1.328,1.302,1.270,1.245,1.231,1.233 },
274  {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
275  2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
276  1.361,1.330,1.294,1.267,1.251,1.239 },
277  {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
278  3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
279  1.409,1.372,1.330,1.298,1.280,1.258 },
280  {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
281  3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
282  1.442,1.400,1.354,1.319,1.299,1.272 },
283  {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
284  3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
285  1.456,1.412,1.364,1.328,1.307,1.282 }};
286 
287  //data/corrections for T > Tlim
288  static const G4double Tlim = 10.*MeV;
289  static const G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
290  ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
291  static const G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/
292  (electron_mass_c2*electron_mass_c2);
293 
294  static const G4double sig0[15] = {
295  0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn,
296  11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn ,
297  35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn ,
298  91.15*barn , 104.4*barn , 113.1*barn};
299 
300  static const G4double hecorr[15] = {
301  120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29,
302  57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84,
303  -22.30};
304 
305  G4double sigma;
306  SetParticle(part);
307 
308  Z23 = pow(AtomicNumber,2./3.);
309 
310  // correction if particle .ne. e-/e+
311  // compute equivalent kinetic energy
312  // lambda depends on p*beta ....
313 
314  G4double eKineticEnergy = KineticEnergy;
315 
316  if(mass > electron_mass_c2)
317  {
318  G4double TAU = KineticEnergy/mass ;
319  G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
320  G4double w = c-2. ;
321  G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
322  eKineticEnergy = electron_mass_c2*tau ;
323  }
324 
325  G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
326  G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
327  /(eTotalEnergy*eTotalEnergy);
328  G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
329  /(electron_mass_c2*electron_mass_c2);
330 
331  G4double eps = epsfactor*bg2/Z23;
332 
333  if (eps<epsmin) sigma = 2.*eps*eps;
334  else if(eps<epsmax) sigma = G4Log(1.+2.*eps)-2.*eps/(1.+2.*eps);
335  else sigma = G4Log(2.*eps)-1.+1./eps;
336 
337  sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
338 
339  // interpolate in AtomicNumber and beta2
340  G4double c1,c2,cc1,cc2,corr;
341 
342  // get bin number in Z
343  G4int iZ = 14;
344  while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
345  if (iZ==14) iZ = 13;
346  if (iZ==-1) iZ = 0 ;
347 
348  G4double ZZ1 = Zdat[iZ];
349  G4double ZZ2 = Zdat[iZ+1];
350  G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
351  ((ZZ2-ZZ1)*(ZZ2+ZZ1));
352 
353  if(eKineticEnergy <= Tlim)
354  {
355  // get bin number in T (beta2)
356  G4int iT = 21;
357  while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
358  if(iT==21) iT = 20;
359  if(iT==-1) iT = 0 ;
360 
361  // calculate betasquare values
362  G4double T = Tdat[iT], E = T + electron_mass_c2;
363  G4double b2small = T*(E+electron_mass_c2)/(E*E);
364 
365  T = Tdat[iT+1]; E = T + electron_mass_c2;
366  G4double b2big = T*(E+electron_mass_c2)/(E*E);
367  G4double ratb2 = (beta2-b2small)/(b2big-b2small);
368 
369  if (charge < 0.)
370  {
371  c1 = celectron[iZ][iT];
372  c2 = celectron[iZ+1][iT];
373  cc1 = c1+ratZ*(c2-c1);
374 
375  c1 = celectron[iZ][iT+1];
376  c2 = celectron[iZ+1][iT+1];
377  cc2 = c1+ratZ*(c2-c1);
378 
379  corr = cc1+ratb2*(cc2-cc1);
380 
381  sigma *= sigmafactor/corr;
382  }
383  else
384  {
385  c1 = cpositron[iZ][iT];
386  c2 = cpositron[iZ+1][iT];
387  cc1 = c1+ratZ*(c2-c1);
388 
389  c1 = cpositron[iZ][iT+1];
390  c2 = cpositron[iZ+1][iT+1];
391  cc2 = c1+ratZ*(c2-c1);
392 
393  corr = cc1+ratb2*(cc2-cc1);
394 
395  sigma *= sigmafactor/corr;
396  }
397  }
398  else
399  {
400  c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
401  c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
402  if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
403  sigma = c1+ratZ*(c2-c1) ;
404  else if(AtomicNumber < ZZ1)
405  sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
406  else if(AtomicNumber > ZZ2)
407  sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
408  }
409  return sigma;
410 
411 }
412 
413 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
414 
415 void UrbanMscModel93::StartTracking(G4Track* track)
416 {
417  SetParticle(track->GetDynamicParticle()->GetDefinition());
418  firstStep = true;
419  inside = false;
420  insideskin = false;
421  tlimit = geombig;
423  tlimitmin = 10.*stepmin ;
424 }
425 
426 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
427 
429  const G4Track& track,
430  G4double& currentMinimalStep)
431 {
432  tPathLength = currentMinimalStep;
433  const G4DynamicParticle* dp = track.GetDynamicParticle();
434  G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
435  G4StepStatus stepStatus = sp->GetStepStatus();
436  couple = track.GetMaterialCutsCouple();
437  SetCurrentCouple(couple);
438  currentMaterialIndex = couple->GetIndex();
439  currentKinEnergy = dp->GetKineticEnergy();
441  lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
442 
443  // stop here if small range particle
444  if(inside || tPathLength < tlimitminfix) {
445  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
446  }
447 
449 
450  presafety = sp->GetSafety();
451 
452  // G4cout << "Urban2::StepLimit tPathLength= "
453  // <<tPathLength<<" safety= " << presafety
454  // << " range= " <<currentRange<< " lambda= "<<lambda0
455  // << " Alg: " << steppingAlgorithm <<G4endl;
456 
457  // far from geometry boundary
458  if(currentRange < presafety)
459  {
460  inside = true;
461  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
462  }
463 
464  // standard version
465  //
466  if (steppingAlgorithm == fUseDistanceToBoundary)
467  {
468  //compute geomlimit and presafety
469  geomlimit = ComputeGeomLimit(track, presafety, currentRange);
470 
471  // is it far from boundary ?
472  if(currentRange < presafety)
473  {
474  inside = true;
475  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
476  }
477 
478  smallstep += 1.;
479  insideskin = false;
480 
481  if(firstStep || stepStatus == fGeomBoundary)
482  {
484  if(firstStep) smallstep = 1.e10;
485  else smallstep = 1.;
486 
487  //define stepmin here (it depends on lambda!)
488  //rough estimation of lambda_elastic/lambda_transport
489  G4double rat = currentKinEnergy/MeV ;
490  rat = 1.e-3/(rat*(10.+rat)) ;
491  //stepmin ~ lambda_elastic
492  stepmin = rat*lambda0;
493  skindepth = skin*stepmin;
494  //define tlimitmin
495  tlimitmin = 10.*stepmin;
497  //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
498  // << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
499  // constraint from the geometry
500  if((geomlimit < geombig) && (geomlimit > geommin))
501  {
502  // geomlimit is a geometrical step length
503  // transform it to true path length (estimation)
504  if((1.-geomlimit/lambda0) > 0.)
505  geomlimit = -lambda0*G4Log(1.-geomlimit/lambda0)+tlimitmin ;
506 
507  if(stepStatus == fGeomBoundary)
508  tgeom = geomlimit/facgeom;
509  else
510  tgeom = 2.*geomlimit/facgeom;
511  }
512  else
513  tgeom = geombig;
514  }
515 
516 
517  //step limit
518  tlimit = facrange*rangeinit;
519  if(tlimit < facsafety*presafety)
520  tlimit = facsafety*presafety;
521 
522  //lower limit for tlimit
524 
525  if(tlimit > tgeom) tlimit = tgeom;
526 
527  //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit
528  // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
529 
530  // shortcut
531  if((tPathLength < tlimit) && (tPathLength < presafety) &&
532  (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
533  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
534 
535  // step reduction near to boundary
536  if(smallstep < skin)
537  {
538  tlimit = stepmin;
539  insideskin = true;
540  }
541  else if(geomlimit < geombig)
542  {
543  if(geomlimit > skindepth)
544  {
545  if(tlimit > geomlimit-0.999*skindepth)
546  tlimit = geomlimit-0.999*skindepth;
547  }
548  else
549  {
550  insideskin = true;
551  if(tlimit > stepmin) tlimit = stepmin;
552  }
553  }
554 
555  if(tlimit < stepmin) tlimit = stepmin;
556 
557  // randomize 1st step or 1st 'normal' step in volume
558  if(firstStep || ((smallstep == skin) && !insideskin))
559  {
560  G4double temptlimit = tlimit;
561  if(temptlimit > tlimitmin)
562  {
563  do {
564  temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);
565  } while ((temptlimit < tlimitmin) ||
566  (temptlimit > 2.*tlimit-tlimitmin));
567  }
568  else
569  temptlimit = tlimitmin;
570  if(tPathLength > temptlimit) tPathLength = temptlimit;
571  }
572  else
573  {
575  }
576 
577  }
578  // for 'normal' simulation with or without magnetic field
579  // there no small step/single scattering at boundaries
580  else if(steppingAlgorithm == fUseSafety)
581  {
582  // compute presafety again if presafety <= 0 and no boundary
583  // i.e. when it is needed for optimization purposes
584  if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix))
585  presafety = ComputeSafety(sp->GetPosition(),tPathLength);
586 
587  // is far from boundary
588  if(currentRange < presafety)
589  {
590  inside = true;
591  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
592  }
593 
594  if(firstStep || stepStatus == fGeomBoundary)
595  {
597  fr = facrange;
598  // 9.1 like stepping for e+/e- only (not for muons,hadrons)
599  if(mass < masslimite)
600  {
601  if(lambda0 > currentRange)
602  rangeinit = lambda0;
603  if(lambda0 > lambdalimit)
604  fr *= 0.75+0.25*lambda0/lambdalimit;
605  }
606 
607  //lower limit for tlimit
608  G4double rat = currentKinEnergy/MeV ;
609  rat = 1.e-3/(rat*(10.+rat)) ;
610  tlimitmin = 10.*lambda0*rat;
612  }
613  //step limit
614  tlimit = fr*rangeinit;
615 
616  if(tlimit < facsafety*presafety)
617  tlimit = facsafety*presafety;
618 
619  //lower limit for tlimit
621 
623 
624  }
625 
626  // version similar to 7.1 (needed for some experiments)
627  else
628  {
629  if (stepStatus == fGeomBoundary)
630  {
631  if (currentRange > lambda0) tlimit = facrange*currentRange;
632  else tlimit = facrange*lambda0;
633 
636  }
637  }
638  //G4cout << "tPathLength= " << tPathLength
639  // << " currentMinimalStep= " << currentMinimalStep << G4endl;
640  return ConvertTrueToGeom(tPathLength, currentMinimalStep);
641 }
642 
643 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
644 
646 {
647  firstStep = false;
648  lambdaeff = lambda0;
649  par1 = -1. ;
650  par2 = par3 = 0. ;
651 
652  // do the true -> geom transformation
654 
655  // z = t for very small tPathLength
656  if(tPathLength < tlimitminfix) return zPathLength;
657 
658  // this correction needed to run MSC with eIoni and eBrem inactivated
659  // and makes no harm for a normal run
662 
663  G4double tau = tPathLength/lambda0 ;
664 
665  if ((tau <= tausmall) || insideskin) {
668  return zPathLength;
669  }
670 
671  G4double zmean;
672  if (tPathLength < currentRange*dtrl) {
673  if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
674  else zmean = lambda0*(1.-G4Exp(-tau));
675  } else if(currentKinEnergy < mass || tPathLength == currentRange) {
676  par1 = 1./currentRange ;
677  par2 = 1./(par1*lambda0) ;
678  par3 = 1.+par2 ;
680  zmean = (1.-G4Exp(par3*G4Log(1.-tPathLength/currentRange)))/(par1*par3) ;
681  else
682  zmean = 1./(par1*par3) ;
683  } else {
684  G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple);
685  G4double lambda1 = GetTransportMeanFreePath(particle,T1);
686 
687  par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
688  par2 = 1./(par1*lambda0) ;
689  par3 = 1.+par2 ;
690  zmean = (1.-G4Exp(par3*G4Log(lambda1/lambda0)))/(par1*par3) ;
691  }
692 
693  zPathLength = zmean ;
694 
695  // sample z
696  if(samplez)
697  {
698  const G4double ztmax = 0.99 ;
699  G4double zt = zmean/tPathLength ;
700 
701  if (tPathLength > stepmin && zt < ztmax)
702  {
703  G4double u,cz1;
704  if(zt >= third)
705  {
706  G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
707  cz1 = 1.+cz ;
708  G4double u0 = cz/cz1 ;
709  G4double grej ;
710  do {
711  u = G4Exp(G4Log(G4UniformRand())/cz1) ;
712  grej = G4Exp(cz*G4Log(u/u0))*(1.-u)/(1.-u0) ;
713  } while (grej < G4UniformRand()) ;
714  }
715  else
716  {
717  cz1 = 1./zt-1.;
718  u = 1.-G4Exp(G4Log(G4UniformRand())/cz1) ;
719  }
721  }
722  }
723 
725  //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda0 << G4endl;
726  return zPathLength;
727 }
728 
729 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
730 
731 G4double UrbanMscModel93::ComputeTrueStepLength(G4double geomStepLength)
732 {
733  // step defined other than transportation
734  if(geomStepLength == zPathLength && tPathLength <= currentRange)
735  return tPathLength;
736 
737  // t = z for very small step
738  zPathLength = geomStepLength;
739  tPathLength = geomStepLength;
740  if(geomStepLength < tlimitminfix) return tPathLength;
741 
742  // recalculation
743  if((geomStepLength > lambda0*tausmall) && !insideskin)
744  {
745  if(par1 < 0.)
746  tPathLength = -lambda0*G4Log(1.-geomStepLength/lambda0) ;
747  else
748  {
749  if(par1*par3*geomStepLength < 1.)
750  tPathLength = (1.-G4Exp(G4Log(1.-par1*par3*geomStepLength)/par3))/par1 ;
751  else
753  }
754  }
755  if(tPathLength < geomStepLength) tPathLength = geomStepLength;
756 
757  //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl;
758 
759  return tPathLength;
760 }
761 
762 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
763 
764 G4ThreeVector&
765 UrbanMscModel93::SampleScattering(const G4ThreeVector& oldDirection,
766  G4double safety)
767 {
768  fDisplacement.set(0.0,0.0,0.0);
769  G4double kineticEnergy = currentKinEnergy;
770  if (tPathLength > currentRange*dtrl) {
771  kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
772  } else {
773  kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
774  }
775  if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
776  (tPathLength/tausmall < lambda0)) { return fDisplacement; }
777 
778  G4double cth = SampleCosineTheta(tPathLength,kineticEnergy);
779 
780  // protection against 'bad' cth values
781  if(std::fabs(cth) > 1.) { return fDisplacement; }
782 
783  // extra protection agaist high energy particles backscattered
784  // if(cth < 1.0 - 1000*tPathLength/lambda0 && kineticEnergy > 20*MeV) {
785  //G4cout << "Warning: large scattering E(MeV)= " << kineticEnergy
786  // << " s(mm)= " << tPathLength/mm
787  // << " 1-cosTheta= " << 1.0 - cth << G4endl;
788  // do Gaussian central scattering
789  // if(kineticEnergy > 0.5*GeV && cth < 0.9) {
790  /*
791  if(cth < 1.0 - 1000*tPathLength/lambda0 &&
792  cth < 0.9 && kineticEnergy > 500*MeV) {
793  G4ExceptionDescription ed;
794  ed << particle->GetParticleName()
795  << " E(MeV)= " << kineticEnergy/MeV
796  << " Step(mm)= " << tPathLength/mm
797  << " tau= " << tPathLength/lambda0
798  << " in " << CurrentCouple()->GetMaterial()->GetName()
799  << " CosTheta= " << cth
800  << " is too big";
801  G4Exception("UrbanMscModel93::SampleScattering","em0004",
802  JustWarning, ed,"");
803  }
804  */
805 
806  G4double sth = sqrt((1.0 - cth)*(1.0 + cth));
807  G4double phi = twopi*G4UniformRand();
808  G4double dirx = sth*cos(phi);
809  G4double diry = sth*sin(phi);
810 
811  G4ThreeVector newDirection(dirx,diry,cth);
812  newDirection.rotateUz(oldDirection);
813  fParticleChange->ProposeMomentumDirection(newDirection);
814 
815  if (latDisplasment && safety > tlimitminfix) {
816 
817  G4double r = SampleDisplacement();
818  /*
819  G4cout << "UrbanMscModel93::SampleSecondaries: e(MeV)= " << kineticEnergy
820  << " sinTheta= " << sth << " r(mm)= " << r
821  << " trueStep(mm)= " << tPathLength
822  << " geomStep(mm)= " << zPathLength
823  << G4endl;
824  */
825  if(r > 0.)
826  {
827  G4double latcorr = LatCorrelation();
828  if(latcorr > r) latcorr = r;
829 
830  // sample direction of lateral displacement
831  // compute it from the lateral correlation
832  G4double Phi = 0.;
833  if(std::abs(r*sth) < latcorr)
834  Phi = twopi*G4UniformRand();
835  else
836  {
837  G4double psi = std::acos(latcorr/(r*sth));
838  if(G4UniformRand() < 0.5)
839  Phi = phi+psi;
840  else
841  Phi = phi-psi;
842  }
843 
844  dirx = r*std::cos(Phi);
845  diry = r*std::sin(Phi);
846 
847  fDisplacement.set(dirx,diry,0.0);
848  fDisplacement.rotateUz(oldDirection);
849  }
850  }
851  return fDisplacement;
852 }
853 
854 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
855 
856 G4double UrbanMscModel93::SampleCosineTheta(G4double trueStepLength,
857  G4double KineticEnergy)
858 {
859  G4double cth = 1. ;
860  G4double tau = trueStepLength/lambda0 ;
861 
862  Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
863  couple->GetMaterial()->GetTotNbOfAtomsPerVolume() ;
864 
865  if(Zold != Zeff)
866  UpdateCache();
867 
868  if(insideskin)
869  {
870  //no scattering, single or plural scattering
871  G4double mean = trueStepLength/stepmin ;
872 
873  G4int n = G4Poisson(mean);
874  if(n > 0)
875  {
876  //screening (Moliere-Bethe)
877  G4double mom2 = KineticEnergy*(2.*mass+KineticEnergy);
878  G4double beta2 = mom2/((KineticEnergy+mass)*(KineticEnergy+mass));
879  G4double ascr = scr1/mom2;
880  ascr *= 1.13+scr2/beta2;
881  G4double ascr1 = 1.+2.*ascr;
882  G4double bp1=ascr1+1.;
883  G4double bm1=ascr1-1.;
884 
885  // single scattering from screened Rutherford x-section
886  G4double ct,st,phi;
887  G4double sx=0.,sy=0.,sz=0.;
888  for(G4int i=1; i<=n; i++)
889  {
890  ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
891  if(ct < -1.) ct = -1.;
892  if(ct > 1.) ct = 1.;
893  st = sqrt(1.-ct*ct);
894  phi = twopi*G4UniformRand();
895  sx += st*cos(phi);
896  sy += st*sin(phi);
897  sz += ct;
898  }
899  cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
900  }
901  }
902  else
903  {
904  if(trueStepLength >= currentRange*dtrl)
905  {
906  if(par1*trueStepLength < 1.)
907  tau = -par2*G4Log(1.-par1*trueStepLength) ;
908  // for the case if ioni/brems are inactivated
909  // see the corresponding condition in ComputeGeomPathLength
910  else if(1.-KineticEnergy/currentKinEnergy > taulim)
911  tau = taubig ;
912  }
913  currentTau = tau ;
914  lambdaeff = trueStepLength/currentTau;
915  currentRadLength = couple->GetMaterial()->GetRadlen();
916 
917  if (tau >= taubig) cth = -1.+2.*G4UniformRand();
918  else if (tau >= tausmall)
919  {
920  G4double xmeanth, x2meanth;
921  if(tau < numlim) {
922  xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
923  x2meanth= 1.0 - tau*(5.0 - 6.25*tau)*third;
924  } else {
925  xmeanth = G4Exp(-tau);
926  x2meanth = (1.+2.*G4Exp(-2.5*tau))*third;
927  }
928  G4double relloss = 1.-KineticEnergy/currentKinEnergy;
929 
930  if(relloss > rellossmax)
931  return SimpleScattering(xmeanth,x2meanth);
932 
933  G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
934 
935  //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max
936  // << " sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
937 
938  // protection for very small angles
939  G4double theta2 = theta0*theta0;
940 
941  if(theta2 < tausmall) { return cth; }
942 
943  if(theta0 > theta0max) {
944  return SimpleScattering(xmeanth,x2meanth);
945  }
946 
947  G4double x = theta2*(1.0 - theta2/12.);
948  if(theta2 > numlim) {
949  G4double sth = 2.*sin(0.5*theta0);
950  x = sth*sth;
951  }
952 
953  G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
954  G4double x0 = 1. - xsi*x;
955 
956  // G4cout << " xmean1= " << xmean1 << " xmeanth= " << xmeanth << G4endl;
957 
958  if(xmean1 <= 0.999*xmeanth) {
959  return SimpleScattering(xmeanth,x2meanth);
960  }
961  // from e- and muon scattering data
962  G4double c = coeffc1+coeffc2*y;
963 
964  // tail should not be too big
965  if(c < 1.9) {
966  /*
967  if(KineticEnergy > 200*MeV && c < 1.6) {
968  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
969  << KineticEnergy/GeV
970  << " !!** c= " << c
971  << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff
972  << " " << couple->GetMaterial()->GetName()
973  << " tau= " << tau << G4endl;
974  }
975  */
976  c = 1.9;
977  }
978 
979  if(fabs(c-3.) < 0.001) { c = 3.001; }
980  else if(fabs(c-2.) < 0.001) { c = 2.001; }
981 
982  G4double c1 = c-1.;
983 
984  //from continuity of derivatives
985  G4double b = 1.+(c-xsi)*x;
986 
987  G4double b1 = b+1.;
988  G4double bx = c*x;
989 
990  G4double eb1 = pow(b1,c1);
991  G4double ebx = pow(bx,c1);
992  G4double d = ebx/eb1;
993 
994  // G4double xmean2 = (x0*eb1+ebx-(eb1*bx-b1*ebx)/(c-2.))/(eb1-ebx);
995  G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
996 
997  G4double f1x0 = ea/eaa;
998  G4double f2x0 = c1/(c*(1. - d));
999  G4double prob = f2x0/(f1x0+f2x0);
1000 
1001  G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
1002 
1003  // sampling of costheta
1004  //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
1005  // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
1006  // << G4endl;
1007  if(G4UniformRand() < qprob)
1008  {
1009  G4double var = 0;
1010  if(G4UniformRand() < prob) {
1011  cth = 1.+G4Log(ea+G4UniformRand()*eaa)*x;
1012  } else {
1013  var = (1.0 - d)*G4UniformRand();
1014  if(var < numlim*d) {
1015  var /= (d*c1);
1016  cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
1017  } else {
1018  cth = 1. + x*(c - xsi - c*pow(var + d, -1.0/c1));
1019  //b-b1*bx/G4Exp(log(ebx+(eb1-ebx)*G4UniformRand())/c1) ;
1020  }
1021  }
1022  if(KineticEnergy > 5*GeV && cth < 0.9) {
1023  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
1024  << KineticEnergy/GeV
1025  << " 1-cosT= " << 1 - cth
1026  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1027  << " tau= " << tau
1028  << " prob= " << prob << " var= " << var << G4endl;
1029  G4cout << " c= " << c << " qprob= " << qprob << " eb1= " << eb1
1030  << " ebx= " << ebx
1031  << " c1= " << c1 << " b= " << b << " b1= " << b1
1032  << " bx= " << bx << " d= " << d
1033  << " ea= " << ea << " eaa= " << eaa << G4endl;
1034  }
1035  }
1036  else {
1037  cth = -1.+2.*G4UniformRand();
1038  if(KineticEnergy > 5*GeV) {
1039  G4cout << "UrbanMscModel93::SampleCosineTheta: E(GeV)= "
1040  << KineticEnergy/GeV
1041  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff
1042  << " qprob= " << qprob << G4endl;
1043  }
1044  }
1045  }
1046  }
1047  return cth ;
1048 }
1049 
1050 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1051 
1053 {
1054  // Compute rmean = sqrt(<r**2>) from theory
1055  G4double rmean = 0.0;
1056  if ((currentTau >= tausmall) && !insideskin) {
1057  if (currentTau < taulim) {
1059  (1.-kappapl1*currentTau*0.25)/6. ;
1060 
1061  } else {
1062  G4double etau = 0.0;
1063  if (currentTau<taubig) etau = G4Exp(-currentTau);
1064  rmean = -kappa*currentTau;
1065  rmean = -G4Exp(rmean)/(kappa*kappami1);
1066  rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
1067  }
1068  if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean*third);
1069  else rmean = 0.;
1070  }
1071 
1072  if(rmean == 0.) return rmean;
1073 
1074  // protection against z > t ...........................
1075  G4double rmax = (tPathLength-zPathLength)*(tPathLength+zPathLength);
1076  if(rmax <= 0.)
1077  rmax = 0.;
1078  else
1079  rmax = sqrt(rmax);
1080 
1081  if(rmean >= rmax) return rmax;
1082 
1083  return rmean;
1084  // VI comment out for the time being
1085  /*
1086  //sample r (Gaussian distribution with a mean of rmean )
1087  G4double r = 0.;
1088  G4double sigma = min(rmean,rmax-rmean);
1089  sigma /= 3.;
1090  G4double rlow = rmean-3.*sigma;
1091  G4double rhigh = rmean+3.*sigma;
1092  do {
1093  r = G4RandGauss::shoot(rmean,sigma);
1094  } while ((r < rlow) || (r > rhigh));
1095 
1096  return r;
1097  */
1098 }
1099 
1100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1101 
1103 {
1104  G4double latcorr = 0.;
1105  if((currentTau >= tausmall) && !insideskin)
1106  {
1107  if(currentTau < taulim)
1110  else
1111  {
1112  G4double etau = 0.;
1113  if(currentTau < taubig) etau = G4Exp(-currentTau);
1114  latcorr = -kappa*currentTau;
1115  latcorr = G4Exp(latcorr)/kappami1;
1116  latcorr += 1.-kappa*etau/kappami1 ;
1117  latcorr *= 2.*lambdaeff*third ;
1118  }
1119  }
1120 
1121  return latcorr;
1122 }
1123 
1124 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
const G4ParticleDefinition * particle
const G4MaterialCutsCouple * couple
int i
Definition: DBlmapReader.cc:9
const double GeV
Definition: MathUtil.h:16
G4ParticleChangeForMSC * fParticleChange
const double hbarc
Definition: MathUtil.h:18
const double w
Definition: UKUtility.cc:23
static const G4double kappami1
G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy)
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double ComputeGeomPathLength(G4double truePathLength)
G4double currentRadLength
void SetParticle(const G4ParticleDefinition *)
std::map< std::string, int, std::less< std::string > > psi
G4double LatCorrelation()
const Double_t pi
UrbanMscModel93(const G4String &nam="UrbanMsc93")
const double MeV
tuple d
Definition: ztail.py:151
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX)
void StartTracking(G4Track *)
G4LossTableManager * theManager
T sqrt(T t)
Definition: SSEVec.h:48
G4double currentKinEnergy
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
G4double SimpleScattering(G4double xmeanth, G4double x2meanth)
G4double SampleDisplacement()
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
G4double ComputeTrueStepLength(G4double geomStepLength)
JetCorrectorParameters corr
Definition: classes.h:5
static const G4double kappapl1
part
Definition: HCALResponse.h:20
double b
Definition: hdecay.h:120
G4double SampleCosineTheta(G4double trueStepLength, G4double KineticEnergy)
static const G4double kappa
virtual ~UrbanMscModel93()
long double T
G4ThreeVector & SampleScattering(const G4ThreeVector &, G4double safety)
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
G4double ComputeTruePathLengthLimit(const G4Track &track, G4double &currentMinimalStep)