CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Field.cc
Go to the documentation of this file.
3 
4 //#include "Geometry/Vector/interface/GlobalPoint.h"
6 
7 #include "G4Mag_UsualEqRhs.hh"
8 
9 #include "CLHEP/Units/GlobalSystemOfUnits.h"
10 
13 
14 using namespace sim;
15 
16 G4Mag_UsualEqRhs * Field::fieldEquation() { return theFieldEquation; }
17 
18 Field::Field(const MagneticField * f, double d)
19  : G4MagneticField(), theCMSMagneticField(f),theDelta(d)
20 {
21 }
22 
24 
25 void Field::GetFieldValue(const double xyz[3],double bfield[3]) const
26 {
27 
28  //
29  // this is another trick to check on a NaN, maybe it's even CPU-faster...
30  // but ler's stick to system function edm::isNotFinite(...) for now
31  //
32  // if ( !(xyz[0]==xyz[0]) || !(xyz[1]==xyz[1]) || !(xyz[2]==xyz[2]) )
33  if ( edm::isNotFinite(xyz[0]+xyz[1]+xyz[2]) != 0 )
34  {
35  throw SimG4Exception( "SimG4CoreMagneticField: Corrupted Event - NaN detected (position)" ) ;
36  }
37 
38  // Which is worse, thread_local static here, or mutable members?
39  // Mutable members + synchronization would be the most correct. In
40  // practice I know there is (by construction via
41  // RunManagerMT/RunManagerMTWorker) one Field object per thread,
42  // managed via pointers in TLS, so thread_local here is also
43  // "correct", and fastest to write.
44  static thread_local float oldx[3] = {1.0e12,1.0e12,1.0e12};
45  static thread_local double b[3];
46 
47  if (theDelta>0. &&
48  fabs(oldx[0]-xyz[0])<theDelta &&
49  fabs(oldx[1]-xyz[1])<theDelta &&
50  fabs(oldx[2]-xyz[2])<theDelta)
51  {
52  // old b good enough
53  bfield[0] = b[0];
54  bfield[1] = b[1];
55  bfield[2] = b[2];
56  return;
57  }
58 
59  const GlobalPoint g(xyz[0]/cm,xyz[1]/cm,xyz[2]/cm);
61  b[0] = v.x()*tesla;
62  b[1] = v.y()*tesla;
63  b[2] = v.z()*tesla;
64 
65  oldx[0] = xyz[0];
66  oldx[1] = xyz[1];
67  oldx[2] = xyz[2];
68 
69  bfield[0] = b[0];
70  bfield[1] = b[1];
71  bfield[2] = b[2];
72 }
73 
74 void Field::fieldEquation(G4Mag_UsualEqRhs* e) { theFieldEquation = e; }
75 
const MagneticField * theCMSMagneticField
Definition: Field.h:19
virtual GlobalVector inTesla(const GlobalPoint &gp) const =0
Field value ad specified global point, in Tesla.
virtual ~Field()
Definition: Field.cc:23
T y() const
Definition: PV3DBase.h:63
G4Mag_UsualEqRhs * theFieldEquation
Definition: Field.h:20
Definition: sim.h:19
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e g
Definition: Activities.doc:4
tuple d
Definition: ztail.py:151
bool isNotFinite(T x)
Definition: isFinite.h:10
G4Mag_UsualEqRhs * fieldEquation()
Definition: Field.cc:16
T z() const
Definition: PV3DBase.h:64
virtual void GetFieldValue(const double p[3], double b[3]) const
Definition: Field.cc:25
double f[11][100]
double b
Definition: hdecay.h:120
double theDelta
Definition: Field.h:21
Field(const MagneticField *f, double d)
Definition: Field.cc:18
T x() const
Definition: PV3DBase.h:62