test
CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
CaloHitResponse.cc
Go to the documentation of this file.
14 
15 #include "CLHEP/Random/RandPoissonQ.h"
16 #include "CLHEP/Units/GlobalPhysicalConstants.h"
17 #include "CLHEP/Units/GlobalSystemOfUnits.h"
18 
19 #include<iostream>
20 
22  const CaloVShape * shape)
23 : theAnalogSignalMap(),
24  theParameterMap(parametersMap),
25  theShapes(0),
26  theShape(shape),
27  theHitCorrection(0),
28  thePECorrection(0),
29  theHitFilter(0),
30  theGeometry(0),
31  theMinBunch(-10),
32  theMaxBunch(10),
33  thePhaseShift_(1.),
34  changeScale(false) {}
35 
37  const CaloShapes * shapes)
38 : theAnalogSignalMap(),
39  theParameterMap(parametersMap),
40  theShapes(shapes),
41  theShape(0),
42  theHitCorrection(0),
43  thePECorrection(0),
44  theHitFilter(0),
45  theGeometry(0),
46  theMinBunch(-10),
47  theMaxBunch(10),
48  thePhaseShift_(1.),
49  changeScale(false) {}
50 
52 }
53 
55 #ifdef ChangeHcalEnergyScale
56  for (int ij=0; ij<100; ij++) {
57  for (int jk=0; jk<72; jk++) {
58  for (int kl=0; kl<4; kl++) {
59  hcal_en_scale[ij][jk][kl] = 1.0;
60  }
61  }
62  }
63 #endif
64 }
65 
67 
68  std::ifstream infile(fileIn.c_str());
69  LogDebug("CaloHitResponse") << "Reading from " << fileIn;
70 #ifdef ChangeHcalEnergyScale
71  if (!infile.is_open()) {
72  edm::LogError("CaloHitResponse") << "** ERROR: Can't open '" << fileIn << "' for the input file";
73  } else {
74  int eta, phi, depth;
75  double cFactor;
76  while(1) {
77  infile >> eta >> phi >> depth >> cFactor;
78  if (!infile.good()) break;
79  hcal_en_scale[eta][phi][depth] = cFactor;
80  // LogDebug("CaloHitResponse") << "hcal_en_scale[" << eta << "][" << phi << "][" << depth << "] = " << hcal_en_scale[eta][phi][depth];
81  }
82  infile.close();
83  }
84  changeScale = true;
85 #endif
86 }
87 
88 void CaloHitResponse::setBunchRange(int minBunch, int maxBunch) {
89  theMinBunch = minBunch;
90  theMaxBunch = maxBunch;
91 }
92 
93 void CaloHitResponse::run(MixCollection<PCaloHit> & hits, CLHEP::HepRandomEngine* engine) {
94 
95  for(MixCollection<PCaloHit>::MixItr hitItr = hits.begin();
96  hitItr != hits.end(); ++hitItr) {
97  if(withinBunchRange(hitItr.bunch())) {
98  add(*hitItr, engine);
99  } // loop over hits
100  }
101 }
102 
103 void CaloHitResponse::add( const PCaloHit& hit, CLHEP::HepRandomEngine* engine ) {
104  // check the hit time makes sense
105  if ( edm::isNotFinite(hit.time()) ) { return; }
106 
107  // maybe it's not from this subdetector
108  if(theHitFilter == 0 || theHitFilter->accepts(hit)) {
109  LogDebug("CaloHitResponse") << hit;
110  CaloSamples signal( makeAnalogSignal( hit, engine ) ) ;
111  bool keep ( keepBlank() ) ; // here we check for blank signal if not keeping them
112  if( !keep )
113  {
114  const unsigned int size ( signal.size() ) ;
115  if( 0 != size )
116  {
117  for( unsigned int i ( 0 ) ; i != size ; ++i )
118  {
119  keep = keep || signal[i] > 1.e-7 ;
120  }
121  }
122  }
123 
124  if( keep ) add(signal);
125  }
126 }
127 
128 
129 void CaloHitResponse::add(const CaloSamples & signal)
130 {
131  DetId id(signal.id());
132  CaloSamples * oldSignal = findSignal(id);
133  if (oldSignal == 0) {
134  theAnalogSignalMap[id] = signal;
135 
136  } else {
137  // need a "+=" to CaloSamples
138  int sampleSize = oldSignal->size();
139  assert(sampleSize == signal.size());
140  assert(signal.presamples() == oldSignal->presamples());
141 
142  for(int i = 0; i < sampleSize; ++i) {
143  (*oldSignal)[i] += signal[i];
144  }
145  }
146 }
147 
148 
149 CaloSamples CaloHitResponse::makeAnalogSignal(const PCaloHit & hit, CLHEP::HepRandomEngine* engine) const {
150 
151  DetId detId(hit.id());
153  double signal = analogSignalAmplitude(detId, hit.energy(), parameters, engine);
154 
155  double time = hit.time();
156  if(theHitCorrection != 0) {
157  time += theHitCorrection->delay(hit, engine);
158  }
159  double jitter = hit.time() - timeOfFlight(detId);
160 
161  const CaloVShape * shape = theShape;
162  if(!shape) {
163  shape = theShapes->shape(detId);
164  }
165  // assume bins count from zero, go for center of bin
166  const double tzero = ( shape->timeToRise()
167  + parameters.timePhase()
168  - jitter
169  - BUNCHSPACE*( parameters.binOfMaximum()
170  - thePhaseShift_ ) ) ;
171  double binTime = tzero;
172 
174 
175  for(int bin = 0; bin < result.size(); bin++) {
176  result[bin] += (*shape)(binTime)* signal;
177  binTime += BUNCHSPACE;
178  }
179  return result;
180 }
181 
182 double CaloHitResponse::analogSignalAmplitude(const DetId & detId, float energy, const CaloSimParameters & parameters, CLHEP::HepRandomEngine* engine) const {
183 
184  // OK, the "energy" in the hit could be a real energy, deposited energy,
185  // or pe count. This factor converts to photoelectrons
186  //GMA Smeared in photon production it self
187  double scl =1.0;
188 #ifdef ChangeHcalEnergyScale
189  if (changeScale) {
190  if (detId.det()==DetId::Hcal ) {
191  HcalDetId dId = HcalDetId(detId);
192  if (dId.subdet()==HcalBarrel || dId.subdet()==HcalEndcap) {
193  int ieta = dId.ieta()+50;
194  int iphi = dId.iphi()-1;
195  int idep = dId.depth()-1;
196  scl = hcal_en_scale[ieta][iphi][idep];
197  LogDebug("CaloHitResponse") << " ID " << dId << " Scale " << scl;
198  }
199  }
200  }
201 #endif
202  double npe = scl * energy * parameters.simHitToPhotoelectrons(detId);
203  // do we need to doPoisson statistics for the photoelectrons?
204  if(parameters.doPhotostatistics()) {
205  npe = CLHEP::RandPoissonQ::shoot(engine,npe);
206  }
207  if(thePECorrection) npe = thePECorrection->correctPE(detId, npe, engine);
208  return npe;
209 }
210 
211 
213  CaloSamples * result = 0;
214  AnalogSignalMap::iterator signalItr = theAnalogSignalMap.find(detId);
215  if(signalItr == theAnalogSignalMap.end()) {
216  result = 0;
217  } else {
218  result = &(signalItr->second);
219  }
220  return result;
221 }
222 
223 
226  CaloSamples result(detId, parameters.readoutFrameSize());
227  result.setPresamples(parameters.binOfMaximum()-1);
228  return result;
229 }
230 
231 
232 double CaloHitResponse::timeOfFlight(const DetId & detId) const {
233  // not going to assume there's one of these per subdetector.
234  // Take the whole CaloGeometry and find the right subdet
235  double result = 0.;
236  if(theGeometry == 0) {
237  edm::LogWarning("CaloHitResponse") << "No Calo Geometry set, so no time of flight correction";
238  }
239  else {
240  const CaloCellGeometry* cellGeometry = theGeometry->getSubdetectorGeometry(detId)->getGeometry(detId);
241  if(cellGeometry == 0) {
242  edm::LogWarning("CaloHitResponse") << "No Calo cell found for ID"
243  << detId.rawId() << " so no time-of-flight subtraction will be done";
244  }
245  else {
246  double distance = cellGeometry->getPosition().mag();
247  result = distance * cm / c_light; // Units of c_light: mm/ns
248  }
249  }
250  return result;
251 }
252 
253 
#define LogDebug(id)
const CaloSubdetectorGeometry * getSubdetectorGeometry(const DetId &id) const
access the subdetector geometry for the given subdetector directly
Definition: CaloGeometry.cc:43
float hcal_en_scale[100][72][4]
int i
Definition: DBlmapReader.cc:9
dictionary parameters
Definition: Parameters.py:2
CaloSamples makeBlankSignal(const DetId &detId) const
creates an empty signal for this DetId
double time() const
Definition: PCaloHit.h:36
HcalSubdetector subdet() const
get the subdetector
Definition: HcalDetId.h:45
virtual ~CaloHitResponse()
doesn&#39;t delete the pointers passed in
bool withinBunchRange(int bunchCrossing) const
check if crossing is within bunch range:
double energy() const
Definition: PCaloHit.h:29
assert(m_qm.get())
virtual void run(MixCollection< PCaloHit > &hits, CLHEP::HepRandomEngine *)
Complete cell digitization.
int presamples() const
access presample information
Definition: CaloSamples.h:36
bool doPhotostatistics() const
whether or not to apply Poisson statistics to photoelectrons
virtual bool keepBlank() const
Electronic response of the preamp.
Definition: CaloVShape.h:11
CaloHitResponse(const CaloVSimParameterMap *parameterMap, const CaloVShape *shape)
Main class for Parameters in different subdetectors.
const CaloGeometry * theGeometry
virtual double correctPE(const DetId &detId, double npe, CLHEP::HepRandomEngine *) const =0
virtual const CaloCellGeometry * getGeometry(const DetId &id) const
Get the cell geometry of a given detector id. Should return false if not found.
uint32_t rawId() const
get the raw id
Definition: DetId.h:43
iterator end()
const CaloVPECorrection * thePECorrection
const int keep
int depth() const
get the tower depth
Definition: HcalDetId.h:55
T mag() const
Definition: PV3DBase.h:67
bool isNotFinite(T x)
Definition: isFinite.h:10
virtual CaloSamples makeAnalogSignal(const PCaloHit &inputHit, CLHEP::HepRandomEngine *) const
creates the signal corresponding to this hit
tuple result
Definition: query.py:137
int ieta() const
get the cell ieta
Definition: HcalDetId.h:51
double simHitToPhotoelectrons() const
void setHBHEScale(std::string &)
virtual double timeToRise() const =0
virtual const CaloSimParameters & simParameters(const DetId &id) const =0
virtual bool accepts(const PCaloHit &hit) const =0
unsigned int id() const
Definition: PCaloHit.h:43
double timeOfFlight(const DetId &detId) const
int readoutFrameSize() const
for now, the LinearFrames and trhe digis will be one-to-one.
const CaloVHitCorrection * theHitCorrection
virtual double delay(const PCaloHit &hit, CLHEP::HepRandomEngine *) const =0
AnalogSignalMap theAnalogSignalMap
int iphi() const
get the cell iphi
Definition: HcalDetId.h:53
Definition: DetId.h:18
double analogSignalAmplitude(const DetId &id, float energy, const CaloSimParameters &parameters, CLHEP::HepRandomEngine *) const
iterator begin()
const CaloShapes * theShapes
const CaloVSimParameterMap * theParameterMap
int size() const
get the size
Definition: CaloSamples.h:24
void setBunchRange(int minBunch, int maxBunch)
tells it which pileup bunches to do
CaloSamples * findSignal(const DetId &detId)
users can look for the signal for a given cell
virtual void add(const PCaloHit &hit, CLHEP::HepRandomEngine *)
process a single SimHit
list infile
Definition: EdgesToViz.py:90
static const double tzero[3]
const CaloVHitFilter * theHitFilter
volatile std::atomic< bool > shutdown_flag false
const CaloVShape * theShape
DetId id() const
get the (generic) id
Definition: CaloSamples.h:21
Detector det() const
get the detector field from this detid
Definition: DetId.h:35
const GlobalPoint & getPosition() const
Returns the position of reference for this cell.
int binOfMaximum() const
tuple size
Write out results.
virtual const CaloVShape * shape(const DetId &detId) const
Definition: CaloShapes.h:15