CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
PFEGammaAlgo.cc
Go to the documentation of this file.
23 #include <TFile.h>
24 #include <TVector2.h>
25 #include <iomanip>
26 #include <algorithm>
27 #include <TMath.h>
28 #include "TMVA/MethodBDT.h"
29 
30 // include combinations header (not yet included in boost)
31 #include "combination.hpp"
32 
33 // just for now do this
34 //#define PFLOW_DEBUG
35 
36 #ifdef PFLOW_DEBUG
37 #define docast(x,y) dynamic_cast<x>(y)
38 #define LOGVERB(x) edm::LogVerbatim(x)
39 #define LOGWARN(x) edm::LogWarning(x)
40 #define LOGERR(x) edm::LogError(x)
41 #define LOGDRESSED(x) edm::LogInfo(x)
42 #else
43 #define docast(x,y) reinterpret_cast<x>(y)
44 #define LOGVERB(x) LogTrace(x)
45 #define LOGWARN(x) edm::LogWarning(x)
46 #define LOGERR(x) edm::LogError(x)
47 #define LOGDRESSED(x) LogDebug(x)
48 #endif
49 
50 using namespace std;
51 using namespace reco;
52 
53 namespace {
54  typedef PFEGammaAlgo::PFSCElement SCElement;
55  typedef PFEGammaAlgo::EEtoPSAssociation EEtoPSAssociation;
56  typedef std::pair<CaloClusterPtr::key_type,CaloClusterPtr> EEtoPSElement;
57  typedef PFEGammaAlgo::PFClusterElement ClusterElement;
58  typedef PFEGammaAlgo::PFFlaggedElement PFFlaggedElement;
59  typedef PFEGammaAlgo::PFSCFlaggedElement SCFlaggedElement;
60  typedef PFEGammaAlgo::PFKFFlaggedElement KFFlaggedElement;
61  typedef PFEGammaAlgo::PFGSFFlaggedElement GSFFlaggedElement;
62  typedef PFEGammaAlgo::PFClusterFlaggedElement ClusterFlaggedElement;
63 
64  typedef std::unary_function<const ClusterFlaggedElement&,
65  bool> ClusterMatcher;
66 
67  typedef std::unary_function<const PFFlaggedElement&,
68  bool> PFFlaggedElementMatcher;
69  typedef std::binary_function<const PFFlaggedElement&,
70  const PFFlaggedElement&,
71  bool> PFFlaggedElementSorter;
72 
73  typedef std::unary_function<const reco::PFBlockElement&,
74  bool> PFElementMatcher;
75 
76  typedef std::unary_function<const PFEGammaAlgo::ProtoEGObject&,
77  bool> POMatcher;
78 
79  typedef std::unary_function<PFFlaggedElement&,
80  ClusterFlaggedElement> ClusterElementConverter;
81 
82  struct SumPSEnergy : public std::binary_function<double,
83  const ClusterFlaggedElement&,
84  double> {
86  SumPSEnergy(reco::PFBlockElement::Type type) : _thetype(type) {}
87  double operator()(double a,
88  const ClusterFlaggedElement& b) {
89 
90  return a + (_thetype == b.first->type())*b.first->clusterRef()->energy();
91  }
92  };
93 
94  bool comparePSMapByKey(const EEtoPSElement& a,
95  const EEtoPSElement& b) {
96  return a.first < b.first;
97  }
98 
99  struct UsableElementToPSCluster : public ClusterElementConverter {
100  ClusterFlaggedElement operator () (PFFlaggedElement& elem) {
101  const ClusterElement* pselemascluster =
102  docast(const ClusterElement*,elem.first);
103  if( reco::PFBlockElement::PS1 != pselemascluster->type() &&
104  reco::PFBlockElement::PS2 != pselemascluster->type() ) {
105  std::stringstream ps_err;
106  pselemascluster->Dump(ps_err,"\t");
107  throw cms::Exception("UseableElementToPSCluster()")
108  << "This element is not a PS cluster!" << std::endl
109  << ps_err.str() << std::endl;
110  }
111  if( elem.second == false ) {
112  std::stringstream ps_err;
113  pselemascluster->Dump(ps_err,"\t");
114  throw cms::Exception("UsableElementToPSCluster()")
115  << "PS Cluster matched to EE is already used! "
116  << "This should be impossible!" << std::endl
117  << ps_err.str() << std::endl;
118  }
119  elem.second = false; // flag as used!
120  return std::make_pair(pselemascluster,true);
121  }
122  };
123 
124  struct SeedMatchesToSCElement : public PFFlaggedElementMatcher {
125  reco::SuperClusterRef _scfromseed;
126  SeedMatchesToSCElement(const reco::ElectronSeedRef& s) {
127  _scfromseed = s->caloCluster().castTo<reco::SuperClusterRef>();
128  }
129  bool operator() (const PFFlaggedElement& elem) {
130  const SCElement* scelem = docast(const SCElement*,elem.first);
131  if( _scfromseed.isNull() || !elem.second || !scelem) return false;
132  return ( _scfromseed->seed()->seed() ==
133  scelem->superClusterRef()->seed()->seed() );
134  }
135  };
136 
137  struct SCSubClusterMatchesToElement : public PFFlaggedElementMatcher {
139  SCSubClusterMatchesToElement(const reco::CaloCluster_iterator& b,
140  const reco::CaloCluster_iterator& e) :
141  begin(b),
142  end(e) { }
143  bool operator() (const PFFlaggedElement& elem) {
144  const ClusterElement* cluselem =
145  docast(const ClusterElement*,elem.first);
146  if( !elem.second || !cluselem) return false;
148  for( ; cl != end; ++cl ) {
149  if((*cl)->seed() == cluselem->clusterRef()->seed()) {
150  return true;
151  }
152  }
153  return false;
154  }
155  };
156 
157  struct SeedMatchesToProtoObject : public POMatcher {
158  reco::SuperClusterRef _scfromseed;
159  bool _ispfsc;
160  SeedMatchesToProtoObject(const reco::ElectronSeedRef& s) {
161  _scfromseed = s->caloCluster().castTo<reco::SuperClusterRef>();
162  _ispfsc = false;
163  if( _scfromseed.isNonnull() ) {
164  const edm::Ptr<reco::PFCluster> testCast(_scfromseed->seed());
165  _ispfsc = testCast.isNonnull();
166  }
167  }
168  bool operator() (const PFEGammaAlgo::ProtoEGObject& po) {
169  if( _scfromseed.isNull() || !po.parentSC ) return false;
170  if( _ispfsc ) {
171  return ( _scfromseed->seed() ==
172  po.parentSC->superClusterRef()->seed() );
173  }
174  return ( _scfromseed->seed()->seed() ==
175  po.parentSC->superClusterRef()->seed()->seed() );
176  }
177  };
178 
179  template<bool useConvs=false>
180  bool elementNotCloserToOther(const reco::PFBlockRef& block,
181  const PFBlockElement::Type& keytype,
182  const size_t key,
183  const PFBlockElement::Type& valtype,
184  const size_t test,
185  const float EoPin_cut = 1.0e6) {
188  // this is inside out but I just want something that works right now
189  switch( keytype ) {
191  {
192  const reco::PFBlockElementGsfTrack* elemasgsf =
194  &(block->elements()[key]));
195  if( elemasgsf && valtype == PFBlockElement::ECAL ) {
196  const ClusterElement* elemasclus =
197  reinterpret_cast<const ClusterElement*>(&(block->elements()[test]));
198  float cluster_e = elemasclus->clusterRef()->correctedEnergy();
199  float trk_pin = elemasgsf->Pin().P();
200  if( cluster_e / trk_pin > EoPin_cut ) {
201  LOGDRESSED("elementNotCloserToOther")
202  << "GSF track failed EoP cut to match with cluster!";
203  return false;
204  }
205  }
206  }
207  break;
209  {
210  const reco::PFBlockElementTrack* elemaskf =
212  &(block->elements()[key]));
213  if( elemaskf && valtype == PFBlockElement::ECAL ) {
214  const ClusterElement* elemasclus =
215  reinterpret_cast<const ClusterElement*>(&(block->elements()[test]));
216  float cluster_e = elemasclus->clusterRef()->correctedEnergy();
217  float trk_pin =
218  std::sqrt(elemaskf->trackRef()->innerMomentum().mag2());
219  if( cluster_e / trk_pin > EoPin_cut ) {
220  LOGDRESSED("elementNotCloserToOther")
221  << "KF track failed EoP cut to match with cluster!";
222  return false;
223  }
224  }
225  }
226  break;
227  default:
228  break;
229  }
230 
231  const float dist =
232  block->dist(key,test,block->linkData(),reco::PFBlock::LINKTEST_ALL);
233  if( dist == -1.0f ) return false; // don't associate non-linked elems
234  std::multimap<double, unsigned> dists_to_val;
235  block->associatedElements(test,block->linkData(),dists_to_val,keytype,
237  for( const auto& valdist : dists_to_val ) {
238  const size_t idx = valdist.second;
239  // check track types for conversion info
240  switch( keytype ) {
242  {
243  const reco::PFBlockElementGsfTrack* elemasgsf =
245  &(block->elements()[idx]));
246  if( !useConvs && elemasgsf->trackType(ConvType) ) return false;
247  if( elemasgsf && valtype == PFBlockElement::ECAL ) {
248  const ClusterElement* elemasclus =
249  docast(const ClusterElement*,&(block->elements()[test]));
250  float cluster_e = elemasclus->clusterRef()->correctedEnergy();
251  float trk_pin = elemasgsf->Pin().P();
252  if( cluster_e / trk_pin > EoPin_cut ) continue;
253  }
254  }
255  break;
257  {
258  const reco::PFBlockElementTrack* elemaskf =
260  &(block->elements()[idx]));
261  if( !useConvs && elemaskf->trackType(ConvType) ) return false;
262  if( elemaskf && valtype == PFBlockElement::ECAL ) {
263  const ClusterElement* elemasclus =
264  reinterpret_cast<const ClusterElement*>(&(block->elements()[test]));
265  float cluster_e = elemasclus->clusterRef()->correctedEnergy();
266  float trk_pin =
267  std::sqrt(elemaskf->trackRef()->innerMomentum().mag2());
268  if( cluster_e / trk_pin > EoPin_cut ) continue;
269  }
270  }
271  break;
272  default:
273  break;
274  }
275  if( valdist.first < dist && idx != key ) {
276  LOGDRESSED("elementNotCloserToOther")
277  << "key element of type " << keytype
278  << " is closer to another element of type" << valtype
279  << std::endl;
280  return false; // false if closer element of specified type found
281  }
282  }
283  return true;
284  }
285 
286  struct CompatibleEoPOut : public PFFlaggedElementMatcher {
288  CompatibleEoPOut(const reco::PFBlockElementGsfTrack* c) : comp(c) {}
289  bool operator()(const PFFlaggedElement& e) const {
290  if( PFBlockElement::ECAL != e.first->type() ) return false;
291  const ClusterElement* elemascluster =
292  docast(const ClusterElement*,e.first);
293  const float gsf_eta_diff = std::abs(comp->positionAtECALEntrance().eta()-
294  comp->Pout().eta());
295  const reco::PFClusterRef cRef = elemascluster->clusterRef();
296  return ( gsf_eta_diff <= 0.3 && cRef->energy()/comp->Pout().t() <= 5 );
297  }
298  };
299 
300  template<class TrackElementType>
301  struct IsConversionTrack : PFFlaggedElementMatcher {
302  bool operator()(const PFFlaggedElement& e) {
305  const TrackElementType* elemastrk =
306  docast(const TrackElementType*,e.first);
307  return elemastrk->trackType(ConvType);
308  }
309  };
310 
311  template<PFBlockElement::Type keytype,
312  PFBlockElement::Type valtype,
313  bool useConv=false>
314  struct NotCloserToOther : public PFFlaggedElementMatcher {
315  const reco::PFBlockElement* comp;
316  const reco::PFBlockRef& block;
318  const float EoPin_cut;
319  NotCloserToOther(const reco::PFBlockRef& b,
320  const reco::PFBlock::LinkData& l,
321  const PFFlaggedElement* e,
322  const float EoPcut=1.0e6): comp(e->first),
323  block(b),
324  links(l),
325  EoPin_cut(EoPcut) {
326  }
327  NotCloserToOther(const reco::PFBlockRef& b,
328  const reco::PFBlock::LinkData& l,
329  const reco::PFBlockElement* e,
330  const float EoPcut=1.0e6): comp(e),
331  block(b),
332  links(l),
333  EoPin_cut(EoPcut) {
334  }
335  bool operator () (const PFFlaggedElement& e) {
336  if( !e.second || valtype != e.first->type() ) return false;
337  return elementNotCloserToOther<useConv>(block,
338  keytype,comp->index(),
339  valtype,e.first->index(),
340  EoPin_cut);
341  }
342  };
343 
344  struct LesserByDistance : public PFFlaggedElementSorter {
345  const reco::PFBlockElement* comp;
346  const reco::PFBlockRef& block;
348  LesserByDistance(const reco::PFBlockRef& b,
349  const reco::PFBlock::LinkData& l,
350  const PFFlaggedElement* e): comp(e->first),
351  block(b),
352  links(l) {}
353  LesserByDistance(const reco::PFBlockRef& b,
354  const reco::PFBlock::LinkData& l,
355  const reco::PFBlockElement* e): comp(e),
356  block(b),
357  links(l) {}
358  bool operator () (const PFFlaggedElement& e1,
359  const PFFlaggedElement& e2) {
360  double dist1 = block->dist(comp->index(),
361  e1.first->index(),
362  links,
364  double dist2 = block->dist(comp->index(),
365  e2.first->index(),
366  links,
368  dist1 = ( dist1 == -1.0 ? 1e6 : dist1 );
369  dist2 = ( dist2 == -1.0 ? 1e6 : dist2 );
370  return dist1 < dist2;
371  }
372  };
373 
374  bool isROLinkedByClusterOrTrack(const PFEGammaAlgo::ProtoEGObject& RO1,
375  const PFEGammaAlgo::ProtoEGObject& RO2 ) {
376  // also don't allow ROs where both have clusters
377  // and GSF tracks to merge (10 Dec 2013)
378  if(RO1.primaryGSFs.size() && RO2.primaryGSFs.size()) {
379  LOGDRESSED("isROLinkedByClusterOrTrack")
380  << "cannot merge, both have GSFs!" << std::endl;
381  return false;
382  }
383  // don't allow EB/EE to mix (11 Sept 2013)
384  if( RO1.ecalclusters.size() && RO2.ecalclusters.size() ) {
385  if(RO1.ecalclusters.front().first->clusterRef()->layer() !=
386  RO2.ecalclusters.front().first->clusterRef()->layer() ) {
387  LOGDRESSED("isROLinkedByClusterOrTrack")
388  << "cannot merge, different ECAL types!" << std::endl;
389  return false;
390  }
391  }
392  const reco::PFBlockRef& blk = RO1.parentBlock;
393  bool not_closer;
394  // check links track -> cluster
395  for( const auto& cluster: RO1.ecalclusters ) {
396  for( const auto& primgsf : RO2.primaryGSFs ) {
397  not_closer =
398  elementNotCloserToOther(blk,
399  cluster.first->type(),
400  cluster.first->index(),
401  primgsf.first->type(),
402  primgsf.first->index());
403  if( not_closer ) {
404  LOGDRESSED("isROLinkedByClusterOrTrack")
405  << "merged by cluster to primary GSF" << std::endl;
406  return true;
407  } else {
408  LOGDRESSED("isROLinkedByClusterOrTrack")
409  << "cluster to primary GSF failed since"
410  << " cluster closer to another GSF" << std::endl;
411  }
412  }
413  for( const auto& primkf : RO2.primaryKFs) {
414  not_closer =
415  elementNotCloserToOther(blk,
416  cluster.first->type(),
417  cluster.first->index(),
418  primkf.first->type(),
419  primkf.first->index());
420  if( not_closer ) {
421  LOGDRESSED("isROLinkedByClusterOrTrack")
422  << "merged by cluster to primary KF" << std::endl;
423  return true;
424  }
425  }
426  for( const auto& secdkf : RO2.secondaryKFs) {
427  not_closer =
428  elementNotCloserToOther(blk,
429  cluster.first->type(),
430  cluster.first->index(),
431  secdkf.first->type(),
432  secdkf.first->index());
433  if( not_closer ) {
434  LOGDRESSED("isROLinkedByClusterOrTrack")
435  << "merged by cluster to secondary KF" << std::endl;
436  return true;
437  }
438  }
439  // check links brem -> cluster
440  for( const auto& brem : RO2.brems ) {
441  not_closer = elementNotCloserToOther(blk,
442  cluster.first->type(),
443  cluster.first->index(),
444  brem.first->type(),
445  brem.first->index());
446  if( not_closer ) {
447  LOGDRESSED("isROLinkedByClusterOrTrack")
448  << "merged by cluster to brem KF" << std::endl;
449  return true;
450  }
451  }
452  }
453  // check links primary gsf -> secondary kf
454  for( const auto& primgsf : RO1.primaryGSFs ) {
455  for( const auto& secdkf : RO2.secondaryKFs) {
456  not_closer =
457  elementNotCloserToOther(blk,
458  primgsf.first->type(),
459  primgsf.first->index(),
460  secdkf.first->type(),
461  secdkf.first->index());
462  if( not_closer ) {
463  LOGDRESSED("isROLinkedByClusterOrTrack")
464  << "merged by GSF to secondary KF" << std::endl;
465  return true;
466  }
467  }
468  }
469  // check links primary kf -> secondary kf
470  for( const auto& primkf : RO1.primaryKFs ) {
471  for( const auto& secdkf : RO2.secondaryKFs) {
472  not_closer =
473  elementNotCloserToOther(blk,
474  primkf.first->type(),
475  primkf.first->index(),
476  secdkf.first->type(),
477  secdkf.first->index());
478  if( not_closer ) {
479  LOGDRESSED("isROLinkedByClusterOrTrack")
480  << "merged by primary KF to secondary KF" << std::endl;
481  return true;
482  }
483  }
484  }
485  // check links secondary kf -> secondary kf
486  for( const auto& secdkf1 : RO1.secondaryKFs ) {
487  for( const auto& secdkf2 : RO2.secondaryKFs) {
488  not_closer =
489  elementNotCloserToOther<true>(blk,
490  secdkf1.first->type(),
491  secdkf1.first->index(),
492  secdkf2.first->type(),
493  secdkf2.first->index());
494  if( not_closer ) {
495  LOGDRESSED("isROLinkedByClusterOrTrack")
496  << "merged by secondary KF to secondary KF" << std::endl;
497  return true;
498  }
499  }
500  }
501  return false;
502  }
503 
504  struct TestIfROMergableByLink : public POMatcher {
505  const PFEGammaAlgo::ProtoEGObject& comp;
506  TestIfROMergableByLink(const PFEGammaAlgo::ProtoEGObject& RO) :
507  comp(RO) {}
508  bool operator() (const PFEGammaAlgo::ProtoEGObject& ro) {
509  const bool result = ( isROLinkedByClusterOrTrack(comp,ro) ||
510  isROLinkedByClusterOrTrack(ro,comp) );
511  return result;
512  }
513  };
514 
515  std::vector<const ClusterElement*>
516  getSCAssociatedECALsSafe(const reco::SuperClusterRef& scref,
517  std::vector<PFFlaggedElement>& ecals) {
518  std::vector<const ClusterElement*> cluster_list;
519  auto sccl = scref->clustersBegin();
520  auto scend = scref->clustersEnd();
521  auto pfc = ecals.begin();
522  auto pfcend = ecals.end();
523  for( ; sccl != scend; ++sccl ) {
524  std::vector<const ClusterElement*> matched_pfcs;
525  const double eg_energy = (*sccl)->energy();
526 
527  for( pfc = ecals.begin(); pfc != pfcend; ++pfc ) {
528  const ClusterElement *pfcel =
529  docast(const ClusterElement*, pfc->first);
530  const bool matched =
531  ClusterClusterMapping::overlap(**sccl,*(pfcel->clusterRef()));
532  // need to protect against high energy clusters being attached
533  // to low-energy SCs
534  if( matched && pfcel->clusterRef()->energy() < 1.2*scref->energy()) {
535  matched_pfcs.push_back(pfcel);
536  }
537  }
538  std::sort(matched_pfcs.begin(),matched_pfcs.end());
539 
540  double min_residual = 1e6;
541  std::vector<const ClusterElement*> best_comb;
542  for( size_t i = 1; i <= matched_pfcs.size(); ++i ) {
543  //now we find the combination of PF-clusters which
544  //has the smallest energy residual with respect to the
545  //EG-cluster we are looking at now
546  do {
547  double energy = std::accumulate(matched_pfcs.begin(),
548  matched_pfcs.begin()+i,
549  0.0,
550  [](const double a,
551  const ClusterElement* c)
552  { return a + c->clusterRef()->energy(); });
553  const double resid = std::abs(energy - eg_energy);
554  if( resid < min_residual ) {
555  best_comb.clear();
556  best_comb.reserve(i);
557  min_residual = resid;
558  best_comb.insert(best_comb.begin(),
559  matched_pfcs.begin(),
560  matched_pfcs.begin()+i);
561  }
562  }while(boost::next_combination(matched_pfcs.begin(),
563  matched_pfcs.begin()+i,
564  matched_pfcs.end()));
565  }
566  for( const auto& clelem : best_comb ) {
567  reco::PFClusterRef clref = clelem->clusterRef();
568  if( std::find(cluster_list.begin(),cluster_list.end(),clelem) ==
569  cluster_list.end() ) {
570  cluster_list.push_back(clelem);
571  }
572  }
573  }
574  return cluster_list;
575  }
576  bool addPFClusterToROSafe(const ClusterElement* cl,
577  PFEGammaAlgo::ProtoEGObject& RO) {
578  if( !RO.ecalclusters.size() ) {
579  RO.ecalclusters.push_back(std::make_pair(cl,true));
580  return true;
581  } else {
582  const PFLayer::Layer clayer = cl->clusterRef()->layer();
583  const PFLayer::Layer blayer =
584  RO.ecalclusters.back().first->clusterRef()->layer();
585  if( clayer == blayer ) {
586  RO.ecalclusters.push_back(std::make_pair(cl,true));
587  return true;
588  }
589  }
590  return false;
591  }
592 
593  // sets the cluster best associated to the GSF track
594  // leave it null if no GSF track
595  void setROElectronCluster(PFEGammaAlgo::ProtoEGObject& RO) {
596  if( !RO.ecalclusters.size() ) return;
597  RO.lateBrem = -1;
598  RO.firstBrem = -1;
599  RO.nBremsWithClusters = -1;
600  const reco::PFBlockElementBrem *firstBrem = NULL, *lastBrem = NULL;
601  const reco::PFBlockElementCluster *bremCluster = NULL, *gsfCluster = NULL,
602  *kfCluster = NULL, *gsfCluster_noassc = NULL;
603  const reco::PFBlockRef& parent = RO.parentBlock;
604  int nBremClusters = 0;
605  constexpr float maxDist = 1e6;
606  float mDist_gsf(maxDist), mDist_gsf_noassc(maxDist), mDist_kf(maxDist);
607  for( const auto& cluster : RO.ecalclusters ) {
608  for( const auto& gsf : RO.primaryGSFs ) {
609  const bool hasclu = elementNotCloserToOther(parent,
610  gsf.first->type(),
611  gsf.first->index(),
612  cluster.first->type(),
613  cluster.first->index());
614  const float deta =
615  std::abs(cluster.first->clusterRef()->positionREP().eta() -
616  gsf.first->positionAtECALEntrance().eta());
617  const float dphi =
619  cluster.first->clusterRef()->positionREP().phi() -
620  gsf.first->positionAtECALEntrance().phi()));
621  const float dist = std::hypot(deta,dphi);
622  if( hasclu && dist < mDist_gsf ) {
623  gsfCluster = cluster.first;
624  mDist_gsf = dist;
625  } else if ( dist < mDist_gsf_noassc ) {
626  gsfCluster_noassc = cluster.first;
627  mDist_gsf_noassc = dist;
628  }
629  }
630  for( const auto& kf : RO.primaryKFs ) {
631  const bool hasclu = elementNotCloserToOther(parent,
632  kf.first->type(),
633  kf.first->index(),
634  cluster.first->type(),
635  cluster.first->index());
636  const float dist = parent->dist(cluster.first->index(),
637  kf.first->index(),
638  parent->linkData(),
640  if( hasclu && dist < mDist_kf ) {
641  kfCluster = cluster.first;
642  mDist_kf = dist;
643  }
644  }
645  for( const auto& brem : RO.brems ) {
646  const bool hasclu = elementNotCloserToOther(parent,
647  brem.first->type(),
648  brem.first->index(),
649  cluster.first->type(),
650  cluster.first->index());
651  if( hasclu ) {
652  ++nBremClusters;
653  if( !firstBrem ||
654  ( firstBrem->indTrajPoint() - 2 >
655  brem.first->indTrajPoint() - 2) ) {
656  firstBrem = brem.first;
657  }
658  if( !lastBrem ||
659  ( lastBrem->indTrajPoint() - 2 <
660  brem.first->indTrajPoint() - 2) ) {
661  lastBrem = brem.first;
662  bremCluster = cluster.first;
663  }
664  }
665  }
666  }
667  if( !gsfCluster && !kfCluster && !bremCluster ) {
668  gsfCluster = gsfCluster_noassc;
669  }
670  RO.nBremsWithClusters = nBremClusters;
671  RO.lateBrem = 0;
672  if( gsfCluster ) {
673  RO.electronClusters.push_back(gsfCluster);
674  } else if ( kfCluster ) {
675  RO.electronClusters.push_back(kfCluster);
676  }
677  if( bremCluster && !gsfCluster && !kfCluster ) {
678  RO.electronClusters.push_back(bremCluster);
679  }
680  if( firstBrem && RO.ecalclusters.size() > 1 ) {
681  RO.firstBrem = firstBrem->indTrajPoint() - 2;
682  if( bremCluster == gsfCluster ) RO.lateBrem = 1;
683  }
684  }
685 }
686 
689  cfg_(cfg),
690  isvalid_(false),
691  verbosityLevel_(Silent),
692  nlost(0.0), nlayers(0.0),
693  chi2(0.0), STIP(0.0), del_phi(0.0),HoverPt(0.0), EoverPt(0.0), track_pt(0.0),
694  mvaValue(0.0),
695  CrysPhi_(0.0), CrysEta_(0.0), VtxZ_(0.0), ClusPhi_(0.0), ClusEta_(0.0),
696  ClusR9_(0.0), Clus5x5ratio_(0.0), PFCrysEtaCrack_(0.0), logPFClusE_(0.0), e3x3_(0.0),
697  CrysIPhi_(0), CrysIEta_(0),
698  CrysX_(0.0), CrysY_(0.0),
699  EB(0.0),
700  eSeed_(0.0), e1x3_(0.0),e3x1_(0.0), e1x5_(0.0), e2x5Top_(0.0), e2x5Bottom_(0.0), e2x5Left_(0.0), e2x5Right_(0.0),
701  etop_(0.0), ebottom_(0.0), eleft_(0.0), eright_(0.0),
702  e2x5Max_(0.0),
703  PFPhoEta_(0.0), PFPhoPhi_(0.0), PFPhoR9_(0.0), PFPhoR9Corr_(0.0), SCPhiWidth_(0.0), SCEtaWidth_(0.0),
704  PFPhoEt_(0.0), RConv_(0.0), PFPhoEtCorr_(0.0), PFPhoE_(0.0), PFPhoECorr_(0.0), MustE_(0.0), E3x3_(0.0),
705  dEta_(0.0), dPhi_(0.0), LowClusE_(0.0), RMSAll_(0.0), RMSMust_(0.0), nPFClus_(0.0),
706  TotPS1_(0.0), TotPS2_(0.0),
707  nVtx_(0.0),
708  x0inner_(0.0), x0middle_(0.0), x0outer_(0.0),
709  excluded_(0.0), Mustache_EtRatio_(0.0), Mustache_Et_out_(0.0)
710 {
711  //Material Map
712  TFile *XO_File = new TFile(cfg_.X0_Map.c_str(),"READ");
713  X0_sum = (TH2D*)XO_File->Get("TrackerSum");
714  X0_inner = (TH2D*)XO_File->Get("Inner");
715  X0_middle = (TH2D*)XO_File->Get("Middle");
716  X0_outer = (TH2D*)XO_File->Get("Outer");
717 
718 }
719 
721  const reco::PFBlockRef& blockRef,
722  std::vector<bool>& active) {
723 
724  fifthStepKfTrack_.clear();
725  convGsfTrack_.clear();
726 
727  egCandidate_.clear();
728  egExtra_.clear();
729 
730  // define how much is printed out for debugging.
731  // ... will be setable via CFG file parameter
732  verbosityLevel_ = Chatty; // Chatty mode.
733 
734  buildAndRefineEGObjects(hoc, blockRef);
735 }
736 
737 float PFEGammaAlgo::
739  const reco::PFBlockRef& blockref,
740  const reco::Vertex& primaryvtx,
741  unsigned int track_index) {
742  const reco::PFBlock& block = *blockref;
744  //use this to store linkdata in the associatedElements function below
745  PFBlock::LinkData linkData = block.linkData();
746  //calculate MVA Variables
747  chi2=elements[track_index].trackRef()->chi2()/elements[track_index].trackRef()->ndof();
748  nlost=elements[track_index].trackRef()->hitPattern().numberOfLostHits(HitPattern::MISSING_INNER_HITS);
749  nlayers=elements[track_index].trackRef()->hitPattern().trackerLayersWithMeasurement();
750  track_pt=elements[track_index].trackRef()->pt();
751  STIP=elements[track_index].trackRefPF()->STIP();
752 
753  float linked_e=0;
754  float linked_h=0;
755  std::multimap<double, unsigned int> ecalAssoTrack;
756  block.associatedElements( track_index,linkData,
757  ecalAssoTrack,
760  std::multimap<double, unsigned int> hcalAssoTrack;
761  block.associatedElements( track_index,linkData,
762  hcalAssoTrack,
765  if(ecalAssoTrack.size() > 0) {
766  for(std::multimap<double, unsigned int>::iterator itecal = ecalAssoTrack.begin();
767  itecal != ecalAssoTrack.end(); ++itecal) {
768  linked_e=linked_e+elements[itecal->second].clusterRef()->energy();
769  }
770  }
771  if(hcalAssoTrack.size() > 0) {
772  for(std::multimap<double, unsigned int>::iterator ithcal = hcalAssoTrack.begin();
773  ithcal != hcalAssoTrack.end(); ++ithcal) {
774  linked_h=linked_h+elements[ithcal->second].clusterRef()->energy();
775  }
776  }
777  EoverPt=linked_e/elements[track_index].trackRef()->pt();
778  HoverPt=linked_h/elements[track_index].trackRef()->pt();
779  GlobalVector rvtx(elements[track_index].trackRef()->innerPosition().X()-primaryvtx.x(),
780  elements[track_index].trackRef()->innerPosition().Y()-primaryvtx.y(),
781  elements[track_index].trackRef()->innerPosition().Z()-primaryvtx.z());
782  double vtx_phi=rvtx.phi();
783  //delta Phi between conversion vertex and track
784  del_phi=fabs(deltaPhi(vtx_phi, elements[track_index].trackRef()->innerMomentum().Phi()));
785 
786  float vars[] = { del_phi, nlayers, chi2, EoverPt,
787  HoverPt, track_pt, STIP, nlost };
788 
789  mvaValue = hoc->gbrSingleLeg_->GetAdaBoostClassifier(vars);
790 
791  return mvaValue;
792 }
793 
795  switch( pfbe.type() ) {
797  {
798  auto& elements = _currentblock->elements();
799  std::multimap<double,unsigned> tks;
800  _currentblock->associatedElements(pfbe.index(),
802  tks,
805  for( const auto& tk : tks ) {
806  if( PFMuonAlgo::isMuon(elements[tk.second]) ) {
807  return true;
808  }
809  }
810  }
811  break;
813  return PFMuonAlgo::isMuon(pfbe);
814  break;
815  default:
816  break;
817  }
818  return false;
819 }
820 
822  const reco::PFBlockRef& block) {
823  LOGVERB("PFEGammaAlgo")
824  << "Resetting PFEGammaAlgo for new block and running!" << std::endl;
825  _splayedblock.clear();
826  _recoveredlinks.clear();
827  _refinableObjects.clear();
828  _finalCandidates.clear();
829  _splayedblock.resize(12); // make sure that we always have the SC entry
830 
832  _currentlinks = block->linkData();
833  //LOGDRESSED("PFEGammaAlgo") << *_currentblock << std::endl;
834  LOGVERB("PFEGammaAlgo") << "Splaying block" << std::endl;
835  //unwrap the PF block into a fast access map
836  for( const auto& pfelement : _currentblock->elements() ) {
837  if( isAMuon(pfelement) ) continue; // don't allow muons in our element list
838  const size_t itype = (size_t)pfelement.type();
839  if( itype >= _splayedblock.size() ) _splayedblock.resize(itype+1);
840  _splayedblock[itype].push_back(std::make_pair(&pfelement,true));
841  }
842 
843  // show the result of splaying the tree if it's really *really* needed
844 #ifdef PFLOW_DEBUG
845  std::stringstream splayout;
846  for( size_t itype = 0; itype < _splayedblock.size(); ++itype ) {
847  splayout << "\tType: " << itype << " indices: ";
848  for( const auto& flaggedelement : _splayedblock[itype] ) {
849  splayout << flaggedelement.first->index() << ' ';
850  }
851  if( itype != _splayedblock.size() - 1 ) splayout << std::endl;
852  }
853  LOGVERB("PFEGammaAlgo") << splayout.str();
854 #endif
855 
856  // precleaning of the ECAL clusters with respect to primary KF tracks
857  // we don't allow clusters in super clusters to be locked out this way
859 
861  LOGDRESSED("PFEGammaAlgo")
862  << "Initialized " << _refinableObjects.size() << " proto-EGamma objects"
863  << std::endl;
865 
866  //
867  // now we start the refining steps
868  //
869  //
870 
871  // --- Primary Linking Step ---
872  // since this is particle flow and we try to work from the pixels out
873  // we start by linking the tracks together and finding the ECAL clusters
874  for( auto& RO : _refinableObjects ) {
875  // find the KF tracks associated to GSF primary tracks
877  // do the same for HCAL clusters associated to the GSF
879  // link secondary KF tracks associated to primary KF tracks
881  // pick up clusters that are linked to the GSF primary
883  // link associated KF to ECAL (ECAL part grabs PS clusters too if able)
885  // now finally look for clusters associated to brem tangents
887  }
888 
889  LOGDRESSED("PFEGammaAlgo")
890  << "Dumping after GSF and KF Track (Primary) Linking : " << std::endl;
892 
893  // merge objects after primary linking
894  mergeROsByAnyLink(_refinableObjects);
895 
896  LOGDRESSED("PFEGammaAlgo")
897  << "Dumping after first merging operation : " << std::endl;
899 
900  // --- Secondary Linking Step ---
901  // after this we go through the ECAL clusters on the remaining tracks
902  // and try to link those in...
903  for( auto& RO : _refinableObjects ) {
904  // look for conversion legs
907  // look for tracks that complement conversion legs
909  // look again for ECAL clusters (this time with an e/p cut)
911  }
912 
913  LOGDRESSED("PFEGammaAlgo")
914  << "Dumping after ECAL to Track (Secondary) Linking : " << std::endl;
916 
917  // merge objects after primary linking
918  mergeROsByAnyLink(_refinableObjects);
919 
920  LOGDRESSED("PFEGammaAlgo")
921  << "There are " << _refinableObjects.size()
922  << " after the 2nd merging step." << std::endl;
924 
925  // -- unlinking and proto-object vetos, final sorting
926  for( auto& RO : _refinableObjects ) {
927  // remove secondary KFs (and possibly ECALs) matched to HCAL clusters
929  // remove secondary KFs and ECALs linked to them that have bad E/p_in
930  // and spoil the resolution
932  // put things back in order after partitioning
933  std::sort(RO.ecalclusters.begin(), RO.ecalclusters.end(),
934  [](const PFClusterFlaggedElement& a,
935  const PFClusterFlaggedElement& b)
936  { return ( a.first->clusterRef()->correctedEnergy() >
937  b.first->clusterRef()->correctedEnergy() ) ; });
938  setROElectronCluster(RO);
939  }
940 
941  LOGDRESSED("PFEGammaAlgo")
942  << "There are " << _refinableObjects.size()
943  << " after the unlinking and vetos step." << std::endl;
945 
946  // fill the PF candidates and then build the refined SC
947  fillPFCandidates(hoc,_refinableObjects,outcands_,outcandsextra_);
948 
949 }
950 
951 void PFEGammaAlgo::
952 initializeProtoCands(std::list<PFEGammaAlgo::ProtoEGObject>& egobjs) {
953  // step 1: build SC based proto-candidates
954  // in the future there will be an SC Et requirement made here to control
955  // block size
956  for( auto& element : _splayedblock[PFBlockElement::SC] ) {
957  LOGDRESSED("PFEGammaAlgo")
958  << "creating SC-based proto-object" << std::endl
959  << "\tSC at index: " << element.first->index()
960  << " has type: " << element.first->type() << std::endl;
961  element.second = false;
962  ProtoEGObject fromSC;
963  fromSC.nBremsWithClusters = -1;
964  fromSC.firstBrem = -1;
965  fromSC.lateBrem = -1;
966  fromSC.parentBlock = _currentblock;
967  fromSC.parentSC = docast(const PFSCElement*,element.first);
968  // splay the supercluster so we can knock out used elements
969  bool sc_success =
970  unwrapSuperCluster(fromSC.parentSC,fromSC.ecalclusters,fromSC.ecal2ps);
971  if( sc_success ) {
972  /*
973  auto ins_pos = std::lower_bound(_refinableObjects.begin(),
974  _refinableObjects.end(),
975  fromSC,
976  [&](const ProtoEGObject& a,
977  const ProtoEGObject& b){
978  const double a_en =
979  a.parentSC->superClusterRef()->energy();
980  const double b_en =
981  b.parentSC->superClusterRef()->energy();
982  return a_en < b_en;
983  });
984  */
985  _refinableObjects.insert(_refinableObjects.end(),fromSC);
986  }
987  }
988  // step 2: build GSF-seed-based proto-candidates
989  reco::GsfTrackRef gsfref_forextra;
990  reco::TrackExtraRef gsftrk_extra;
991  reco::ElectronSeedRef theseedref;
992  std::list<ProtoEGObject>::iterator objsbegin, objsend;
993  for( auto& element : _splayedblock[PFBlockElement::GSF] ) {
994  LOGDRESSED("PFEGammaAlgo")
995  << "creating GSF-based proto-object" << std::endl
996  << "\tGSF at index: " << element.first->index()
997  << " has type: " << element.first->type() << std::endl;
998  const PFGSFElement* elementAsGSF =
999  docast(const PFGSFElement*,element.first);
1000  if( elementAsGSF->trackType(reco::PFBlockElement::T_FROM_GAMMACONV) ) {
1001  continue; // for now, do not allow dedicated brems to make proto-objects
1002  }
1003  element.second = false;
1004 
1005  ProtoEGObject fromGSF;
1006  fromGSF.nBremsWithClusters = -1;
1007  fromGSF.firstBrem = -1;
1008  fromGSF.lateBrem = 0;
1009  gsfref_forextra = elementAsGSF->GsftrackRef();
1010  gsftrk_extra = ( gsfref_forextra.isAvailable() ?
1011  gsfref_forextra->extra() : reco::TrackExtraRef() );
1012  theseedref = ( gsftrk_extra.isAvailable() ?
1013  gsftrk_extra->seedRef().castTo<reco::ElectronSeedRef>() :
1014  reco::ElectronSeedRef() );
1015  fromGSF.electronSeed = theseedref;
1016  // exception if there's no seed
1017  if(fromGSF.electronSeed.isNull() || !fromGSF.electronSeed.isAvailable()) {
1018  std::stringstream gsf_err;
1019  elementAsGSF->Dump(gsf_err,"\t");
1020  throw cms::Exception("PFEGammaAlgo::initializeProtoCands()")
1021  << "Found a GSF track with no seed! This should not happen!"
1022  << std::endl << gsf_err.str() << std::endl;
1023  }
1024  // flag this GSF element as globally used and push back the track ref
1025  // into the protocand
1026  element.second = false;
1027  fromGSF.parentBlock = _currentblock;
1028  fromGSF.primaryGSFs.push_back(std::make_pair(elementAsGSF,true));
1029  // add the directly matched brem tangents
1030  for( auto& brem : _splayedblock[PFBlockElement::BREM] ) {
1031  float dist = _currentblock->dist(elementAsGSF->index(),
1032  brem.first->index(),
1033  _currentlinks,
1035  if( dist == 0.001f ) {
1036  const PFBremElement* eAsBrem =
1037  docast(const PFBremElement*,brem.first);
1038  fromGSF.brems.push_back(std::make_pair(eAsBrem,true));
1039  fromGSF.localMap.push_back( ElementMap::value_type(eAsBrem,elementAsGSF) );
1040  fromGSF.localMap.push_back( ElementMap::value_type(elementAsGSF,eAsBrem) );
1041  brem.second = false;
1042  }
1043  }
1044  // if this track is ECAL seeded reset links or import cluster
1045  // tracker (this is pixel only, right?) driven seeds just get the GSF
1046  // track associated since this only branches for ECAL Driven seeds
1047  if( fromGSF.electronSeed->isEcalDriven() ) {
1048  // step 2a: either merge with existing ProtoEG object with SC or add
1049  // SC directly to this proto EG object if not present
1050  LOGDRESSED("PFEGammaAlgo")
1051  << "GSF-based proto-object is ECAL driven, merging SC-cand"
1052  << std::endl;
1053  LOGVERB("PFEGammaAlgo")
1054  << "ECAL Seed Ptr: " << fromGSF.electronSeed.get()
1055  << " isAvailable: " << fromGSF.electronSeed.isAvailable()
1056  << " isNonnull: " << fromGSF.electronSeed.isNonnull()
1057  << std::endl;
1058  SeedMatchesToProtoObject sctoseedmatch(fromGSF.electronSeed);
1059  objsbegin = _refinableObjects.begin();
1060  objsend = _refinableObjects.end();
1061  // this auto is a std::list<ProtoEGObject>::iterator
1062  auto clusmatch = std::find_if(objsbegin,objsend,sctoseedmatch);
1063  if( clusmatch != objsend ) {
1064  fromGSF.parentSC = clusmatch->parentSC;
1065  fromGSF.ecalclusters = std::move(clusmatch->ecalclusters);
1066  fromGSF.ecal2ps = std::move(clusmatch->ecal2ps);
1067  _refinableObjects.erase(clusmatch);
1068  } else if (fromGSF.electronSeed.isAvailable() &&
1069  fromGSF.electronSeed.isNonnull()) {
1070  // link tests in the gap region can current split a gap electron
1071  // HEY THIS IS A WORK AROUND FOR A KNOWN BUG IN PFBLOCKALGO
1072  // MAYBE WE SHOULD FIX IT??????????????????????????????????
1073  LOGDRESSED("PFEGammaAlgo")
1074  << "Encountered the known GSF-SC splitting bug "
1075  << " in PFBlockAlgo! We should really fix this!" << std::endl;
1076  } else { // SC was not in a earlier proto-object
1077  std::stringstream gsf_err;
1078  elementAsGSF->Dump(gsf_err,"\t");
1079  throw cms::Exception("PFEGammaAlgo::initializeProtoCands()")
1080  << "Expected SuperCluster from ECAL driven GSF seed "
1081  << "was not found in the block!" << std::endl
1082  << gsf_err.str() << std::endl;
1083  } // supercluster in block
1084  } // is ECAL driven seed?
1085  /*
1086  auto ins_pos = std::lower_bound(_refinableObjects.begin(),
1087  _refinableObjects.end(),
1088  fromGSF,
1089  [&](const ProtoEGObject& a,
1090  const ProtoEGObject& b){
1091  const double a_en = ( a.parentSC ?
1092  a.parentSC->superClusterRef()->energy() :
1093  a.primaryGSFs[0].first->GsftrackRef()->pt() );
1094  const double b_en = ( b.parentSC ?
1095  b.parentSC->superClusterRef()->energy() :
1096  b.primaryGSFs[0].first->GsftrackRef()->pt() );
1097  return a_en < b_en;
1098  });
1099  */
1100  _refinableObjects.insert(_refinableObjects.end(),fromGSF);
1101  } // end loop on GSF elements of block
1102 }
1103 
1104  bool PFEGammaAlgo::
1106  std::vector<PFClusterFlaggedElement>& ecalclusters,
1107  ClusterMap& ecal2ps) {
1108  ecalclusters.clear();
1109  ecal2ps.clear();
1110  LOGVERB("PFEGammaAlgo")
1111  << "Pointer to SC element: 0x"
1112  << std::hex << thesc << std::dec << std::endl
1113  << "cleared ecalclusters and ecal2ps!" << std::endl;
1114  auto ecalbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1115  auto ecalend = _splayedblock[reco::PFBlockElement::ECAL].end();
1116  if( ecalbegin == ecalend ) {
1117  LOGERR("PFEGammaAlgo::unwrapSuperCluster()")
1118  << "There are no ECAL elements in a block with imported SC!"
1119  << " This is a bug we should fix this!"
1120  << std::endl;
1121  return false;
1122  }
1123  reco::SuperClusterRef scref = thesc->superClusterRef();
1124  const bool is_pf_sc = thesc->fromPFSuperCluster();
1125  if( !(scref.isAvailable() && scref.isNonnull()) ) {
1126  throw cms::Exception("PFEGammaAlgo::unwrapSuperCluster()")
1127  << "SuperCluster pointed to by block element is null!"
1128  << std::endl;
1129  }
1130  LOGDRESSED("PFEGammaAlgo")
1131  << "Got a valid super cluster ref! 0x"
1132  << std::hex << scref.get() << std::dec << std::endl;
1133  const size_t nscclusters = scref->clustersSize();
1134  const size_t nscpsclusters = scref->preshowerClustersSize();
1135  size_t npfpsclusters = 0;
1136  size_t npfclusters = 0;
1137  LOGDRESSED("PFEGammaAlgo")
1138  << "Precalculated cluster multiplicities: "
1139  << nscclusters << ' ' << nscpsclusters << std::endl;
1140  NotCloserToOther<reco::PFBlockElement::SC,reco::PFBlockElement::ECAL>
1141  ecalClustersInSC(_currentblock,_currentlinks,thesc);
1142  auto firstnotinsc = std::partition(ecalbegin,ecalend,ecalClustersInSC);
1143  //reset the begin and end iterators
1144  ecalbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1145  ecalend = _splayedblock[reco::PFBlockElement::ECAL].end();
1146 
1147  //get list of associated clusters by det id and energy matching
1148  //(only needed when using non-pf supercluster)
1149  std::vector<const ClusterElement*> safePFClusters = is_pf_sc ? std::vector<const ClusterElement*>() : getSCAssociatedECALsSafe(scref,_splayedblock[reco::PFBlockElement::ECAL]);
1150 
1151  if( firstnotinsc == ecalbegin ) {
1152  LOGERR("PFEGammaAlgo::unwrapSuperCluster()")
1153  << "No associated block elements to SuperCluster!"
1154  << " This is a bug we should fix!"
1155  << std::endl;
1156  return false;
1157  }
1158  npfclusters = std::distance(ecalbegin,firstnotinsc);
1159  // ensure we have found the correct number of PF ecal clusters in the case
1160  // that this is a PF supercluster, otherwise all bets are off
1161  if( is_pf_sc && nscclusters != npfclusters ) {
1162  std::stringstream sc_err;
1163  thesc->Dump(sc_err,"\t");
1164  throw cms::Exception("PFEGammaAlgo::unwrapSuperCluster()")
1165  << "The number of found ecal elements ("
1166  << nscclusters << ") in block is not the same as"
1167  << " the number of ecal PF clusters reported by the PFSuperCluster"
1168  << " itself (" << npfclusters
1169  << ")! This should not happen!" << std::endl
1170  << sc_err.str() << std::endl;
1171  }
1172  for( auto ecalitr = ecalbegin; ecalitr != firstnotinsc; ++ecalitr ) {
1173  const PFClusterElement* elemascluster =
1174  docast(const PFClusterElement*,ecalitr->first);
1175 
1176  // reject clusters that really shouldn't be associated to the SC
1177  // (only needed when using non-pf-supercluster)
1178  if(!is_pf_sc && std::find(safePFClusters.begin(),safePFClusters.end(),elemascluster) ==
1179  safePFClusters.end() ) continue;
1180 
1181  //add cluster
1182  ecalclusters.push_back(std::make_pair(elemascluster,true));
1183  //mark cluster as used
1184  ecalitr->second = false;
1185 
1186  // process the ES elements
1187  // auto is a pair<Iterator,bool> here, bool is false when placing fails
1188  auto emplaceresult = ecal2ps.emplace(elemascluster,
1189  ClusterMap::mapped_type());
1190  if( !emplaceresult.second ) {
1191  std::stringstream clus_err;
1192  elemascluster->Dump(clus_err,"\t");
1193  throw cms::Exception("PFEGammaAlgo::unwrapSuperCluster()")
1194  << "List of pointers to ECAL block elements contains non-unique items!"
1195  << " This is very bad!" << std::endl
1196  << "cluster ptr = 0x" << std::hex << elemascluster << std::dec
1197  << std::endl << clus_err.str() << std::endl;
1198  }
1199  ClusterMap::mapped_type& eslist = emplaceresult.first->second;
1200  npfpsclusters += attachPSClusters(elemascluster,eslist);
1201  } // loop over ecal elements
1202 
1203  /*
1204  if( is_pf_sc && nscpsclusters != npfpsclusters) {
1205  std::stringstream sc_err;
1206  thesc->Dump(sc_err,"\t");
1207  throw cms::Exception("PFEGammaAlgo::unwrapSuperCluster()")
1208  << "The number of found PF preshower elements ("
1209  << npfpsclusters << ") in block is not the same as"
1210  << " the number of preshower clusters reported by the PFSuperCluster"
1211  << " itself (" << nscpsclusters << ")! This should not happen!"
1212  << std::endl
1213  << sc_err.str() << std::endl;
1214  }
1215  */
1216 
1217  LOGDRESSED("PFEGammaAlgo")
1218  << " Unwrapped SC has " << npfclusters << " ECAL sub-clusters"
1219  << " and " << npfpsclusters << " PreShower layers 1 & 2 clusters!"
1220  << std::endl;
1221  return true;
1222  }
1223 
1224 
1225 
1226  int PFEGammaAlgo::attachPSClusters(const ClusterElement* ecalclus,
1227  ClusterMap::mapped_type& eslist) {
1228  if( ecalclus->clusterRef()->layer() == PFLayer::ECAL_BARREL ) return 0;
1229  edm::Ptr<reco::PFCluster> clusptr = refToPtr(ecalclus->clusterRef());
1230  EEtoPSElement ecalkey = std::make_pair(clusptr.key(),clusptr);
1231  auto assc_ps = std::equal_range(eetops_->cbegin(),
1232  eetops_->cend(),
1233  ecalkey,
1234  comparePSMapByKey);
1235  for( const auto& ps1 : _splayedblock[reco::PFBlockElement::PS1] ) {
1236  edm::Ptr<reco::PFCluster> temp = refToPtr(ps1.first->clusterRef());
1237  for( auto pscl = assc_ps.first; pscl != assc_ps.second; ++pscl ) {
1238  if( pscl->second == temp ) {
1239  const ClusterElement* pstemp =
1240  docast(const ClusterElement*,ps1.first);
1241  eslist.push_back( PFClusterFlaggedElement(pstemp,true) );
1242  }
1243  }
1244  }
1245  for( const auto& ps2 : _splayedblock[reco::PFBlockElement::PS2] ) {
1246  edm::Ptr<reco::PFCluster> temp = refToPtr(ps2.first->clusterRef());
1247  for( auto pscl = assc_ps.first; pscl != assc_ps.second; ++pscl ) {
1248  if( pscl->second == temp ) {
1249  const ClusterElement* pstemp =
1250  docast(const ClusterElement*,ps2.first);
1251  eslist.push_back( PFClusterFlaggedElement(pstemp,true) );
1252  }
1253  }
1254  }
1255  return eslist.size();
1256  }
1257 
1259  #ifdef PFLOW_DEBUG
1260  edm::LogVerbatim("PFEGammaAlgo")
1261  //<< "Dumping current block: " << std::endl << *_currentblock << std::endl
1262  << "Dumping " << _refinableObjects.size()
1263  << " refinable objects for this block: " << std::endl;
1264  for( const auto& ro : _refinableObjects ) {
1265  std::stringstream info;
1266  info << "Refinable Object:" << std::endl;
1267  if( ro.parentSC ) {
1268  info << "\tSuperCluster element attached to object:" << std::endl
1269  << '\t';
1270  ro.parentSC->Dump(info,"\t");
1271  info << std::endl;
1272  }
1273  if( ro.electronSeed.isNonnull() ) {
1274  info << "\tGSF element attached to object:" << std::endl;
1275  ro.primaryGSFs.front().first->Dump(info,"\t");
1276  info << std::endl;
1277  info << "firstBrem : " << ro.firstBrem
1278  << " lateBrem : " << ro.lateBrem
1279  << " nBrems with cluster : " << ro.nBremsWithClusters
1280  << std::endl;;
1281  if( ro.electronClusters.size() && ro.electronClusters[0] ) {
1282  info << "electron cluster : ";
1283  ro.electronClusters[0]->Dump(info,"\t");
1284  info << std::endl;
1285  } else {
1286  info << " no electron cluster." << std::endl;
1287  }
1288  }
1289  if( ro.primaryKFs.size() ) {
1290  info << "\tPrimary KF tracks attached to object: " << std::endl;
1291  for( const auto& kf : ro.primaryKFs ) {
1292  kf.first->Dump(info,"\t");
1293  info << std::endl;
1294  }
1295  }
1296  if( ro.secondaryKFs.size() ) {
1297  info << "\tSecondary KF tracks attached to object: " << std::endl;
1298  for( const auto& kf : ro.secondaryKFs ) {
1299  kf.first->Dump(info,"\t");
1300  info << std::endl;
1301  }
1302  }
1303  if( ro.brems.size() ) {
1304  info << "\tBrem tangents attached to object: " << std::endl;
1305  for( const auto& brem : ro.brems ) {
1306  brem.first->Dump(info,"\t");
1307  info << std::endl;
1308  }
1309  }
1310  if( ro.ecalclusters.size() ) {
1311  info << "\tECAL clusters attached to object: " << std::endl;
1312  for( const auto& clus : ro.ecalclusters ) {
1313  clus.first->Dump(info,"\t");
1314  info << std::endl;
1315  if( ro.ecal2ps.find(clus.first) != ro.ecal2ps.end() ) {
1316  for( const auto& psclus : ro.ecal2ps.at(clus.first) ) {
1317  info << "\t\t Attached PS Cluster: ";
1318  psclus.first->Dump(info,"");
1319  info << std::endl;
1320  }
1321  }
1322  }
1323  }
1324  edm::LogVerbatim("PFEGammaAlgo") << info.str();
1325  }
1326  #endif
1327  }
1328 
1329  // look through our KF tracks in this block and match
1330  void PFEGammaAlgo::
1332  typedef std::multimap<double, unsigned> MatchedMap;
1333  typedef const reco::PFBlockElementGsfTrack* GsfTrackElementPtr;
1336  MatchedMap matchedGSFs, matchedECALs;
1337  std::unordered_map<GsfTrackElementPtr,MatchedMap> gsf_ecal_cache;
1338  for( auto& kftrack : _splayedblock[reco::PFBlockElement::TRACK] ) {
1339  matchedGSFs.clear();
1340  _currentblock->associatedElements(kftrack.first->index(), _currentlinks,
1341  matchedGSFs,
1344  if( !matchedGSFs.size() ) { // only run this if we aren't associated to GSF
1345  LesserByDistance closestTrackToECAL(_currentblock,_currentlinks,
1346  &kftrack);
1347  auto ecalbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1348  auto ecalend = _splayedblock[reco::PFBlockElement::ECAL].end();
1349  std::partial_sort(ecalbegin,ecalbegin+1,ecalend,closestTrackToECAL);
1350  PFFlaggedElement& closestECAL =
1352  const float dist = _currentblock->dist(kftrack.first->index(),
1353  closestECAL.first->index(),
1354  _currentlinks,
1356  bool inSC = false;
1357  for( auto& sc : _splayedblock[reco::PFBlockElement::SC] ) {
1358  float dist_sc = _currentblock->dist(sc.first->index(),
1359  closestECAL.first->index(),
1360  _currentlinks,
1362  if( dist_sc != -1.0f) { inSC = true; break; }
1363  }
1364 
1365  if( dist != -1.0f && closestECAL.second ) {
1366  bool gsflinked = false;
1367  // check that this cluster is not associated to a GSF track
1368  for(const auto& gsfflag : _splayedblock[reco::PFBlockElement::GSF]) {
1369  const reco::PFBlockElementGsfTrack* elemasgsf =
1370  docast(const reco::PFBlockElementGsfTrack*,gsfflag.first);
1372  continue; // keep clusters that have a found conversion GSF near
1373  }
1374  // make sure cache exists
1375  if( !gsf_ecal_cache.count(elemasgsf) ) {
1376  matchedECALs.clear();
1377  _currentblock->associatedElements(elemasgsf->index(), _currentlinks,
1378  matchedECALs,
1381  gsf_ecal_cache.emplace(elemasgsf,matchedECALs);
1382  MatchedMap().swap(matchedECALs);
1383  }
1384  const MatchedMap& ecal_matches = gsf_ecal_cache[elemasgsf];
1385  if( ecal_matches.size() ) {
1386  if( ecal_matches.begin()->second == closestECAL.first->index() ) {
1387  gsflinked = true;
1388  break;
1389  }
1390  }
1391  } // loop over primary GSF tracks
1392  if( !gsflinked && !inSC) {
1393  // determine if we should remove the matched cluster
1394  const reco::PFBlockElementTrack * kfEle =
1395  docast(const reco::PFBlockElementTrack*,kftrack.first);
1396  const reco::TrackRef trackref = kfEle->trackRef();
1397  const reco::TrackBase::TrackAlgorithm Algo = trackref->algo();
1398  const int nexhits =
1399  trackref->hitPattern().numberOfLostHits(HitPattern::MISSING_INNER_HITS);
1400  bool fromprimaryvertex = false;
1401  for( auto vtxtks = cfg_.primaryVtx->tracks_begin();
1402  vtxtks != cfg_.primaryVtx->tracks_end(); ++ vtxtks ) {
1403  if( trackref == vtxtks->castTo<reco::TrackRef>() ) {
1404  fromprimaryvertex = true;
1405  break;
1406  }
1407  }// loop over tracks in primary vertex
1408  // if associated to good non-GSF matched track remove this cluster
1409  if( Algo < reco::TrackBase::pixelLessStep && nexhits == 0 && fromprimaryvertex ) {
1410  closestECAL.second = false;
1411  } else { // otherwise associate the cluster and KF track
1412  _recoveredlinks.push_back( ElementMap::value_type(closestECAL.first,kftrack.first) );
1413  _recoveredlinks.push_back( ElementMap::value_type(kftrack.first,closestECAL.first) );
1414  }
1415  }
1416  } // found a good closest ECAL match
1417  } // no GSF track matched to KF
1418  } // loop over KF elements
1419  }
1420 
1421  void PFEGammaAlgo::
1422  mergeROsByAnyLink(std::list<PFEGammaAlgo::ProtoEGObject>& ROs) {
1423  if( ROs.size() < 2 ) return; // nothing to do with one or zero ROs
1424  bool check_for_merge = true;
1425  while( check_for_merge ) {
1426  // bugfix for early termination merging loop (15 April 2014)
1427  // check all pairwise combinations in the list
1428  // if one has a merge shuffle it to the front of the list
1429  // if there are no merges left to do we can terminate
1430  for( auto it1 = ROs.begin(); it1 != ROs.end(); ++it1 ) {
1431  TestIfROMergableByLink mergeTest(*it1);
1432  auto find_start = it1; ++find_start;
1433  auto has_merge = std::find_if(find_start,ROs.end(),mergeTest);
1434  if( has_merge != ROs.end() && it1 != ROs.begin() ) {
1435  std::swap(*(ROs.begin()),*it1);
1436  break;
1437  }
1438  }// ensure mergables are shuffled to the front
1439  ProtoEGObject& thefront = ROs.front();
1440  TestIfROMergableByLink mergeTest(thefront);
1441  auto mergestart = ROs.begin(); ++mergestart;
1442  auto nomerge = std::partition(mergestart,ROs.end(),mergeTest);
1443  if( nomerge != mergestart ) {
1444  LOGDRESSED("PFEGammaAlgo::mergeROsByAnyLink()")
1445  << "Found objects " << std::distance(mergestart,nomerge)
1446  << " to merge by links to the front!" << std::endl;
1447  for( auto roToMerge = mergestart; roToMerge != nomerge; ++roToMerge) {
1448  //bugfix! L.Gray 14 Jan 2016
1449  // -- check that the front is still mergeable!
1450  if( thefront.ecalclusters.size() && roToMerge->ecalclusters.size() ) {
1451  if( thefront.ecalclusters.front().first->clusterRef()->layer() !=
1452  roToMerge->ecalclusters.front().first->clusterRef()->layer() ) {
1453  LOGWARN("PFEGammaAlgo::mergeROsByAnyLink")
1454  << "Tried to merge EB and EE clusters! Skipping!";
1455  ROs.push_back(*roToMerge);
1456  continue;
1457  }
1458  }
1459  //end bugfix
1460  thefront.ecalclusters.insert(thefront.ecalclusters.end(),
1461  roToMerge->ecalclusters.begin(),
1462  roToMerge->ecalclusters.end());
1463  thefront.ecal2ps.insert(roToMerge->ecal2ps.begin(),
1464  roToMerge->ecal2ps.end());
1465  thefront.secondaryKFs.insert(thefront.secondaryKFs.end(),
1466  roToMerge->secondaryKFs.begin(),
1467  roToMerge->secondaryKFs.end());
1468 
1469  thefront.localMap.insert(thefront.localMap.end(),
1470  roToMerge->localMap.begin(),
1471  roToMerge->localMap.end());
1472  // TO FIX -> use best (E_gsf - E_clustersum)/E_GSF
1473  if( !thefront.parentSC && roToMerge->parentSC ) {
1474  thefront.parentSC = roToMerge->parentSC;
1475  }
1476  if( thefront.electronSeed.isNull() &&
1477  roToMerge->electronSeed.isNonnull() ) {
1478  thefront.electronSeed = roToMerge->electronSeed;
1479  thefront.primaryGSFs.insert(thefront.primaryGSFs.end(),
1480  roToMerge->primaryGSFs.begin(),
1481  roToMerge->primaryGSFs.end());
1482  thefront.primaryKFs.insert(thefront.primaryKFs.end(),
1483  roToMerge->primaryKFs.begin(),
1484  roToMerge->primaryKFs.end());
1485  thefront.brems.insert(thefront.brems.end(),
1486  roToMerge->brems.begin(),
1487  roToMerge->brems.end());
1488  thefront.electronClusters = roToMerge->electronClusters;
1489  thefront.nBremsWithClusters = roToMerge->nBremsWithClusters;
1490  thefront.firstBrem = roToMerge->firstBrem;
1491  thefront.lateBrem = roToMerge->lateBrem;
1492  } else if ( thefront.electronSeed.isNonnull() &&
1493  roToMerge->electronSeed.isNonnull()) {
1494  LOGWARN("PFEGammaAlgo::mergeROsByAnyLink")
1495  << "Need to implement proper merging of two gsf candidates!"
1496  << std::endl;
1497  }
1498  }
1499  ROs.erase(mergestart,nomerge);
1500  // put the merged element in the back of the cleaned list
1501  ROs.push_back(ROs.front());
1502  ROs.pop_front();
1503  } else {
1504  check_for_merge = false;
1505  }
1506  }
1507  LOGDRESSED("PFEGammaAlgo::mergeROsByAnyLink()")
1508  << "After merging by links there are: " << ROs.size()
1509  << " refinable EGamma objects!" << std::endl;
1510  }
1511 
1512 // pull in KF tracks associated to the RO but not closer to another
1513 // NB: in initializeProtoCands() we forced the GSF tracks not to be
1514 // from a conversion, but we will leave a protection here just in
1515 // case things change in the future
1516 void PFEGammaAlgo::
1521  auto KFbegin = _splayedblock[reco::PFBlockElement::TRACK].begin();
1522  auto KFend = _splayedblock[reco::PFBlockElement::TRACK].end();
1523  for( auto& gsfflagged : RO.primaryGSFs ) {
1524  const PFGSFElement* seedtk = gsfflagged.first;
1525  // don't process SC-only ROs or secondary seeded ROs
1526  if( RO.electronSeed.isNull() || seedtk->trackType(convType) ) continue;
1527  NotCloserToOther<reco::PFBlockElement::GSF,reco::PFBlockElement::TRACK>
1528  gsfTrackToKFs(_currentblock,_currentlinks,seedtk);
1529  // get KF tracks not closer to another and not already used
1530  auto notlinked = std::partition(KFbegin,KFend,gsfTrackToKFs);
1531  // attach tracks and set as used
1532  for( auto kft = KFbegin; kft != notlinked; ++kft ) {
1533  const PFKFElement* elemaskf =
1534  docast(const PFKFElement*,kft->first);
1535  // don't care about things that aren't primaries or directly
1536  // associated secondary tracks
1537  if( isPrimaryTrack(*elemaskf,*seedtk) &&
1538  !elemaskf->trackType(convType) ) {
1539  kft->second = false;
1540  RO.primaryKFs.push_back(std::make_pair(elemaskf,true));
1541  RO.localMap.push_back( ElementMap::value_type(seedtk,elemaskf) );
1542  RO.localMap.push_back( ElementMap::value_type(elemaskf,seedtk) );
1543  } else if ( elemaskf->trackType(convType) ) {
1544  kft->second = false;
1545  RO.secondaryKFs.push_back(std::make_pair(elemaskf,true));
1546  RO.localMap.push_back( ElementMap::value_type(seedtk,elemaskf) );
1547  RO.localMap.push_back( ElementMap::value_type(elemaskf,seedtk) );
1548  }
1549  }// loop on closest KFs not closer to other GSFs
1550  } // loop on GSF primaries on RO
1551 }
1552 
1553 void PFEGammaAlgo::
1558  auto KFbegin = _splayedblock[reco::PFBlockElement::TRACK].begin();
1559  auto KFend = _splayedblock[reco::PFBlockElement::TRACK].end();
1560  for( auto& kfflagged : RO.primaryKFs ) {
1561  const PFKFElement* primkf = kfflagged.first;
1562  // don't process SC-only ROs or secondary seeded ROs
1563  if( primkf->trackType(convType) ) {
1564  throw cms::Exception("PFEGammaAlgo::linkRefinableObjectPrimaryKFsToSecondaryKFs()")
1565  << "A KF track from conversion has been assigned as a primary!!"
1566  << std::endl;
1567  }
1568  NotCloserToOther<reco::PFBlockElement::TRACK,reco::PFBlockElement::TRACK,true>
1569  kfTrackToKFs(_currentblock,_currentlinks,primkf);
1570  // get KF tracks not closer to another and not already used
1571  auto notlinked = std::partition(KFbegin,KFend,kfTrackToKFs);
1572  // attach tracks and set as used
1573  for( auto kft = KFbegin; kft != notlinked; ++kft ) {
1574  const PFKFElement* elemaskf =
1575  docast(const PFKFElement*,kft->first);
1576  // don't care about things that aren't primaries or directly
1577  // associated secondary tracks
1578  if( elemaskf->trackType(convType) ) {
1579  kft->second = false;
1580  RO.secondaryKFs.push_back(std::make_pair(elemaskf,true));
1581  RO.localMap.push_back( ElementMap::value_type(primkf,elemaskf) );
1582  RO.localMap.push_back( ElementMap::value_type(elemaskf,primkf) );
1583  }
1584  }// loop on closest KFs not closer to other KFs
1585  } // loop on KF primaries on RO
1586 }
1587 
1588 // try to associate the tracks to cluster elements which are not used
1589 void PFEGammaAlgo::
1592  RO.electronClusters.push_back(NULL);
1593  return;
1594  }
1595  auto ECALbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1596  auto ECALend = _splayedblock[reco::PFBlockElement::ECAL].end();
1597  for( auto& primgsf : RO.primaryGSFs ) {
1598  NotCloserToOther<reco::PFBlockElement::GSF,reco::PFBlockElement::ECAL>
1599  gsfTracksToECALs(_currentblock,_currentlinks,primgsf.first);
1600  CompatibleEoPOut eoverp_test(primgsf.first);
1601  // get set of matching ecals not already in SC
1602  auto notmatched_blk = std::partition(ECALbegin,ECALend,gsfTracksToECALs);
1603  notmatched_blk = std::partition(ECALbegin,notmatched_blk,eoverp_test);
1604  // get set of matching ecals already in the RO
1605  auto notmatched_sc = std::partition(RO.ecalclusters.begin(),
1606  RO.ecalclusters.end(),
1607  gsfTracksToECALs);
1608  notmatched_sc = std::partition(RO.ecalclusters.begin(),
1609  notmatched_sc,
1610  eoverp_test);
1611  // look inside the SC for the ECAL cluster
1612  for( auto ecal = RO.ecalclusters.begin(); ecal != notmatched_sc; ++ecal ) {
1613  const PFClusterElement* elemascluster =
1614  docast(const PFClusterElement*,ecal->first);
1615  PFClusterFlaggedElement temp(elemascluster,true);
1616  LOGDRESSED("PFEGammaAlgo::linkGSFTracktoECAL()")
1617  << "Found a cluster already in RO by GSF extrapolation"
1618  << " at ECAL surface!" << std::endl
1619  << *elemascluster << std::endl;
1620 
1621  RO.localMap.push_back(ElementMap::value_type(primgsf.first,temp.first));
1622  RO.localMap.push_back(ElementMap::value_type(temp.first,primgsf.first));
1623  }
1624  // look outside the SC for the ecal cluster
1625  for( auto ecal = ECALbegin; ecal != notmatched_blk; ++ecal ) {
1626  const PFClusterElement* elemascluster =
1627  docast(const PFClusterElement*,ecal->first);
1628  LOGDRESSED("PFEGammaAlgo::linkGSFTracktoECAL()")
1629  << "Found a cluster not already in RO by GSF extrapolation"
1630  << " at ECAL surface!" << std::endl
1631  << *elemascluster << std::endl;
1632  if( addPFClusterToROSafe(elemascluster,RO) ) {
1633  attachPSClusters(elemascluster,RO.ecal2ps[elemascluster]);
1634  RO.localMap.push_back(ElementMap::value_type(primgsf.first,elemascluster));
1635  RO.localMap.push_back(ElementMap::value_type(elemascluster,primgsf.first));
1636  ecal->second = false;
1637  }
1638  }
1639  }
1640 }
1641 
1642 // try to associate the tracks to cluster elements which are not used
1643 void PFEGammaAlgo::
1645  if( !_splayedblock[reco::PFBlockElement::HCAL].size() ) return;
1646  auto HCALbegin = _splayedblock[reco::PFBlockElement::HCAL].begin();
1647  auto HCALend = _splayedblock[reco::PFBlockElement::HCAL].end();
1648  for( auto& primgsf : RO.primaryGSFs ) {
1649  NotCloserToOther<reco::PFBlockElement::GSF,reco::PFBlockElement::HCAL>
1650  gsfTracksToHCALs(_currentblock,_currentlinks,primgsf.first);
1651  CompatibleEoPOut eoverp_test(primgsf.first);
1652  auto notmatched = std::partition(HCALbegin,HCALend,gsfTracksToHCALs);
1653  for( auto hcal = HCALbegin; hcal != notmatched; ++hcal ) {
1654  const PFClusterElement* elemascluster =
1655  docast(const PFClusterElement*,hcal->first);
1656  PFClusterFlaggedElement temp(elemascluster,true);
1657  LOGDRESSED("PFEGammaAlgo::linkGSFTracktoECAL()")
1658  << "Found an HCAL cluster associated to GSF extrapolation"
1659  << std::endl;
1660  RO.hcalClusters.push_back(temp);
1661  RO.localMap.push_back( ElementMap::value_type(primgsf.first,temp.first) );
1662  RO.localMap.push_back( ElementMap::value_type(temp.first,primgsf.first) );
1663  hcal->second = false;
1664  }
1665  }
1666 }
1667 
1668 // try to associate the tracks to cluster elements which are not used
1669 void PFEGammaAlgo::
1671  if( !_splayedblock[reco::PFBlockElement::ECAL].size() ) return;
1672  for( auto& primkf : RO.primaryKFs ) linkKFTrackToECAL(primkf,RO);
1673  for( auto& secdkf : RO.secondaryKFs ) linkKFTrackToECAL(secdkf,RO);
1674 }
1675 
1676 void
1677 PFEGammaAlgo::linkKFTrackToECAL(const KFFlaggedElement& kfflagged,
1678  ProtoEGObject& RO) {
1679  std::vector<PFClusterFlaggedElement>& currentECAL = RO.ecalclusters;
1680  auto ECALbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1681  auto ECALend = _splayedblock[reco::PFBlockElement::ECAL].end();
1682  NotCloserToOther<reco::PFBlockElement::TRACK,reco::PFBlockElement::ECAL>
1683  kfTrackToECALs(_currentblock,_currentlinks,kfflagged.first);
1684  NotCloserToOther<reco::PFBlockElement::GSF,reco::PFBlockElement::ECAL>
1685  kfTrackGSFToECALs(_currentblock,_currentlinks,kfflagged.first);
1686  //get the ECAL elements not used and not closer to another KF
1687  auto notmatched_sc = std::partition(currentECAL.begin(),
1688  currentECAL.end(),
1689  kfTrackToECALs);
1690  //get subset ECAL elements not used or closer to another GSF of any type
1691  notmatched_sc = std::partition(currentECAL.begin(),
1692  notmatched_sc,
1693  kfTrackGSFToECALs);
1694  for( auto ecalitr = currentECAL.begin(); ecalitr != notmatched_sc;
1695  ++ecalitr ) {
1696  const PFClusterElement* elemascluster =
1697  docast(const PFClusterElement*,ecalitr->first);
1698  PFClusterFlaggedElement flaggedclus(elemascluster,true);
1699 
1700  LOGDRESSED("PFEGammaAlgo::linkKFTracktoECAL()")
1701  << "Found a cluster already in RO by KF extrapolation"
1702  << " at ECAL surface!" << std::endl
1703  << *elemascluster << std::endl;
1704  RO.localMap.push_back(ElementMap::value_type(elemascluster,
1705  kfflagged.first));
1706  RO.localMap.push_back(ElementMap::value_type(kfflagged.first,
1707  elemascluster));
1708  }
1709  //get the ECAL elements not used and not closer to another KF
1710  auto notmatched_blk = std::partition(ECALbegin,ECALend,kfTrackToECALs);
1711  //get subset ECAL elements not used or closer to another GSF of any type
1712  notmatched_blk = std::partition(ECALbegin,notmatched_blk,kfTrackGSFToECALs);
1713  for( auto ecalitr = ECALbegin; ecalitr != notmatched_blk; ++ecalitr ) {
1714  const PFClusterElement* elemascluster =
1715  docast(const PFClusterElement*,ecalitr->first);
1716  if( addPFClusterToROSafe(elemascluster,RO) ) {
1717  attachPSClusters(elemascluster,RO.ecal2ps[elemascluster]);
1718  ecalitr->second = false;
1719 
1720  LOGDRESSED("PFEGammaAlgo::linkKFTracktoECAL()")
1721  << "Found a cluster not in RO by KF extrapolation"
1722  << " at ECAL surface!" << std::endl
1723  << *elemascluster << std::endl;
1724  RO.localMap.push_back(ElementMap::value_type(elemascluster,
1725  kfflagged.first));
1726  RO.localMap.push_back( ElementMap::value_type(kfflagged.first,
1727  elemascluster));
1728  }
1729  }
1730 }
1731 
1732 void PFEGammaAlgo::
1734  if( !RO.brems.size() ) return;
1735  int FirstBrem = -1;
1736  int TrajPos = -1;
1737  int lastBremTrajPos = -1;
1738  for( auto& bremflagged : RO.brems ) {
1739  bool has_clusters = false;
1740  TrajPos = (bremflagged.first->indTrajPoint())-2;
1741  auto ECALbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1742  auto ECALend = _splayedblock[reco::PFBlockElement::ECAL].end();
1743  NotCloserToOther<reco::PFBlockElement::BREM,reco::PFBlockElement::ECAL>
1744  BremToECALs(_currentblock,_currentlinks,bremflagged.first);
1745  // check for late brem using clusters already in the SC
1746  auto RSCBegin = RO.ecalclusters.begin();
1747  auto RSCEnd = RO.ecalclusters.end();
1748  auto notmatched_rsc = std::partition(RSCBegin,RSCEnd,BremToECALs);
1749  for( auto ecal = RSCBegin; ecal != notmatched_rsc; ++ecal ) {
1750  float deta =
1751  std::abs( ecal->first->clusterRef()->positionREP().eta() -
1752  bremflagged.first->positionAtECALEntrance().eta() );
1753  if( deta < 0.015 ) {
1754  has_clusters = true;
1755  if( lastBremTrajPos == -1 || lastBremTrajPos < TrajPos ) {
1756  lastBremTrajPos = TrajPos;
1757  }
1758  if( FirstBrem == -1 || TrajPos < FirstBrem ) { // set brem information
1759  FirstBrem = TrajPos;
1760  RO.firstBrem = TrajPos;
1761  }
1762  LOGDRESSED("PFEGammaAlgo::linkBremToECAL()")
1763  << "Found a cluster already in SC linked to brem extrapolation"
1764  << " at ECAL surface!" << std::endl;
1765  RO.localMap.push_back( ElementMap::value_type(ecal->first,bremflagged.first) );
1766  RO.localMap.push_back( ElementMap::value_type(bremflagged.first,ecal->first) );
1767  }
1768  }
1769  // grab new clusters from the block (ensured to not be late brem)
1770  auto notmatched_block = std::partition(ECALbegin,ECALend,BremToECALs);
1771  for( auto ecal = ECALbegin; ecal != notmatched_block; ++ecal ) {
1772  float deta =
1773  std::abs( ecal->first->clusterRef()->positionREP().eta() -
1774  bremflagged.first->positionAtECALEntrance().eta() );
1775  if( deta < 0.015 ) {
1776  has_clusters = true;
1777  if( lastBremTrajPos == -1 || lastBremTrajPos < TrajPos ) {
1778  lastBremTrajPos = TrajPos;
1779  }
1780  if( FirstBrem == -1 || TrajPos < FirstBrem ) { // set brem information
1781 
1782  FirstBrem = TrajPos;
1783  RO.firstBrem = TrajPos;
1784  }
1785  const PFClusterElement* elemasclus =
1786  docast(const PFClusterElement*,ecal->first);
1787  if( addPFClusterToROSafe(elemasclus,RO) ) {
1788  attachPSClusters(elemasclus,RO.ecal2ps[elemasclus]);
1789 
1790  RO.localMap.push_back( ElementMap::value_type(ecal->first,bremflagged.first) );
1791  RO.localMap.push_back( ElementMap::value_type(bremflagged.first,ecal->first) );
1792  ecal->second = false;
1793  LOGDRESSED("PFEGammaAlgo::linkBremToECAL()")
1794  << "Found a cluster not already associated by brem extrapolation"
1795  << " at ECAL surface!" << std::endl;
1796  }
1797 
1798  }
1799  }
1800  if(has_clusters) {
1801  if( RO.nBremsWithClusters == -1 ) RO.nBremsWithClusters = 0;
1802  ++RO.nBremsWithClusters;
1803  }
1804  }
1805 }
1806 
1807 void PFEGammaAlgo::
1809  IsConversionTrack<reco::PFBlockElementTrack> isConvKf;
1810  auto KFbegin = _splayedblock[reco::PFBlockElement::TRACK].begin();
1811  auto KFend = _splayedblock[reco::PFBlockElement::TRACK].end();
1812  auto BeginROskfs = RO.secondaryKFs.begin();
1813  auto EndROskfs = RO.secondaryKFs.end();
1814  auto ronotconv = std::partition(BeginROskfs,EndROskfs,isConvKf);
1815  size_t convkfs_end = std::distance(BeginROskfs,ronotconv);
1816  for( size_t idx = 0; idx < convkfs_end; ++idx ) {
1817  const std::vector<PFKFFlaggedElement>& secKFs = RO.secondaryKFs; //we want the entry at the index but we allocate to secondaryKFs in loop which invalidates all iterators, references and pointers, hence we need to get the entry fresh each time
1818  NotCloserToOther<reco::PFBlockElement::TRACK,
1820  true>
1821  TracksToTracks(_currentblock,_currentlinks, secKFs[idx].first);
1822  auto notmatched = std::partition(KFbegin,KFend,TracksToTracks);
1823  notmatched = std::partition(KFbegin,notmatched,isConvKf);
1824  for( auto kf = KFbegin; kf != notmatched; ++kf ) {
1825  const reco::PFBlockElementTrack* elemaskf =
1826  docast(const reco::PFBlockElementTrack*,kf->first);
1827  RO.secondaryKFs.push_back( std::make_pair(elemaskf,true) );
1828  RO.localMap.push_back( ElementMap::value_type(secKFs[idx].first,kf->first) );
1829  RO.localMap.push_back( ElementMap::value_type(kf->first,secKFs[idx].first) );
1830  kf->second = false;
1831  }
1832  }
1833 }
1834 
1835 void PFEGammaAlgo::
1837  ProtoEGObject& RO) {
1838  IsConversionTrack<reco::PFBlockElementTrack> isConvKf;
1839  auto KFbegin = _splayedblock[reco::PFBlockElement::TRACK].begin();
1840  auto KFend = _splayedblock[reco::PFBlockElement::TRACK].end();
1841  for( auto& ecal : RO.ecalclusters ) {
1842  NotCloserToOther<reco::PFBlockElement::ECAL,
1844  true>
1845  ECALToTracks(_currentblock,_currentlinks,ecal.first);
1846  auto notmatchedkf = std::partition(KFbegin,KFend,ECALToTracks);
1847  auto notconvkf = std::partition(KFbegin,notmatchedkf,isConvKf);
1848  // add identified KF conversion tracks
1849  for( auto kf = KFbegin; kf != notconvkf; ++kf ) {
1850  const reco::PFBlockElementTrack* elemaskf =
1851  docast(const reco::PFBlockElementTrack*,kf->first);
1852  RO.secondaryKFs.push_back( std::make_pair(elemaskf,true) );
1853  RO.localMap.push_back( ElementMap::value_type(ecal.first,elemaskf) );
1854  RO.localMap.push_back( ElementMap::value_type(elemaskf,ecal.first) );
1855  kf->second = false;
1856  }
1857  // go through non-conv-identified kfs and check MVA to add conversions
1858  for( auto kf = notconvkf; kf != notmatchedkf; ++kf ) {
1859  float mvaval = EvaluateSingleLegMVA(hoc,_currentblock,
1860  *cfg_.primaryVtx,
1861  kf->first->index());
1862  if(mvaval > cfg_.mvaConvCut) {
1863  const reco::PFBlockElementTrack* elemaskf =
1864  docast(const reco::PFBlockElementTrack*,kf->first);
1865  RO.secondaryKFs.push_back( std::make_pair(elemaskf,true) );
1866  RO.localMap.push_back( ElementMap::value_type(ecal.first,elemaskf) );
1867  RO.localMap.push_back( ElementMap::value_type(elemaskf,ecal.first) );
1868  kf->second = false;
1869 
1870  RO.singleLegConversionMvaMap.insert(std::make_pair(elemaskf, mvaval));
1871  }
1872  }
1873  }
1874 }
1875 
1876 void PFEGammaAlgo::
1878  auto ECALbegin = _splayedblock[reco::PFBlockElement::ECAL].begin();
1879  auto ECALend = _splayedblock[reco::PFBlockElement::ECAL].end();
1880  for( auto& skf : RO.secondaryKFs ) {
1881  NotCloserToOther<reco::PFBlockElement::TRACK,
1883  false>
1884  TracksToECALwithCut(_currentblock,_currentlinks,skf.first,1.5f);
1885  auto notmatched = std::partition(ECALbegin,ECALend,TracksToECALwithCut);
1886  for( auto ecal = ECALbegin; ecal != notmatched; ++ecal ) {
1887  const reco::PFBlockElementCluster* elemascluster =
1888  docast(const reco::PFBlockElementCluster*,ecal->first);
1889  if( addPFClusterToROSafe(elemascluster,RO) ) {
1890  attachPSClusters(elemascluster,RO.ecal2ps[elemascluster]);
1891  RO.localMap.push_back(ElementMap::value_type(skf.first,elemascluster));
1892  RO.localMap.push_back(ElementMap::value_type(elemascluster,skf.first));
1893  ecal->second = false;
1894  }
1895  }
1896  }
1897 }
1898 
1899 void PFEGammaAlgo::
1901  const std::list<PFEGammaAlgo::ProtoEGObject>& ROs,
1902  reco::PFCandidateCollection& egcands,
1904  // reset output collections
1905  egcands.clear();
1906  egxs.clear();
1907  refinedscs_.clear();
1908  egcands.reserve(ROs.size());
1909  egxs.reserve(ROs.size());
1910  refinedscs_.reserve(ROs.size());
1911  for( auto& RO : ROs ) {
1912  if( RO.ecalclusters.size() == 0 &&
1914 
1915  reco::PFCandidate cand;
1917  if( RO.primaryGSFs.size() || RO.primaryKFs.size() ) {
1918  cand.setPdgId(-11); // anything with a primary track is an electron
1919  } else {
1920  cand.setPdgId(22); // anything with no primary track is a photon
1921  }
1922  if( RO.primaryKFs.size() ) {
1923  cand.setCharge(RO.primaryKFs[0].first->trackRef()->charge());
1924  xtra.setKfTrackRef(RO.primaryKFs[0].first->trackRef());
1925  cand.setTrackRef(RO.primaryKFs[0].first->trackRef());
1926  cand.addElementInBlock(_currentblock,RO.primaryKFs[0].first->index());
1927  }
1928  if( RO.primaryGSFs.size() ) {
1929  cand.setCharge(RO.primaryGSFs[0].first->GsftrackRef()->chargeMode());
1930  xtra.setGsfTrackRef(RO.primaryGSFs[0].first->GsftrackRef());
1931  cand.setGsfTrackRef(RO.primaryGSFs[0].first->GsftrackRef());
1932  cand.addElementInBlock(_currentblock,RO.primaryGSFs[0].first->index());
1933  }
1934  if( RO.parentSC ) {
1935  xtra.setSuperClusterPFECALRef(RO.parentSC->superClusterRef());
1936  // we'll set to the refined supercluster back up in the producer
1937  cand.setSuperClusterRef(RO.parentSC->superClusterRef());
1938  xtra.setSuperClusterRef(RO.parentSC->superClusterRef());
1939  cand.addElementInBlock(_currentblock,RO.parentSC->index());
1940  }
1941  // add brems
1942  for( const auto& bremflagged : RO.brems ) {
1943  const PFBremElement* brem = bremflagged.first;
1944  cand.addElementInBlock(_currentblock,brem->index());
1945  }
1946  // add clusters and ps clusters
1947  for( const auto& ecal : RO.ecalclusters ) {
1948  const PFClusterElement* clus = ecal.first;
1949  cand.addElementInBlock(_currentblock,clus->index());
1950  for( auto& ps : RO.ecal2ps.at(clus) ) {
1951  const PFClusterElement* psclus = ps.first;
1952  cand.addElementInBlock(_currentblock,psclus->index());
1953  }
1954  }
1955  // add secondary tracks
1956  for( const auto& secdkf : RO.secondaryKFs ) {
1957  const PFKFElement* kf = secdkf.first;
1959  const reco::ConversionRefVector& convrefs = kf->convRefs();
1960  bool no_conv_ref = true;
1961  for( const auto& convref : convrefs ) {
1962  if( convref.isNonnull() && convref.isAvailable() ) {
1963  xtra.addConversionRef(convref);
1964  no_conv_ref = false;
1965  }
1966  }
1967  if( no_conv_ref ) {
1968  //single leg conversions
1969 
1970  //look for stored mva value in map or else recompute
1971  const auto &mvavalmapped = RO.singleLegConversionMvaMap.find(kf);
1972  //FIXME: Abuse single mva value to store both provenance and single leg mva score
1973  //by storing 3.0 + mvaval
1974  float mvaval = ( mvavalmapped != RO.singleLegConversionMvaMap.end() ?
1975  mvavalmapped->second :
1977  *cfg_.primaryVtx,
1978  kf->index()) );
1979 
1980  xtra.addSingleLegConvTrackRefMva(std::make_pair(kf->trackRef(),mvaval));
1981  }
1982  }
1983 
1984  // build the refined supercluster from those clusters left in the cand
1985  refinedscs_.push_back(buildRefinedSuperCluster(RO));
1986 
1987  const reco::SuperCluster& the_sc = refinedscs_.back();
1988  // with the refined SC in hand we build a naive candidate p4
1989  // and set the candidate ECAL position to either the barycenter of the
1990  // supercluster (if super-cluster present) or the seed of the
1991  // new SC generated by the EGAlgo
1992  const double scE = the_sc.energy();
1993  if( scE != 0.0 ) {
1994  const math::XYZPoint& seedPos = the_sc.seed()->position();
1995  math::XYZVector egDir = the_sc.position()-cfg_.primaryVtx->position();
1996  egDir = egDir.Unit();
1997  cand.setP4(math::XYZTLorentzVector(scE*egDir.x(),
1998  scE*egDir.y(),
1999  scE*egDir.z(),
2000  scE ));
2001  math::XYZPointF ecalPOS_f(seedPos.x(),seedPos.y(),seedPos.z());
2002  cand.setPositionAtECALEntrance(ecalPOS_f);
2003  cand.setEcalEnergy(the_sc.rawEnergy(),the_sc.energy());
2004  } else if ( cfg_.produceEGCandsWithNoSuperCluster &&
2005  RO.primaryGSFs.size() ) {
2006  const PFGSFElement* gsf = RO.primaryGSFs[0].first;
2007  reco::GsfTrackRef gref = gsf->GsftrackRef();
2008  math::XYZTLorentzVector p4(gref->pxMode(),gref->pyMode(),
2009  gref->pzMode(),gref->pMode());
2010  cand.setP4(p4);
2012  } else if ( cfg_.produceEGCandsWithNoSuperCluster &&
2013  RO.primaryKFs.size() ) {
2014  const PFKFElement* kf = RO.primaryKFs[0].first;
2015  reco::TrackRef kref = RO.primaryKFs[0].first->trackRef();
2016  math::XYZTLorentzVector p4(kref->px(),kref->py(),kref->pz(),kref->p());
2017  cand.setP4(p4);
2019  }
2020  const float ele_mva_value = calculate_ele_mva(hoc,RO,xtra);
2021  fill_extra_info(RO,xtra);
2022  //std::cout << "PFEG ele_mva: " << ele_mva_value << std::endl;
2023  xtra.setMVA(ele_mva_value);
2024  cand.set_mva_e_pi(ele_mva_value);
2025  egcands.push_back(cand);
2026  egxs.push_back(xtra);
2027  }
2028 }
2029 
2030 float PFEGammaAlgo::
2032  const PFEGammaAlgo::ProtoEGObject& RO,
2034  if( !RO.primaryGSFs.size() ) return -2.0f;
2035  const PFGSFElement* gsfElement = RO.primaryGSFs.front().first;
2036  const PFKFElement* kfElement = NULL;
2037  if( RO.primaryKFs.size() ) kfElement = RO.primaryKFs.front().first;
2038  reco::GsfTrackRef RefGSF= gsfElement->GsftrackRef();
2039  reco::TrackRef RefKF;
2040  constexpr float m_el = 0.000511;
2041  const double Ein_gsf = std::hypot(RefGSF->pMode(),m_el);
2042  double deta_gsfecal = 1e6;
2043  double sigmaEtaEta = 1e-14;
2044  const double Ene_hcalgsf = std::accumulate(RO.hcalClusters.begin(),
2045  RO.hcalClusters.end(),
2046  0.0,
2047  [](const double a,
2048  const PFClusterFlaggedElement& b)
2049  { return a + b.first->clusterRef()->energy(); }
2050  );
2051  if( RO.primaryKFs.size() ) {
2052  RefKF = RO.primaryKFs.front().first->trackRef();
2053  }
2054  const double Eout_gsf = gsfElement->Pout().t();
2055  const double Etaout_gsf = gsfElement->positionAtECALEntrance().eta();
2056  double FirstEcalGsfEnergy(0.0), OtherEcalGsfEnergy(0.0), EcalBremEnergy(0.0);
2057  //shower shape of cluster closest to gsf track
2058  std::vector<const reco::PFCluster*> gsfcluster;
2059  for( const auto& ecal : RO.ecalclusters ) {
2060  const double cenergy = ecal.first->clusterRef()->correctedEnergy();
2061  ElementMap::value_type gsfToEcal(gsfElement,ecal.first);
2062  ElementMap::value_type kfToEcal(kfElement,ecal.first);
2063  bool hasgsf =
2064  ( std::find(RO.localMap.begin(), RO.localMap.end(), gsfToEcal) ==
2065  RO.localMap.end() );
2066  bool haskf =
2067  ( std::find(RO.localMap.begin(), RO.localMap.end(), kfToEcal) ==
2068  RO.localMap.end() );
2069  bool hasbrem = false;
2070  for( const auto& brem : RO.brems ) {
2071  ElementMap::value_type bremToEcal(brem.first,ecal.first);
2072  if( std::find(RO.localMap.begin(), RO.localMap.end(), bremToEcal) !=
2073  RO.localMap.end() ) {
2074  hasbrem = true;
2075  }
2076  }
2077  if( hasbrem && ecal.first != RO.electronClusters[0] ) {
2078  EcalBremEnergy += cenergy;
2079  }
2080  if( !hasbrem && ecal.first != RO.electronClusters[0] ) {
2081  if( hasgsf ) OtherEcalGsfEnergy += cenergy;
2082  if( haskf ) EcalBremEnergy += cenergy; // from conv. brem!
2083  if( !(hasgsf || haskf) ) OtherEcalGsfEnergy += cenergy; // stuff from SC
2084  }
2085  }
2086 
2087  if( RO.electronClusters[0] ) {
2088  reco::PFClusterRef cref = RO.electronClusters[0]->clusterRef();
2090  FirstEcalGsfEnergy = cref->correctedEnergy();
2091  deta_gsfecal = cref->positionREP().eta() - Etaout_gsf;
2092  gsfcluster.push_back(&*cref);
2093  PFClusterWidthAlgo pfwidth(gsfcluster);
2094  sigmaEtaEta = pfwidth.pflowSigmaEtaEta();
2095  }
2096 
2097  // brem sequence information
2098  lateBrem = firstBrem = earlyBrem = -1.0f;
2099  if(RO.nBremsWithClusters > 0) {
2100  if (RO.lateBrem == 1) lateBrem = 1.0f;
2101  else lateBrem = 0.0f;
2102  firstBrem = RO.firstBrem;
2103  if(RO.firstBrem < 4) earlyBrem = 1.0f;
2104  else earlyBrem = 0.0f;
2105  }
2106  xtra.setEarlyBrem(earlyBrem);
2107  xtra.setLateBrem(lateBrem);
2108  if( FirstEcalGsfEnergy > 0.0 ) {
2109  if( RefGSF.isNonnull() ) {
2110  xtra.setGsfTrackPout(gsfElement->Pout());
2111  // normalization observables
2112  const float Pt_gsf = RefGSF->ptMode();
2113  lnPt_gsf = std::log(Pt_gsf);
2114  Eta_gsf = RefGSF->etaMode();
2115  // tracking observables
2116  const double ptModeErrorGsf = RefGSF->ptModeError();
2117  dPtOverPt_gsf = (ptModeErrorGsf > 0. ? ptModeErrorGsf/Pt_gsf : 1.0);
2118  nhit_gsf = RefGSF->hitPattern().trackerLayersWithMeasurement();
2119  chi2_gsf = RefGSF->normalizedChi2();
2120  DPtOverPt_gsf = (Pt_gsf - gsfElement->Pout().pt())/Pt_gsf;
2121  // kalman filter vars
2122  nhit_kf = 0;
2123  chi2_kf = -0.01;
2124  DPtOverPt_kf = -0.01;
2125  if( RefKF.isNonnull() ) {
2126  nhit_kf = RefKF->hitPattern().trackerLayersWithMeasurement();
2127  chi2_kf = RefKF->normalizedChi2();
2128  // not used for moment, weird behavior of variable
2129  // DPtOverPt_kf = (RefKF->pt() - RefKF->outerPt())/RefKF->pt();
2130  }
2131  //tracker + calorimetry observables
2132  const double EcalETot =
2133  (FirstEcalGsfEnergy+OtherEcalGsfEnergy+EcalBremEnergy);
2134  EtotPinMode = EcalETot / Ein_gsf;
2135  EGsfPoutMode = FirstEcalGsfEnergy / Eout_gsf;
2136  EtotBremPinPoutMode = ( (EcalBremEnergy + OtherEcalGsfEnergy) /
2137  (Ein_gsf - Eout_gsf) );
2138  DEtaGsfEcalClust = std::abs(deta_gsfecal);
2139  SigmaEtaEta = std::log(sigmaEtaEta);
2141  xtra.setSigmaEtaEta(sigmaEtaEta);
2142 
2143  HOverHE = Ene_hcalgsf/(Ene_hcalgsf + FirstEcalGsfEnergy);
2144  HOverPin = Ene_hcalgsf / Ein_gsf;
2145  xtra.setHadEnergy(Ene_hcalgsf);
2146 
2147  // Apply bounds to variables and calculate MVA
2151  chi2_gsf = std::min(chi2_gsf,10.0f);
2154  chi2_kf = std::min(chi2_kf,10.0f);
2162  SigmaEtaEta = std::max(SigmaEtaEta,-14.0f);
2163  HOverPin = std::max(HOverPin,0.0f);
2164  HOverPin = std::min(HOverPin,5.0f);
2165  /*
2166  std::cout << " **** PFEG BDT observables ****" << endl;
2167  std::cout << " < Normalization > " << endl;
2168  std::cout << " Pt_gsf " << Pt_gsf << " Pin " << Ein_gsf
2169  << " Pout " << Eout_gsf << " Eta_gsf " << Eta_gsf << endl;
2170  std::cout << " < PureTracking > " << endl;
2171  std::cout << " dPtOverPt_gsf " << dPtOverPt_gsf
2172  << " DPtOverPt_gsf " << DPtOverPt_gsf
2173  << " chi2_gsf " << chi2_gsf
2174  << " nhit_gsf " << nhit_gsf
2175  << " DPtOverPt_kf " << DPtOverPt_kf
2176  << " chi2_kf " << chi2_kf
2177  << " nhit_kf " << nhit_kf << endl;
2178  std::cout << " < track-ecal-hcal-ps " << endl;
2179  std::cout << " EtotPinMode " << EtotPinMode
2180  << " EGsfPoutMode " << EGsfPoutMode
2181  << " EtotBremPinPoutMode " << EtotBremPinPoutMode
2182  << " DEtaGsfEcalClust " << DEtaGsfEcalClust
2183  << " SigmaEtaEta " << SigmaEtaEta
2184  << " HOverHE " << HOverHE << " Hcal energy " << Ene_hcalgsf
2185  << " HOverPin " << HOverPin
2186  << " lateBrem " << lateBrem
2187  << " firstBrem " << firstBrem << endl;
2188  */
2189 
2190  float vars[] = { lnPt_gsf, Eta_gsf, dPtOverPt_gsf, DPtOverPt_gsf, chi2_gsf,
2193 
2194  return hoc->gbrEle_->GetAdaBoostClassifier(vars);
2195  }
2196  }
2197  return -2.0f;
2198 }
2199 
2202  // add tracks associated to clusters that are not T_FROM_GAMMACONV
2203  // info about single-leg convs is already save, so just veto in loops
2204  IsConversionTrack<reco::PFBlockElementTrack> isConvKf;
2205  auto KFbegin = _splayedblock[reco::PFBlockElement::TRACK].begin();
2206  auto KFend = _splayedblock[reco::PFBlockElement::TRACK].end();
2207  for( auto& ecal : RO.ecalclusters ) {
2208  NotCloserToOther<reco::PFBlockElement::ECAL,
2210  true>
2211  ECALToTracks(_currentblock,_currentlinks,ecal.first);
2212  auto notmatchedkf = std::partition(KFbegin,KFend,ECALToTracks);
2213  auto notconvkf = std::partition(KFbegin,notmatchedkf,isConvKf);
2214  // go through non-conv-identified kfs and check MVA to add conversions
2215  for( auto kf = notconvkf; kf != notmatchedkf; ++kf ) {
2216  const reco::PFBlockElementTrack* elemaskf =
2217  docast(const reco::PFBlockElementTrack*,kf->first);
2218  xtra.addExtraNonConvTrack(_currentblock,*elemaskf);
2219  }
2220  }
2221 }
2222 
2223 // currently stolen from PFECALSuperClusterAlgo, we should
2224 // try to factor this correctly since the operation is the same in
2225 // both places...
2228  if( !RO.ecalclusters.size() ) {
2229  return reco::SuperCluster(0.0,math::XYZPoint(0,0,0));
2230  }
2231 
2232  SumPSEnergy sumps1(reco::PFBlockElement::PS1),
2233  sumps2(reco::PFBlockElement::PS2);
2234 
2235  bool isEE = false;
2236  edm::Ptr<reco::PFCluster> clusptr;
2237  // need the vector of raw pointers for a PF width class
2238  std::vector<const reco::PFCluster*> bare_ptrs;
2239  // calculate necessary parameters and build the SC
2240  double posX(0), posY(0), posZ(0),
2241  rawSCEnergy(0), corrSCEnergy(0), corrPSEnergy(0),
2242  PS1_clus_sum(0), PS2_clus_sum(0),
2243  ePS1(0), ePS2(0), ps1_energy(0.0), ps2_energy(0.0);
2244  for( auto& clus : RO.ecalclusters ) {
2245  ePS1 = 0;
2246  ePS2 = 0;
2247  isEE = PFLayer::ECAL_ENDCAP == clus.first->clusterRef()->layer();
2248  clusptr =
2249  edm::refToPtr<reco::PFClusterCollection>(clus.first->clusterRef());
2250  bare_ptrs.push_back(clusptr.get());
2251 
2252  const double cluseraw = clusptr->energy();
2253  double cluscalibe = clusptr->correctedEnergy();
2254  const math::XYZPoint& cluspos = clusptr->position();
2255  posX += cluseraw * cluspos.X();
2256  posY += cluseraw * cluspos.Y();
2257  posZ += cluseraw * cluspos.Z();
2258  // update EE calibrated super cluster energies
2259  if( isEE ) {
2260  const auto& psclusters = RO.ecal2ps.at(clus.first);
2261  PS1_clus_sum = std::accumulate(psclusters.begin(),psclusters.end(),
2262  0.0,sumps1);
2263  PS2_clus_sum = std::accumulate(psclusters.begin(),psclusters.end(),
2264  0.0,sumps2);
2265  cluscalibe =
2266  cfg_.thePFEnergyCalibration->energyEm(*clusptr,
2267  PS1_clus_sum,PS2_clus_sum,
2268  ePS1, ePS2,
2270  }
2271 
2272  rawSCEnergy += cluseraw;
2273  corrSCEnergy += cluscalibe;
2274  ps1_energy += ePS1;
2275  ps2_energy += ePS2;
2276  corrPSEnergy += ePS1 + ePS2;
2277  }
2278  posX /= rawSCEnergy;
2279  posY /= rawSCEnergy;
2280  posZ /= rawSCEnergy;
2281 
2282  // now build the supercluster
2283  reco::SuperCluster new_sc(corrSCEnergy,math::XYZPoint(posX,posY,posZ));
2284 
2285  clusptr =
2286  edm::refToPtr<reco::PFClusterCollection>(RO.ecalclusters.front().
2287  first->clusterRef());
2288  new_sc.setCorrectedEnergy(corrSCEnergy);
2289  new_sc.setSeed(clusptr);
2290  new_sc.setPreshowerEnergyPlane1(ps1_energy);
2291  new_sc.setPreshowerEnergyPlane2(ps2_energy);
2292  new_sc.setPreshowerEnergy(corrPSEnergy);
2293  for( const auto& clus : RO.ecalclusters ) {
2294  clusptr =
2295  edm::refToPtr<reco::PFClusterCollection>(clus.first->clusterRef());
2296  new_sc.addCluster(clusptr);
2297  auto& hits_and_fractions = clusptr->hitsAndFractions();
2298  for( auto& hit_and_fraction : hits_and_fractions ) {
2299  new_sc.addHitAndFraction(hit_and_fraction.first,hit_and_fraction.second);
2300  }
2301  // put the preshower stuff back in later
2302  const auto& cluspsassociation = RO.ecal2ps.at(clus.first);
2303  // EE rechits should be uniquely matched to sets of pre-shower
2304  // clusters at this point, so we throw an exception if otherwise
2305  // now wrapped in EDM debug flags
2306  for( const auto& pscluselem : cluspsassociation ) {
2307  edm::Ptr<reco::PFCluster> psclus =
2308  edm::refToPtr<reco::PFClusterCollection>(pscluselem.first->
2309  clusterRef());
2310 #ifdef PFFLOW_DEBUG
2311  auto found_pscluster = std::find(new_sc.preshowerClustersBegin(),
2312  new_sc.preshowerClustersEnd(),
2313  reco::CaloClusterPtr(psclus));
2314  if( found_pscluster == new_sc.preshowerClustersEnd() ) {
2315 #endif
2316  new_sc.addPreshowerCluster(psclus);
2317 #ifdef PFFLOW_DEBUG
2318  } else {
2319  throw cms::Exception("PFECALSuperClusterAlgo::buildSuperCluster")
2320  << "Found a PS cluster matched to more than one EE cluster!"
2321  << std::endl << std::hex << psclus.get() << " == "
2322  << found_pscluster->get() << std::dec << std::endl;
2323  }
2324 #endif
2325  }
2326  }
2327 
2328  // calculate linearly weighted cluster widths
2329  PFClusterWidthAlgo pfwidth(bare_ptrs);
2330  new_sc.setEtaWidth(pfwidth.pflowEtaWidth());
2331  new_sc.setPhiWidth(pfwidth.pflowPhiWidth());
2332 
2333  // cache the value of the raw energy
2334  new_sc.rawEnergy();
2335 
2336  return new_sc;
2337 }
2338 
2339 void PFEGammaAlgo::
2341  // this only means something for ROs with a primary GSF track
2342  if( !RO.primaryGSFs.size() ) return;
2343  // need energy sums to tell if we've added crap or not
2344  const double Pin_gsf = RO.primaryGSFs.front().first->GsftrackRef()->pMode();
2345  const double gsfOuterEta =
2346  RO.primaryGSFs.front().first->positionAtECALEntrance().Eta();
2347  double tot_ecal= 0.0;
2348  std::vector<double> min_brem_dists;
2349  std::vector<double> closest_brem_eta;
2350  // first get the total ecal energy (we should replace this with a cache)
2351  for( const auto& ecal : RO.ecalclusters ) {
2352  tot_ecal += ecal.first->clusterRef()->correctedEnergy();
2353  // we also need to look at the minimum distance to brems
2354  // since energetic brems will be closer to the brem than the track
2355  double min_brem_dist = 5000.0;
2356  double eta = -999.0;
2357  for( const auto& brem : RO.brems ) {
2358  const float dist = _currentblock->dist(brem.first->index(),
2359  ecal.first->index(),
2360  _currentlinks,
2362  if( dist < min_brem_dist && dist != -1.0f ) {
2363  min_brem_dist = dist;
2364  eta = brem.first->positionAtECALEntrance().Eta();
2365  }
2366  }
2367  min_brem_dists.push_back(min_brem_dist);
2368  closest_brem_eta.push_back(eta);
2369  }
2370 
2371  // loop through the ECAL clusters and remove ECAL clusters matched to
2372  // secondary track either in *or* out of the SC if the E/pin is bad
2373  for( auto secd_kf = RO.secondaryKFs.begin();
2374  secd_kf != RO.secondaryKFs.end(); ++secd_kf ) {
2375  reco::TrackRef trkRef = secd_kf->first->trackRef();
2376  const float secpin = secd_kf->first->trackRef()->p();
2377  bool remove_this_kf = false;
2378  for( auto ecal = RO.ecalclusters.begin();
2379  ecal != RO.ecalclusters.end(); ++ecal ) {
2380  size_t bremidx = std::distance(RO.ecalclusters.begin(),ecal);
2381  const float minbremdist = min_brem_dists[bremidx];
2382  const double ecalenergy = ecal->first->clusterRef()->correctedEnergy();
2383  const double Epin = ecalenergy/secpin;
2384  const double detaGsf =
2385  std::abs(gsfOuterEta - ecal->first->clusterRef()->positionREP().Eta());
2386  const double detaBrem =
2387  std::abs(closest_brem_eta[bremidx] -
2388  ecal->first->clusterRef()->positionREP().Eta());
2389 
2390  ElementMap::value_type check_match(ecal->first,secd_kf->first);
2391  auto kf_matched = std::find(RO.localMap.begin(),
2392  RO.localMap.end(),
2393  check_match);
2394 
2395  const float tkdist = _currentblock->dist(secd_kf->first->index(),
2396  ecal->first->index(),
2397  _currentlinks,
2399 
2400  // do not reject this track if it is closer to a brem than the
2401  // secondary track, or if it lies in the delta-eta plane with the
2402  // gsf track or if it is in the dEta plane with the brems
2403  if( Epin > 3 && kf_matched != RO.localMap.end() &&
2404  tkdist != -1.0f && tkdist < minbremdist &&
2405  detaGsf > 0.05 && detaBrem > 0.015) {
2406  double res_with = std::abs((tot_ecal-Pin_gsf)/Pin_gsf);
2407  double res_without = std::abs((tot_ecal-ecalenergy-Pin_gsf)/Pin_gsf);
2408  if(res_without < res_with) {
2409  LOGDRESSED("PFEGammaAlgo")
2410  << " REJECTED_RES totenergy " << tot_ecal
2411  << " Pin_gsf " << Pin_gsf
2412  << " cluster to secondary " << ecalenergy
2413  << " res_with " << res_with
2414  << " res_without " << res_without << std::endl;
2415  tot_ecal -= ecalenergy;
2416  remove_this_kf = true;
2417  ecal = RO.ecalclusters.erase(ecal);
2418  if( ecal == RO.ecalclusters.end() ) break;
2419  }
2420  }
2421  }
2422  if( remove_this_kf ) {
2423  secd_kf = RO.secondaryKFs.erase(secd_kf);
2424  if( secd_kf == RO.secondaryKFs.end() ) break;
2425  }
2426  }
2427 }
2428 
2429 void PFEGammaAlgo::
2431  bool removeFreeECAL,
2432  bool removeSCEcal) {
2433  std::vector<bool> cluster_in_sc;
2434  auto ecal_begin = RO.ecalclusters.begin();
2435  auto ecal_end = RO.ecalclusters.end();
2436  auto hcal_begin = _splayedblock[reco::PFBlockElement::HCAL].begin();
2437  auto hcal_end = _splayedblock[reco::PFBlockElement::HCAL].end();
2438  for( auto secd_kf = RO.secondaryKFs.begin();
2439  secd_kf != RO.secondaryKFs.end(); ++secd_kf ) {
2440  bool remove_this_kf = false;
2441  NotCloserToOther<reco::PFBlockElement::TRACK,reco::PFBlockElement::HCAL>
2442  tracksToHCALs(_currentblock,_currentlinks,secd_kf->first);
2443  reco::TrackRef trkRef = secd_kf->first->trackRef();
2444  const unsigned int Algo = whichTrackAlgo(trkRef);
2445  const float secpin = trkRef->p();
2446 
2447  for( auto ecal = ecal_begin; ecal != ecal_end; ++ecal ) {
2448  const double ecalenergy = ecal->first->clusterRef()->correctedEnergy();
2449  // first check if the cluster is in the SC (use dist calc for fastness)
2450  const size_t clus_idx = std::distance(ecal_begin,ecal);
2451  if( cluster_in_sc.size() < clus_idx + 1) {
2452  float dist = -1.0f;
2453  if( RO.parentSC ) {
2454  dist = _currentblock->dist(secd_kf->first->index(),
2455  ecal->first->index(),
2456  _currentlinks,
2458  }
2459  cluster_in_sc.push_back(dist != -1.0f);
2460  }
2461 
2462  ElementMap::value_type check_match(ecal->first,secd_kf->first);
2463  auto kf_matched = std::find(RO.localMap.begin(),
2464  RO.localMap.end(),
2465  check_match);
2466  // if we've found a secondary KF that matches this ecal cluster
2467  // now we see if it is matched to HCAL
2468  // if it is matched to an HCAL cluster we take different
2469  // actions if the cluster was in an SC or not
2470  if( kf_matched != RO.localMap.end() ) {
2471  auto hcal_matched = std::partition(hcal_begin,hcal_end,tracksToHCALs);
2472  for( auto hcalclus = hcal_begin;
2473  hcalclus != hcal_matched;
2474  ++hcalclus ) {
2475  const reco::PFBlockElementCluster * clusthcal =
2476  dynamic_cast<const reco::PFBlockElementCluster*>(hcalclus->first);
2477  const double hcalenergy = clusthcal->clusterRef()->energy();
2478  const double hpluse = ecalenergy+hcalenergy;
2479  const bool isHoHE = ( (hcalenergy / hpluse ) > 0.1 && Algo < 3 );
2480  const bool isHoE = ( hcalenergy > ecalenergy );
2481  const bool isPoHE = ( secpin > hpluse );
2482  if( cluster_in_sc[clus_idx] ) {
2483  if(isHoE || isPoHE) {
2484  LOGDRESSED("PFEGammaAlgo")
2485  << "REJECTED TRACK FOR H/E or P/(H+E), CLUSTER IN SC"
2486  << " H/H+E " << (hcalenergy / hpluse)
2487  << " H/E " << (hcalenergy > ecalenergy)
2488  << " P/(H+E) " << (secpin/hpluse)
2489  << " HCAL ENE " << hcalenergy
2490  << " ECAL ENE " << ecalenergy
2491  << " secPIN " << secpin
2492  << " Algo Track " << Algo << std::endl;
2493  remove_this_kf = true;
2494  }
2495  } else {
2496  if(isHoHE){
2497  LOGDRESSED("PFEGammaAlgo")
2498  << "REJECTED TRACK FOR H/H+E, CLUSTER NOT IN SC"
2499  << " H/H+E " << (hcalenergy / hpluse)
2500  << " H/E " << (hcalenergy > ecalenergy)
2501  << " P/(H+E) " << (secpin/hpluse)
2502  << " HCAL ENE " << hcalenergy
2503  << " ECAL ENE " << ecalenergy
2504  << " secPIN " << secpin
2505  << " Algo Track " << Algo << std::endl;
2506  remove_this_kf = true;
2507  }
2508  }
2509  }
2510  }
2511  }
2512  if( remove_this_kf ) {
2513  secd_kf = RO.secondaryKFs.erase(secd_kf);
2514  if( secd_kf == RO.secondaryKFs.end() ) break;
2515  }
2516  }
2517 }
2518 
2519 
2520 unsigned int PFEGammaAlgo::whichTrackAlgo(const reco::TrackRef& trackRef) {
2521  unsigned int Algo = 0;
2522  switch (trackRef->algo()) {
2523  case TrackBase::ctf:
2528  case TrackBase::muonSeededStepInOut:
2529  case TrackBase::muonSeededStepOutIn:
2530  Algo = 0;
2531  break;
2533  Algo = 1;
2534  break;
2536  Algo = 2;
2537  break;
2539  Algo = 3;
2540  break;
2541  case TrackBase::tobTecStep:
2542  Algo = 4;
2543  break;
2544  default:
2545  Algo = 5;
2546  break;
2547  }
2548  return Algo;
2549 }
2551  const reco::PFBlockElementGsfTrack& GsfEl) {
2552  bool isPrimary = false;
2553 
2554  GsfPFRecTrackRef gsfPfRef = GsfEl.GsftrackRefPF();
2555 
2556  if(gsfPfRef.isNonnull()) {
2557  PFRecTrackRef kfPfRef = KfEl.trackRefPF();
2558  PFRecTrackRef kfPfRef_fromGsf = (*gsfPfRef).kfPFRecTrackRef();
2559  if(kfPfRef.isNonnull() && kfPfRef_fromGsf.isNonnull()) {
2560  reco::TrackRef kfref= (*kfPfRef).trackRef();
2561  reco::TrackRef kfref_fromGsf = (*kfPfRef_fromGsf).trackRef();
2562  if(kfref.isNonnull() && kfref_fromGsf.isNonnull()) {
2563  if(kfref == kfref_fromGsf)
2564  isPrimary = true;
2565  }
2566  }
2567  }
2568 
2569  return isPrimary;
2570 }
float EtotBremPinPoutMode
Definition: PFEGammaAlgo.h:315
bool isAvailable() const
Definition: Ref.h:576
type
Definition: HCALResponse.h:21
const SuperClusterRef & superClusterRef() const
const math::XYZTLorentzVector & Pout() const
double mvaValue
Definition: PFEGammaAlgo.h:356
Abstract base class for a PFBlock element (track, cluster...)
const math::XYZPoint & position() const
cluster centroid position
Definition: CaloCluster.h:126
CaloCluster_iterator preshowerClustersBegin() const
fist iterator over PreshowerCluster constituents
Definition: SuperCluster.h:81
int i
Definition: DBlmapReader.cc:9
const reco::TrackRef & trackRef() const
unsigned int whichTrackAlgo(const reco::TrackRef &trackRef)
const reco::GsfTrackRef & GsftrackRef() const
static const TGPicture * info(bool iBackgroundIsBlack)
std::vector< PFClusterFlaggedElement > ecalclusters
Definition: PFEGammaAlgo.h:85
static bool overlap(const reco::CaloCluster &sc1, const reco::CaloCluster &sc, float minfrac=0.01, bool debug=false)
bool isNonnull() const
Checks for non-null.
Definition: Ref.h:252
void Dump(std::ostream &out=std::cout, const char *tab=" ") const
print the object inside the element
tuple cfg
Definition: looper.py:293
void setSuperClusterRef(reco::SuperClusterRef sc)
set reference to the corresponding supercluster
Ptr< typename C::value_type > refToPtr(Ref< C, typename C::value_type, refhelper::FindUsingAdvance< C, typename C::value_type > > const &ref)
Definition: RefToPtr.h:18
list parent
Definition: dbtoconf.py:74
reco::PFCandidateEGammaExtraCollection egExtra_
Definition: PFEGammaAlgo.h:390
std::vector< std::pair< unsigned int, unsigned int > > fifthStepKfTrack_
Definition: PFEGammaAlgo.h:297
reco::SuperClusterCollection refinedscs_
Definition: PFEGammaAlgo.h:182
void addHitAndFraction(DetId id, float fraction)
Definition: CaloCluster.h:185
reco::PFBlockRef parentBlock
Definition: PFEGammaAlgo.h:79
void unlinkRefinableObjectKFandECALWithBadEoverP(ProtoEGObject &)
key_type key() const
Definition: Ptr.h:186
trackRef_iterator tracks_end() const
last iterator over tracks
Definition: Vertex.cc:44
static bool isMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:155
void setPositionAtECALEntrance(const math::XYZPointF &pos)
set position at ECAL entrance
Definition: PFCandidate.h:348
void setGsfElectronClusterRef(const reco::PFBlockRef &blk, const reco::PFBlockElementCluster &ref)
set gsf electron cluster ref
float EGsfPoutMode
Definition: PFEGammaAlgo.h:315
virtual void setCharge(Charge q)
set electric charge
Definition: LeafCandidate.h:93
float calculate_ele_mva(const pfEGHelpers::HeavyObjectCache *hoc, const ProtoEGObject &, reco::PFCandidateEGammaExtra &)
void addSingleLegConvTrackRefMva(const std::pair< reco::TrackRef, float > &trackrefmva)
add Single Leg Conversion TrackRef
void setPreshowerEnergyPlane2(double preshowerEnergy2)
Definition: SuperCluster.h:61
std::pair< const PFClusterElement *, bool > PFClusterFlaggedElement
Definition: PFEGammaAlgo.h:66
T const * get() const
Returns C++ pointer to the item.
Definition: Ptr.h:160
double y() const
y coordinate
Definition: Vertex.h:110
void setHadEnergy(float val)
set the had energy. The cluster energies should be entered before
const math::XYZPointF & positionAtECALEntrance() const
std::shared_ptr< PFEnergyCalibration > thePFEnergyCalibration
Definition: PFEGammaAlgo.h:109
Type type() const
std::map< unsigned int, Link > LinkData
Definition: PFBlock.h:46
Geom::Phi< T > phi() const
Definition: PV3DBase.h:69
double pflowPhiWidth() const
std::vector< PFClusterFlaggedElement > hcalClusters
Definition: PFEGammaAlgo.h:97
bool isPrimaryTrack(const reco::PFBlockElementTrack &KfEl, const reco::PFBlockElementGsfTrack &GsfEl)
float DEtaGsfEcalClust
Definition: PFEGammaAlgo.h:316
#define X(str)
Definition: MuonsGrabber.cc:48
void linkRefinableObjectPrimaryGSFTrackToECAL(ProtoEGObject &)
key_type index() const
Definition: Ref.h:267
virtual void setP4(const LorentzVector &p4)
set 4-momentum
#define NULL
Definition: scimark2.h:8
const GsfPFRecTrackRef & GsftrackRefPF() const
const PFClusterRef & clusterRef() const
const edm::OwnVector< reco::PFBlockElement > & elements() const
Definition: PFBlock.h:107
double Phi_mpi_pi(double x)
Definition: JetUtil.h:24
edm::Ref< TrackExtraCollection > TrackExtraRef
persistent reference to a TrackExtra
Definition: TrackExtraFwd.h:17
void linkRefinableObjectECALToSingleLegConv(const pfEGHelpers::HeavyObjectCache *hoc, ProtoEGObject &)
std::vector< const PFClusterElement * > electronClusters
Definition: PFEGammaAlgo.h:101
unsigned int index
index type
Definition: Vertex.h:49
const LinkData & linkData() const
Definition: PFBlock.h:112
std::vector< std::vector< PFFlaggedElement > > _splayedblock
Definition: PFEGammaAlgo.h:191
void setSeed(const CaloClusterPtr &r)
list of used xtals by DetId // now inherited by CaloCluster
Definition: SuperCluster.h:96
const math::XYZTLorentzVector & Pin() const
std::pair< const PFGSFElement *, bool > PFGSFFlaggedElement
Definition: PFEGammaAlgo.h:64
edm::Ptr< CaloCluster > CaloClusterPtr
void linkRefinableObjectBremTangentsToECAL(ProtoEGObject &)
ROOT::Math::PositionVector3D< ROOT::Math::Cartesian3D< float > > XYZPointF
point in space with cartesian internal representation
Definition: Point3D.h:10
TH2D * X0_outer
Definition: PFEGammaAlgo.h:379
const reco::Vertex * primaryVtx
Definition: PFEGammaAlgo.h:126
unsigned int indTrajPoint() const
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
Definition: FindCaloHit.cc:7
reco::PFBlockRef _currentblock
Definition: PFEGammaAlgo.h:187
void setGsfTrackRef(const reco::GsfTrackRef &ref)
set gsftrack reference
std::pair< const reco::PFBlockElement *, bool > PFFlaggedElement
Definition: PFEGammaAlgo.h:61
void setPhiWidth(double pw)
Definition: SuperCluster.h:62
const Point & position() const
position
Definition: Vertex.h:106
double pflowEtaWidth() const
std::pair< const PFSCElement *, bool > PFSCFlaggedElement
Definition: PFEGammaAlgo.h:62
const math::XYZPointF & positionAtECALEntrance() const
#define constexpr
TrackAlgorithm
track algorithm
Definition: TrackBase.h:99
PFEGConfigInfo cfg_
Definition: PFEGammaAlgo.h:300
float DPtOverPt_gsf
Definition: PFEGammaAlgo.h:309
std::unique_ptr< const GBRForest > gbrEle_
dictionary elements
edm::Handle< reco::PFCluster::EEtoPSAssociation > eetops_
Definition: PFEGammaAlgo.h:186
XYZTLorentzVectorD XYZTLorentzVector
Lorentz vector with cylindrical internal representation using pseudorapidity.
Definition: LorentzVector.h:29
void set_mva_e_pi(float mvaNI)
Definition: PFCandidate.h:311
#define LOGERR(x)
Definition: PFEGammaAlgo.cc:46
std::vector< PFKFFlaggedElement > secondaryKFs
Definition: PFEGammaAlgo.h:94
void setEtaWidth(double ew)
Definition: SuperCluster.h:63
void setSigmaEtaEta(float val)
set the sigmaetaeta
#define LOGVERB(x)
Definition: PFEGammaAlgo.cc:44
#define LOGDRESSED(x)
Definition: PFEGammaAlgo.cc:47
void dumpCurrentRefinableObjects() const
void initializeProtoCands(std::list< ProtoEGObject > &)
void linkRefinableObjectPrimaryKFsToSecondaryKFs(ProtoEGObject &)
unsigned index() const
bool unwrapSuperCluster(const reco::PFBlockElementSuperCluster *, std::vector< PFClusterFlaggedElement > &, ClusterMap &)
double pflowSigmaEtaEta() const
std::unique_ptr< const GBRForest > gbrSingleLeg_
void setCorrectedEnergy(double cenergy)
Definition: CaloCluster.h:109
void addElementInBlock(const reco::PFBlockRef &blockref, unsigned elementIndex)
add an element to the current PFCandidate
Definition: PFCandidate.cc:211
void swap(edm::DataFrameContainer &lhs, edm::DataFrameContainer &rhs)
reco::PFCluster::EEtoPSAssociation EEtoPSAssociation
Definition: PFEGammaAlgo.h:55
T sqrt(T t)
Definition: SSEVec.h:48
double p4[4]
Definition: TauolaWrapper.h:92
const ConversionRefVector & convRefs() const
PFEGammaAlgo(const PFEGConfigInfo &)
const PFSCElement * parentSC
Definition: PFEGammaAlgo.h:80
tuple result
Definition: query.py:137
std::vector< reco::PFCandidateEGammaExtra > PFCandidateEGammaExtraCollection
collection of PFCandidateEGammaExtras
def move
Definition: eostools.py:510
std::vector< PFBremFlaggedElement > brems
Definition: PFEGammaAlgo.h:91
void setEarlyBrem(float val)
set EarlyBrem
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
double z() const
y coordinate
Definition: Vertex.h:112
float DPtOverPt_kf
Definition: PFEGammaAlgo.h:309
void setGsfTrackPout(const math::XYZTLorentzVector &pout)
set the pout (not trivial to get from the GSF track)
float dPtOverPt_gsf
Definition: PFEGammaAlgo.h:309
double f[11][100]
double energy() const
cluster energy
Definition: CaloCluster.h:121
#define end
Definition: vmac.h:37
T const * get() const
Returns C++ pointer to the item.
Definition: Ref.h:244
T min(T a, T b)
Definition: MathUtil.h:58
std::list< ProtoEGObject > _refinableObjects
Definition: PFEGammaAlgo.h:205
virtual bool trackType(TrackType trType) const
Container::value_type value_type
string key
FastSim: produces sample of signal events, overlayed with premixed minbias events.
bool isNull() const
Checks for null.
Definition: Ref.h:249
reco::PFCandidateEGammaExtraCollection outcandsextra_
Definition: PFEGammaAlgo.h:181
void linkKFTrackToECAL(const PFKFFlaggedElement &, ProtoEGObject &)
void setEcalEnergy(float eeRaw, float eeCorr)
set corrected Ecal energy
Definition: PFCandidate.h:217
Layer
layer definition
Definition: PFLayer.h:31
reco::PFBlock::LinkData _currentlinks
Definition: PFEGammaAlgo.h:188
void buildAndRefineEGObjects(const pfEGHelpers::HeavyObjectCache *hoc, const reco::PFBlockRef &block)
std::vector< reco::PFCandidate > PFCandidateCollection
collection of PFCandidates
double x() const
x coordinate
Definition: Vertex.h:108
virtual bool trackType(TrackType trType) const
double rawEnergy() const
raw uncorrected energy (sum of energies of component BasicClusters)
Definition: SuperCluster.h:47
float EvaluateSingleLegMVA(const pfEGHelpers::HeavyObjectCache *hoc, const reco::PFBlockRef &blockref, const reco::Vertex &primaryvtx, unsigned int track_index)
void fill_extra_info(const ProtoEGObject &, reco::PFCandidateEGammaExtra &)
reco::PFCandidateCollection egCandidate_
Definition: PFEGammaAlgo.h:386
bool isAMuon(const reco::PFBlockElement &)
void setDeltaEta(float val)
set the delta eta
void setGsfTrackRef(const reco::GsfTrackRef &ref)
set gsftrack reference
Definition: PFCandidate.cc:454
reco::ElectronSeedRef electronSeed
Definition: PFEGammaAlgo.h:81
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:30
void associatedElements(unsigned i, const LinkData &linkData, std::multimap< double, unsigned > &sortedAssociates, reco::PFBlockElement::Type type=PFBlockElement::NONE, LinkTest test=LINKTEST_RECHIT) const
Definition: PFBlock.cc:75
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
tuple idx
DEBUGGING if hasattr(process,&quot;trackMonIterativeTracking2012&quot;): print &quot;trackMonIterativeTracking2012 D...
void addPreshowerCluster(const CaloClusterPtr &r)
add reference to constituent BasicCluster
Definition: SuperCluster.h:117
float SigmaEtaEta
Definition: PFEGammaAlgo.h:317
double b
Definition: hdecay.h:120
#define docast(x, y)
Definition: PFEGammaAlgo.cc:43
void linkRefinableObjectGSFTracksToKFs(ProtoEGObject &)
std::vector< std::pair< unsigned int, unsigned int > > convGsfTrack_
Definition: PFEGammaAlgo.h:298
void setSuperClusterPFECALRef(reco::SuperClusterRef sc)
set reference to the corresponding supercluster
void addConversionRef(const reco::ConversionRef &convref)
add Conversions from PF
std::vector< PFKFFlaggedElement > primaryKFs
Definition: PFEGammaAlgo.h:90
std::unordered_map< const PFClusterElement *, std::vector< PFClusterFlaggedElement > > ClusterMap
Definition: PFEGammaAlgo.h:73
float EtotPinMode
Definition: PFEGammaAlgo.h:315
void addCluster(const CaloClusterPtr &r)
add reference to constituent BasicCluster
Definition: SuperCluster.h:111
void Dump(std::ostream &out=std::cout, const char *tab=" ") const
print the object inside the element
ElementMap _recoveredlinks
Definition: PFEGammaAlgo.h:192
void fillPFCandidates(const pfEGHelpers::HeavyObjectCache *hoc, const std::list< ProtoEGObject > &, reco::PFCandidateCollection &, reco::PFCandidateEGammaExtraCollection &)
void removeOrLinkECALClustersToKFTracks()
Particle reconstructed by the particle flow algorithm.
Definition: PFCandidate.h:39
#define begin
Definition: vmac.h:30
void Dump(std::ostream &out=std::cout, const char *tab=" ") const
print the object inside the element
#define LOGWARN(x)
Definition: PFEGammaAlgo.cc:45
reco::SuperCluster buildRefinedSuperCluster(const ProtoEGObject &)
TH2D * X0_inner
Definition: PFEGammaAlgo.h:377
void unlinkRefinableObjectKFandECALMatchedToHCAL(ProtoEGObject &, bool removeFreeECAL=false, bool removeSCECAL=false)
double a
Definition: hdecay.h:121
std::pair< const PFKFElement *, bool > PFKFFlaggedElement
Definition: PFEGammaAlgo.h:65
const PFRecTrackRef & trackRefPF() const
virtual void setPdgId(int pdgId)
void mergeROsByAnyLink(std::list< ProtoEGObject > &)
void RunPFEG(const pfEGHelpers::HeavyObjectCache *hoc, const reco::PFBlockRef &blockRef, std::vector< bool > &active)
void setSuperClusterRef(const reco::SuperClusterRef &scRef)
Definition: PFCandidate.cc:620
int attachPSClusters(const PFClusterElement *, ClusterMap::mapped_type &)
void linkRefinableObjectKFTracksToECAL(ProtoEGObject &)
void setKfTrackRef(const reco::TrackRef &ref)
set kf track reference
const CaloClusterPtr & seed() const
seed BasicCluster
Definition: SuperCluster.h:66
void setMVA(float val)
set the result (mostly for debugging)
volatile std::atomic< bool > shutdown_flag false
void linkRefinableObjectSecondaryKFsToECAL(ProtoEGObject &)
void setLateBrem(float val)
set LateBrem
trackRef_iterator tracks_begin() const
first iterator over tracks
Definition: Vertex.cc:39
reco::PFCandidateCollection _finalCandidates
Definition: PFEGammaAlgo.h:207
TH2D * X0_middle
Definition: PFEGammaAlgo.h:378
void linkRefinableObjectConvSecondaryKFsToSecondaryKFs(ProtoEGObject &)
verbosityLevel verbosityLevel_
Definition: PFEGammaAlgo.h:329
void setTrackRef(const reco::TrackRef &ref)
set track reference
Definition: PFCandidate.cc:416
reco::PFCandidateCollection outcands_
Definition: PFEGammaAlgo.h:180
bool next_combination(BidIt n_begin, BidIt n_end, BidIt r_begin, BidIt r_end)
Definition: combination.h:22
void setPreshowerEnergyPlane1(double preshowerEnergy1)
Definition: SuperCluster.h:60
std::vector< PFGSFFlaggedElement > primaryGSFs
Definition: PFEGammaAlgo.h:88
tuple size
Write out results.
Definition: fakeMenu.h:6
CaloCluster_iterator preshowerClustersEnd() const
last iterator over PreshowerCluster constituents
Definition: SuperCluster.h:84
void addExtraNonConvTrack(const reco::PFBlockRef &blk, const reco::PFBlockElementTrack &tkref)
track counting for electrons and photons
void setPreshowerEnergy(double preshowerEnergy)
Definition: SuperCluster.h:59
tuple log
Definition: cmsBatch.py:341
void linkRefinableObjectPrimaryGSFTrackToHCAL(ProtoEGObject &)
Block of elements.
Definition: PFBlock.h:30