CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
LaserBeamsTEC1.cc
Go to the documentation of this file.
1 
10 
14 
15 #include "CLHEP/Units/GlobalSystemOfUnits.h"
16 #include "CLHEP/Random/RandGaussQ.h"
17 #include "globals.hh" // Global Constants and typedefs
18 #include "G4ParticleDefinition.hh"
19 #include "G4ParticleGun.hh"
20 
22  theParticleGun(0),
23  theDRand48Engine(0)
24 {
25  G4int nPhotonsGun = 1;
26  G4int nPhotonsBeam = 1;
27  G4double Energy = 1.15 * eV;
28  // call constructor with options
29  LaserBeamsTEC1(nPhotonsGun, nPhotonsBeam, Energy);
30 }
31 
32 LaserBeamsTEC1::LaserBeamsTEC1(G4int nPhotonsInGun, G4int nPhotonsInBeam, G4double PhotonEnergy) :
33  thenParticleInGun(0),
34  thenParticle(0),
35  thePhotonEnergy(0)
36 {
37  /* *********************************************************************** */
38  /* initialize and configure the particle gun */
39  /* *********************************************************************** */
40 
41  // the Photon energy
42  thePhotonEnergy = PhotonEnergy;
43 
44  // number of particles in the Laser beam
45  thenParticleInGun = nPhotonsInGun;
46 
47  // number of particles in one beam. ATTENTION: each beam contains nParticleInGun with the same
48  // startpoint and direction. nParticle gives the number of particles in the beam with a different
49  // startpoint. They are used to simulate the gaussian beamprofile of the Laser Beams.
50  thenParticle = nPhotonsInBeam;
51 
52  // create the particle gun
53  theParticleGun = new G4ParticleGun(thenParticleInGun);
54 
55  // default kinematics
56  G4ParticleTable * theParticleTable = G4ParticleTable::GetParticleTable();
57  G4ParticleDefinition * theOpticalPhoton = theParticleTable->FindParticle("opticalphoton");
58 
59  theParticleGun->SetParticleDefinition(theOpticalPhoton);
60  theParticleGun->SetParticleTime(0.0 * ns);
61  theParticleGun->SetParticlePosition(G4ThreeVector(-500.0 * cm, 0.0 * cm, 0.0 * cm));
62  theParticleGun->SetParticleMomentumDirection(G4ThreeVector(5.0, 3.0, 0.0));
63  theParticleGun->SetParticleEnergy(10.0 * keV);
64  setOptPhotonPolar(90.0);
65 
66  // initialize the random number engine
67  theDRand48Engine = new CLHEP::DRand48Engine();
68 
69 }
70 
72 {
73  if ( theParticleGun != 0 ) { delete theParticleGun; }
74  if ( theDRand48Engine != 0 ) { delete theDRand48Engine; }
75 }
76 
78 {
79  // this function is called at the beginning of an Event in LaserAlignment::upDate(const BeginOfEvent * myEvent)
80 
81  // use the random number generator service of the framework
83  unsigned int seed = rng->mySeed();
84 
85  // set the seed
86  theDRand48Engine->setSeed(seed);
87 
88  // number of LaserRings and Laserdiodes
89  const G4int nLaserRings = 2;
90  const G4int nLaserBeams = 8;
91 
92  // z position of the sixth Tracker Endcap Disc, where the Laserdiodes are positioned
93  G4double LaserPositionZ = 2057.5 * mm;
94 
95  // Radius of the inner and outer Laser ring
96  G4double LaserRingRadius[nLaserRings] = {564.0 * mm, 840.0 * mm};
97 
98  // phi position of the first Laserdiode
99  G4double LaserPhi0 = 0.392699082;
100 
101  // width of the LaserBeams
102  G4double LaserRingSigmaX[nLaserRings] = {0.5 * mm, 0.5 * mm};
103  G4double LaserRingSigmaY[nLaserRings] = {0.5 * mm, 0.5 * mm};
104 
105  // get the definition of the optical photon
106  G4ParticleTable * theParticleTable = G4ParticleTable::GetParticleTable();
107  G4ParticleDefinition * theOpticalPhoton= theParticleTable->FindParticle("opticalphoton");
108 
109  // loop over the LaserRings
110  for (int theRing = 0; theRing < nLaserRings; theRing++)
111  {
112  // loop over the LaserBeams
113  for (int theBeam = 0; theBeam < nLaserBeams; theBeam++)
114  {
115  // code for forward and backward beam
116  // calculate the right phi for the current beam
117  G4double LaserPositionPhi = LaserPhi0 + G4double(theBeam * G4double(G4double(2 * M_PI) / nLaserBeams));
118 
119  // calculate x and y position for the current beam
120  G4double LaserPositionX = cos(LaserPositionPhi) * LaserRingRadius[theRing];
121  G4double LaserPositionY = sin(LaserPositionPhi) * LaserRingRadius[theRing];
122 
123  // loop over all the particles in one beam
124  for (int theParticle = 0; theParticle < thenParticle; theParticle++)
125  {
126  // get randomnumbers and calculate the position
127  CLHEP::RandGaussQ aGaussObjX( *theDRand48Engine, LaserPositionX, LaserRingSigmaX[theRing] );
128  CLHEP::RandGaussQ aGaussObjY( *theDRand48Engine, LaserPositionY, LaserRingSigmaY[theRing] );
129 
130  G4double theXPosition = aGaussObjX.fire();
131  G4double theYPosition = aGaussObjY.fire();
132  G4double theZPosition = LaserPositionZ;
133 
134  // set the properties of the newly created particle
135  theParticleGun->SetParticleDefinition(theOpticalPhoton);
136  theParticleGun->SetParticleTime(0.0 * ns);
137  theParticleGun->SetParticlePosition(G4ThreeVector(theXPosition, theYPosition, theZPosition));
138  theParticleGun->SetParticleEnergy(thePhotonEnergy);
139 
140  // loop over both directions of the beam
141  for (int theDirection = 0; theDirection < 2; theDirection++)
142  {
143  // shoot in both beam directions ...
144  if (theDirection == 0) // shoot in forward direction (+z)
145  {
146  theParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.0, 0.0, 1.0));
147  // set the polarization
148  setOptPhotonPolar(90.0);
149  // generate the particle
150  theParticleGun->GeneratePrimaryVertex(myEvent);
151  }
152 
153  if (theDirection == 1) // shoot in backward direction (-z)
154  {
155  theParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.0, 0.0, -1.0));
156  // set the polarization
157  setOptPhotonPolar(90.0);
158  // generate the particle
159  theParticleGun->GeneratePrimaryVertex(myEvent);
160  }
161  } // end loop over both beam directions
162  } // end loop over particles in beam
163  } // end loop over beams
164  } // end loop over rings
165 }
166 
168 {
169  /* *********************************************************************** */
170  /* to get optical processes working properly, you have to make sure *
171  * that the photon polarisation is defined. */
172  /* *********************************************************************** */
173 
174  // first check if we have an optical photon
175  if ( theParticleGun->GetParticleDefinition()->GetParticleName() != "opticalphoton" )
176  {
177  edm::LogWarning("SimLaserAlignment:LaserBeamsTEC1") << "<LaserBeamsTEC1::SetOptPhotonPolar()>: WARNING! The ParticleGun is not an optical photon";
178  return;
179  }
180 
181 // G4cout << " AC1CMS: The ParticleGun is an " << theParticleGun->GetParticleDefinition()->GetParticleName();
182  G4ThreeVector normal(1.0, 0.0, 0.0);
183  G4ThreeVector kphoton = theParticleGun->GetParticleMomentumDirection();
184  G4ThreeVector product = normal.cross(kphoton);
185  G4double modul2 = product * product;
186 
187  G4ThreeVector e_perpendicular(0.0, 0.0, 1.0);
188 
189  if ( modul2 > 0.0 ) { e_perpendicular = (1.0 / sqrt(modul2)) * product; }
190 
191  G4ThreeVector e_parallel = e_perpendicular.cross(kphoton);
192 
193  G4ThreeVector polar = cos(Angle) * e_parallel + sin(Angle) * e_perpendicular;
194 
195 // G4cout << ", the polarization = " << polar << G4endl;
196  theParticleGun->SetParticlePolarization(polar);
197 }
198 
G4double thePhotonEnergy
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
virtual std::uint32_t mySeed() const =0
T sqrt(T t)
Definition: SSEVec.h:48
G4int thenParticleInGun
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
void GeneratePrimaries(G4Event *myEvent)
shoot optical photons into the detector at the beginning of an event
LaserBeamsTEC1()
default constructor
CLHEP::DRand48Engine * theDRand48Engine
#define M_PI
~LaserBeamsTEC1()
destructor
Definition: Angle.h:17
void setOptPhotonPolar(G4double Angle)
set the polarisation of the photons
G4ParticleGun * theParticleGun