CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Types | Public Member Functions | Private Member Functions | Private Attributes
CSCSegAlgoST Class Reference

#include <CSCSegAlgoST.h>

Inheritance diagram for CSCSegAlgoST:
CSCSegmentAlgorithm

Public Types

typedef std::deque< bool > BoolContainer
 
typedef std::vector< const
CSCRecHit2D * > 
ChamberHitContainer
 Typedefs. More...
 
typedef std::vector
< std::vector< const
CSCRecHit2D * > > 
Segments
 

Public Member Functions

std::vector< CSCSegmentbuildSegments (const ChamberHitContainer &rechits)
 
std::vector< CSCSegmentbuildSegments2 (const ChamberHitContainer &rechits)
 
std::vector< std::vector
< const CSCRecHit2D * > > 
chainHits (const CSCChamber *aChamber, const ChamberHitContainer &rechits)
 
std::vector< std::vector
< const CSCRecHit2D * > > 
clusterHits (const CSCChamber *aChamber, const ChamberHitContainer &rechits)
 
 CSCSegAlgoST (const edm::ParameterSet &ps)
 Constructor. More...
 
std::vector< CSCSegmentprune_bad_hits (const CSCChamber *aChamber, std::vector< CSCSegment > &segments)
 
std::vector< CSCSegmentrun (const CSCChamber *aChamber, const ChamberHitContainer &rechits)
 
virtual ~CSCSegAlgoST ()
 Destructor. More...
 
- Public Member Functions inherited from CSCSegmentAlgorithm
 CSCSegmentAlgorithm (const edm::ParameterSet &)
 Constructor. More...
 
virtual std::vector< CSCSegmentrun (const CSCChamber *chamber, const std::vector< const CSCRecHit2D * > &rechits)=0
 
virtual ~CSCSegmentAlgorithm ()
 Destructor. More...
 

Private Member Functions

bool adjustCovariance (void)
 
const CSCChamberchamber () const
 
void ChooseSegments (void)
 
void ChooseSegments2 (int best_seg)
 
void ChooseSegments2a (std::vector< ChamberHitContainer > &best_segments, int best_seg)
 
void ChooseSegments3 (int best_seg)
 
void ChooseSegments3 (std::vector< ChamberHitContainer > &best_segments, std::vector< float > &best_weight, int best_seg)
 
void dumpSegment (const CSCSegment &seg) const
 
void findDuplicates (std::vector< CSCSegment > &segments)
 
bool isGoodToMerge (bool isME11a, ChamberHitContainer &newChain, ChamberHitContainer &oldChain)
 
const edm::ParameterSetpset (void) const
 
double theWeight (double coordinate_1, double coordinate_2, double coordinate_3, float layer_1, float layer_2, float layer_3)
 Utility functions. More...
 

Private Attributes

float a_yweightPenaltyThreshold [5][5]
 
bool adjustCovariance_
 
double BPMinImprovement
 
bool BrutePruning
 
double chi2Norm_3D_
 
std::vector< ChamberHitContainerchosen_Psegments
 
std::vector< float > chosen_weight_A
 
bool condpass1
 Flag whether to 'improve' covariance matrix. More...
 
bool condpass2
 
std::vector< float > curv_A
 
std::vector< float > curv_noL1_A
 
std::vector< float > curv_noL2_A
 
std::vector< float > curv_noL3_A
 
std::vector< float > curv_noL4_A
 
std::vector< float > curv_noL5_A
 
std::vector< float > curv_noL6_A
 
double curvePenalty
 
double curvePenaltyThreshold
 
bool debug
 
double dXclusBoxMax
 
double dYclusBoxMax
 
Segments GoodSegments
 
double hitDropLimit4Hits
 
double hitDropLimit5Hits
 
double hitDropLimit6Hits
 
int maxRecHitsInCluster
 
int minHitsPerSegment
 
const std::string myName_
 
bool onlyBestSegment
 
ChamberHitContainer PAhits_onLayer [6]
 
bool preClustering
 
bool preClustering_useChaining
 
bool prePrun_
 Chi^2 normalization for the initial fit. More...
 
double prePrunLimit_
 
ChamberHitContainer protoSegment
 
bool Pruning
 
const edm::ParameterSet ps_
 
std::vector< ChamberHitContainerPsegments
 
ChamberHitContainer Psegments_hits
 
std::vector< ChamberHitContainerPsegments_noL1
 
std::vector< ChamberHitContainerPsegments_noL2
 
std::vector< ChamberHitContainerPsegments_noL3
 
std::vector< ChamberHitContainerPsegments_noL4
 
std::vector< ChamberHitContainerPsegments_noL5
 
std::vector< ChamberHitContainerPsegments_noL6
 
std::vector< ChamberHitContainerPsegments_noLx
 
CSCSegAlgoShoweringshowering_
 
const CSCChambertheChamber
 
bool useShowering
 
std::vector< float > weight_A
 
std::vector< float > weight_B
 
std::vector< float > weight_noL1_A
 
std::vector< float > weight_noL1_B
 
std::vector< float > weight_noL2_A
 
std::vector< float > weight_noL2_B
 
std::vector< float > weight_noL3_A
 
std::vector< float > weight_noL3_B
 
std::vector< float > weight_noL4_A
 
std::vector< float > weight_noL4_B
 
std::vector< float > weight_noL5_A
 
std::vector< float > weight_noL5_B
 
std::vector< float > weight_noL6_A
 
std::vector< float > weight_noL6_B
 
std::vector< float > weight_noLx_A
 
double yweightPenalty
 
double yweightPenaltyThreshold
 

Detailed Description

This algorithm is based on the Minimum Spanning Tree (ST) approach for building endcap muon track segments out of the rechit's in a CSCChamber.

A CSCSegment is a RecSegment4D, and is built from CSCRecHit2D objects, each of which is a RecHit2DLocalPos.

This builds segments consisting of at least 3 hits. Segments can share a common rechit, but only one.

Authors
S. Stoynev - NWU I. Bloch - FNAL E. James - FNAL A. Sakharov - WSU (extensive revision to handle weird segments) ... ... ... T. Cox - UC Davis (struggling to handle this monster)

Definition at line 32 of file CSCSegAlgoST.h.

Member Typedef Documentation

typedef std::deque<bool> CSCSegAlgoST::BoolContainer

Definition at line 41 of file CSCSegAlgoST.h.

typedef std::vector<const CSCRecHit2D*> CSCSegAlgoST::ChamberHitContainer

Typedefs.

Definition at line 39 of file CSCSegAlgoST.h.

typedef std::vector< std::vector<const CSCRecHit2D* > > CSCSegAlgoST::Segments

Definition at line 40 of file CSCSegAlgoST.h.

Constructor & Destructor Documentation

CSCSegAlgoST::CSCSegAlgoST ( const edm::ParameterSet ps)
explicit

Constructor.

CSCSegAlgoST.cc

Authors
: S. Stoynev - NU I. Bloch - FNAL E. James - FNAL A. Sakharov - WSU T. Cox - UC Davis - segment fit factored out of entangled code - Jan 2015

Improve the covariance matrix?

Definition at line 33 of file CSCSegAlgoST.cc.

References adjustCovariance_, BPMinImprovement, BrutePruning, chi2Norm_3D_, curvePenalty, curvePenaltyThreshold, debug, dXclusBoxMax, dYclusBoxMax, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), hitDropLimit4Hits, hitDropLimit5Hits, hitDropLimit6Hits, maxRecHitsInCluster, minHitsPerSegment, onlyBestSegment, preClustering, preClustering_useChaining, prePrun_, prePrunLimit_, Pruning, showering_, useShowering, yweightPenalty, and yweightPenaltyThreshold.

33  :
34  CSCSegmentAlgorithm(ps), myName_("CSCSegAlgoST"), ps_(ps), showering_(0) {
35 
36  debug = ps.getUntrackedParameter<bool>("CSCDebug");
37  // minLayersApart = ps.getParameter<int>("minLayersApart");
38  // nSigmaFromSegment = ps.getParameter<double>("nSigmaFromSegment");
39  minHitsPerSegment = ps.getParameter<int>("minHitsPerSegment");
40  // muonsPerChamberMax = ps.getParameter<int>("CSCSegmentPerChamberMax");
41  // chi2Max = ps.getParameter<double>("chi2Max");
42  dXclusBoxMax = ps.getParameter<double>("dXclusBoxMax");
43  dYclusBoxMax = ps.getParameter<double>("dYclusBoxMax");
44  preClustering = ps.getParameter<bool>("preClustering");
45  preClustering_useChaining = ps.getParameter<bool>("preClusteringUseChaining");
46  Pruning = ps.getParameter<bool>("Pruning");
47  BrutePruning = ps.getParameter<bool>("BrutePruning");
48  BPMinImprovement = ps.getParameter<double>("BPMinImprovement");
49  // maxRecHitsInCluster is the maximal number of hits in a precluster that is being processed
50  // This cut is intended to remove messy events. Currently nothing is returned if there are
51  // more that maxRecHitsInCluster hits. It could be useful to return an estimate of the
52  // cluster position, which is available.
53  maxRecHitsInCluster = ps.getParameter<int>("maxRecHitsInCluster");
54  onlyBestSegment = ps.getParameter<bool>("onlyBestSegment");
55 
56  hitDropLimit4Hits = ps.getParameter<double>("hitDropLimit4Hits");
57  hitDropLimit5Hits = ps.getParameter<double>("hitDropLimit5Hits");
58  hitDropLimit6Hits = ps.getParameter<double>("hitDropLimit6Hits");
59 
60  yweightPenaltyThreshold = ps.getParameter<double>("yweightPenaltyThreshold");
61  yweightPenalty = ps.getParameter<double>("yweightPenalty");
62 
63  curvePenaltyThreshold = ps.getParameter<double>("curvePenaltyThreshold");
64  curvePenalty = ps.getParameter<double>("curvePenalty");
65 
66  useShowering = ps.getParameter<bool>("useShowering");
67  if (useShowering) showering_ = new CSCSegAlgoShowering( ps );
68 
70  adjustCovariance_ = ps.getParameter<bool>("CorrectTheErrors");
71 
72  chi2Norm_3D_ = ps.getParameter<double>("NormChi2Cut3D");
73  prePrun_ = ps.getParameter<bool>("prePrun");
74  prePrunLimit_ = ps.getParameter<double>("prePrunLimit");
75 
76  if (debug) edm::LogVerbatim("CSCSegment") << "CSCSegAlgoST: with factored conditioned segment fit";
77 }
double yweightPenaltyThreshold
Definition: CSCSegAlgoST.h:184
T getParameter(std::string const &) const
T getUntrackedParameter(std::string const &, T const &) const
bool preClustering_useChaining
Definition: CSCSegAlgoST.h:171
double dXclusBoxMax
Definition: CSCSegAlgoST.h:167
CSCSegmentAlgorithm(const edm::ParameterSet &)
Constructor.
double hitDropLimit4Hits
Definition: CSCSegAlgoST.h:178
bool adjustCovariance_
Definition: CSCSegAlgoST.h:191
CSCSegAlgoShowering * showering_
Definition: CSCSegAlgoST.h:117
double BPMinImprovement
Definition: CSCSegAlgoST.h:174
double curvePenaltyThreshold
Definition: CSCSegAlgoST.h:187
double hitDropLimit6Hits
Definition: CSCSegAlgoST.h:180
bool onlyBestSegment
Definition: CSCSegAlgoST.h:175
int minHitsPerSegment
Definition: CSCSegAlgoST.h:164
double dYclusBoxMax
Definition: CSCSegAlgoST.h:168
double curvePenalty
Definition: CSCSegAlgoST.h:188
bool prePrun_
Chi^2 normalization for the initial fit.
Definition: CSCSegAlgoST.h:197
bool preClustering
Definition: CSCSegAlgoST.h:170
double yweightPenalty
Definition: CSCSegAlgoST.h:185
int maxRecHitsInCluster
Definition: CSCSegAlgoST.h:169
double hitDropLimit5Hits
Definition: CSCSegAlgoST.h:179
const edm::ParameterSet ps_
Definition: CSCSegAlgoST.h:116
const std::string myName_
Definition: CSCSegAlgoST.h:115
double chi2Norm_3D_
Definition: CSCSegAlgoST.h:195
double prePrunLimit_
Definition: CSCSegAlgoST.h:199
CSCSegAlgoST::~CSCSegAlgoST ( )
virtual

Destructor.

Definition at line 82 of file CSCSegAlgoST.cc.

References showering_.

82  {
83  delete showering_;
84 }
CSCSegAlgoShowering * showering_
Definition: CSCSegAlgoST.h:117

Member Function Documentation

bool CSCSegAlgoST::adjustCovariance ( void  )
inlineprivate

Definition at line 89 of file CSCSegAlgoST.h.

References adjustCovariance_.

Referenced by buildSegments(), and prune_bad_hits().

89 { return adjustCovariance_;}
bool adjustCovariance_
Definition: CSCSegAlgoST.h:191
std::vector< CSCSegment > CSCSegAlgoST::buildSegments ( const ChamberHitContainer rechits)

Build track segments in this chamber (this is where the actual segment-building algorithm hides.)

Definition at line 666 of file CSCSegAlgoST.cc.

References a_yweightPenaltyThreshold, adjustCovariance(), chamber(), CSCSegment::chi2(), CSCSegFit::chi2(), chi2Norm_3D_, ChooseSegments2a(), ChooseSegments3(), chosen_Psegments, chosen_weight_A, condpass1, condpass2, CSCSegFit::covarianceMatrix(), curv_A, curv_noL1_A, curv_noL2_A, curv_noL3_A, curv_noL4_A, curv_noL5_A, curv_noL6_A, curvePenalty, curvePenaltyThreshold, debug, dumpSegment(), end, CSCCondSegFit::fit(), GoodSegments, hitDropLimit4Hits, hitDropLimit5Hits, hitDropLimit6Hits, i, CSCSegFit::intercept(), CSCSegFit::localdir(), LogTrace, maxRecHitsInCluster, minHitsPerSegment, CSCSegFit::ndof(), CSCSegFit::nhits(), CSCSegment::nRecHits(), onlyBestSegment, PAhits_onLayer, prePrun_, prePrunLimit_, protoSegment, Psegments, Psegments_hits, Psegments_noL1, Psegments_noL2, Psegments_noL3, Psegments_noL4, Psegments_noL5, Psegments_noL6, Psegments_noLx, pset(), CSCDetId::ring(), CSCSegFit::scaleXError(), CSCSegFit::setScaleXError(), showering_, CSCSegAlgoShowering::showerSeg(), findQualityFiles::size, mathSSE::sqrt(), groupFilesInBlocks::temp, theChamber, theWeight(), useShowering, weight_A, weight_B, weight_noL1_A, weight_noL1_B, weight_noL2_A, weight_noL2_B, weight_noL3_A, weight_noL3_B, weight_noL4_A, weight_noL4_B, weight_noL5_A, weight_noL5_B, weight_noL6_A, weight_noL6_B, weight_noLx_A, CSCCondSegFit::worstHit(), x, y, and yweightPenalty.

Referenced by run().

666  {
667 
668  // Clear buffer for segment vector
669  std::vector<CSCSegment> segmentInChamber;
670  segmentInChamber.clear(); // list of final segments
671 
672  // CSC Ring;
673  unsigned int thering = 999;
674  unsigned int thestation = 999;
675  //unsigned int thecham = 999;
676 
677  std::vector<int> hits_onLayerNumber(6);
678 
679  unsigned int UpperLimit = maxRecHitsInCluster;
680  if (int(rechits.size()) < minHitsPerSegment) return segmentInChamber;
681 
682  for(int iarray = 0; iarray <6; ++iarray) { // magic number 6: number of layers in CSC chamber - not gonna change :)
683  PAhits_onLayer[iarray].clear();
684  hits_onLayerNumber[iarray] = 0;
685  }
686 
687  chosen_Psegments.clear();
688  chosen_weight_A.clear();
689 
690  Psegments.clear();
691  Psegments_noLx.clear();
692  Psegments_noL1.clear();
693  Psegments_noL2.clear();
694  Psegments_noL3.clear();
695  Psegments_noL4.clear();
696  Psegments_noL5.clear();
697  Psegments_noL6.clear();
698 
699  Psegments_hits.clear();
700 
701  weight_A.clear();
702  weight_noLx_A.clear();
703  weight_noL1_A.clear();
704  weight_noL2_A.clear();
705  weight_noL3_A.clear();
706  weight_noL4_A.clear();
707  weight_noL5_A.clear();
708  weight_noL6_A.clear();
709 
710  weight_B.clear();
711  weight_noL1_B.clear();
712  weight_noL2_B.clear();
713  weight_noL3_B.clear();
714  weight_noL4_B.clear();
715  weight_noL5_B.clear();
716  weight_noL6_B.clear();
717 
718  curv_A.clear();
719  curv_noL1_A.clear();
720  curv_noL2_A.clear();
721  curv_noL3_A.clear();
722  curv_noL4_A.clear();
723  curv_noL5_A.clear();
724  curv_noL6_A.clear();
725 
726  // definition of middle layer for n-hit segment
727  int midlayer_pointer[6] = {0,0,2,3,3,4};
728 
729  // int n_layers_missed_tot = 0;
730  int n_layers_occupied_tot = 0;
731  int n_layers_processed = 0;
732 
733  float min_weight_A = 99999.9;
734  float min_weight_noLx_A = 99999.9;
735 
736  //float best_weight_B = -1.;
737  //float best_weight_noLx_B = -1.;
738 
739  //float best_curv_A = -1.;
740  //float best_curv_noLx_A = -1.;
741 
742  int best_pseg = -1;
743  int best_noLx_pseg = -1;
744  int best_Layer_noLx = -1;
745 
746  //************************************************************************;
747  //*** Start segment building *****************************************;
748  //************************************************************************;
749 
750  // Determine how many layers with hits we have
751  // Fill all hits into the layer hit container:
752 
753  // Have 2 standard arrays: one giving the number of hits per layer.
754  // The other the corresponding hits.
755 
756  // Loop all available hits, count hits per layer and fill the hits into array by layer
757  for(size_t M = 0; M < rechits.size(); ++M) {
758  // add hits to array per layer and count hits per layer:
759  hits_onLayerNumber[ rechits[M]->cscDetId().layer()-1 ] += 1;
760  if(hits_onLayerNumber[ rechits[M]->cscDetId().layer()-1 ] == 1 ) n_layers_occupied_tot += 1;
761  // add hits to vector in array
762  PAhits_onLayer[rechits[M]->cscDetId().layer()-1] .push_back(rechits[M]);
763  }
764 
765  // We have now counted the hits per layer and filled pointers to the hits into an array
766 
767  int tothits = 0;
768  int maxhits = 0;
769  int nexthits = 0;
770  int maxlayer = -1;
771  int nextlayer = -1;
772 
773  for(size_t i = 0; i< hits_onLayerNumber.size(); ++i){
774  //std::cout<<"We have "<<hits_onLayerNumber[i]<<" hits on layer "<<i+1<<std::endl;
775  tothits += hits_onLayerNumber[i];
776  if (hits_onLayerNumber[i] > maxhits) {
777  nextlayer = maxlayer;
778  nexthits = maxhits;
779  maxlayer = i;
780  maxhits = hits_onLayerNumber[i];
781  }
782  else if (hits_onLayerNumber[i] > nexthits) {
783  nextlayer = i;
784  nexthits = hits_onLayerNumber[i];
785  }
786  }
787 
788 
789  if (tothits > (int)UpperLimit) {
790  if (n_layers_occupied_tot > 4) {
791  tothits = tothits - hits_onLayerNumber[maxlayer];
792  n_layers_occupied_tot = n_layers_occupied_tot - 1;
793  PAhits_onLayer[maxlayer].clear();
794  hits_onLayerNumber[maxlayer] = 0;
795  }
796  }
797 
798  if (tothits > (int)UpperLimit) {
799  if (n_layers_occupied_tot > 4) {
800  tothits = tothits - hits_onLayerNumber[nextlayer];
801  n_layers_occupied_tot = n_layers_occupied_tot - 1;
802  PAhits_onLayer[nextlayer].clear();
803  hits_onLayerNumber[nextlayer] = 0;
804  }
805  }
806 
807  if (tothits > (int)UpperLimit){
808 
809  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
810  // Showering muon - returns nothing if chi2 == -1 (see comment in SegAlgoShowering)
811  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
812  if (useShowering) {
813  CSCSegment segShower = showering_->showerSeg(theChamber, rechits);
814  if( debug ) dumpSegment( segShower );
815  // Make sure have at least 3 hits...
816  if ( segShower.nRecHits() < 3 ) return segmentInChamber;
817  if ( segShower.chi2() == -1 ) return segmentInChamber;
818  segmentInChamber.push_back(segShower);
819  return segmentInChamber;
820  }
821  else {
822  // LogTrace("CSCSegment|CSC") << "[CSCSegAlgoST::buildSegments] No. of rechits in the cluster/chamber > "
823  // << UpperLimit << " ... Segment finding in the cluster/chamber canceled!";
824  CSCDetId id = rechits[0]->cscDetId();
825  edm::LogVerbatim("CSCSegment|CSC") << "[CSCSegAlgoST::buildSegments] No. of rechits in the cluster/chamber > "
826  << UpperLimit << " ... Segment finding canceled in CSC" << id;
827  return segmentInChamber;
828  }
829  }
830 
831  // Find out which station, ring and chamber we are in
832  // Used to choose station/ring dependant y-weight cuts
833 
834  if( rechits.size() > 0 ) {
835  thering = rechits[0]->cscDetId().ring();
836  thestation = rechits[0]->cscDetId().station();
837  //thecham = rechits[0]->cscDetId().chamber();
838  }
839 
840  // std::cout<<"We are in Station/ring/chamber: "<<thestation <<" "<< thering<<" "<< thecham<<std::endl;
841 
842  // Cut-off parameter - don't reconstruct segments with less than X hits
843  if( n_layers_occupied_tot < minHitsPerSegment ) {
844  return segmentInChamber;
845  }
846 
847  // Start building all possible hit combinations:
848 
849  // loop over the six chamber layers and form segment candidates from the available hits:
850 
851  for(int layer = 0; layer < 6; ++layer) {
852 
853  // *****************************************************************
854  // *** Set missed layer counter here (not currently implemented) ***
855  // *****************************************************************
856  // if( PAhits_onLayer[layer].size() == 0 ) {
857  // n_layers_missed_tot += 1;
858  // }
859 
860  if( PAhits_onLayer[layer].size() > 0 ) {
861  n_layers_processed += 1;
862  }
863 
864  // Save the size of the protosegment before hits were added on the current layer
865  int orig_number_of_psegs = Psegments.size();
866  int orig_number_of_noL1_psegs = Psegments_noL1.size();
867  int orig_number_of_noL2_psegs = Psegments_noL2.size();
868  int orig_number_of_noL3_psegs = Psegments_noL3.size();
869  int orig_number_of_noL4_psegs = Psegments_noL4.size();
870  int orig_number_of_noL5_psegs = Psegments_noL5.size();
871  int orig_number_of_noL6_psegs = Psegments_noL6.size();
872 
873  // loop over the hits on the layer and initiate protosegments or add hits to protosegments
874  for(int hit = 0; hit < int(PAhits_onLayer[layer].size()); ++hit) { // loop all hits on the Layer number "layer"
875 
876  // create protosegments from all hits on the first layer with hits
877  if( orig_number_of_psegs == 0 ) { // would be faster to turn this around - ask for "orig_number_of_psegs != 0"
878 
879  Psegments_hits.push_back(PAhits_onLayer[layer][hit]);
880 
881  Psegments.push_back(Psegments_hits);
882  Psegments_noL6.push_back(Psegments_hits);
883  Psegments_noL5.push_back(Psegments_hits);
884  Psegments_noL4.push_back(Psegments_hits);
885  Psegments_noL3.push_back(Psegments_hits);
886  Psegments_noL2.push_back(Psegments_hits);
887 
888  // Initialize weights corresponding to this segment for first hit (with 0)
889 
890  curv_A.push_back(0.0);
891  curv_noL6_A.push_back(0.0);
892  curv_noL5_A.push_back(0.0);
893  curv_noL4_A.push_back(0.0);
894  curv_noL3_A.push_back(0.0);
895  curv_noL2_A.push_back(0.0);
896 
897  weight_A.push_back(0.0);
898  weight_noL6_A.push_back(0.0);
899  weight_noL5_A.push_back(0.0);
900  weight_noL4_A.push_back(0.0);
901  weight_noL3_A.push_back(0.0);
902  weight_noL2_A.push_back(0.0);
903 
904  weight_B.push_back(0.0);
905  weight_noL6_B.push_back(0.0);
906  weight_noL5_B.push_back(0.0);
907  weight_noL4_B.push_back(0.0);
908  weight_noL3_B.push_back(0.0);
909  weight_noL2_B.push_back(0.0);
910 
911  // reset array for next hit on next layer
912  Psegments_hits .clear();
913  }
914  else {
915  if( orig_number_of_noL1_psegs == 0 ) {
916 
917  Psegments_hits.push_back(PAhits_onLayer[layer][hit]);
918 
919  Psegments_noL1.push_back(Psegments_hits);
920 
921  // Initialize weight corresponding to this segment for first hit (with 0)
922 
923  curv_noL1_A.push_back(0.0);
924 
925  weight_noL1_A.push_back(0.0);
926 
927  weight_noL1_B.push_back(0.0);
928 
929  // reset array for next hit on next layer
930  Psegments_hits .clear();
931 
932  }
933 
934  // loop over the protosegments and create a new protosegments for each hit-1 on this layer
935 
936  for( int pseg = 0; pseg < orig_number_of_psegs; ++pseg ) {
937 
938  int pseg_pos = (pseg)+((hit)*orig_number_of_psegs);
939  int pseg_noL1_pos = (pseg)+((hit)*orig_number_of_noL1_psegs);
940  int pseg_noL2_pos = (pseg)+((hit)*orig_number_of_noL2_psegs);
941  int pseg_noL3_pos = (pseg)+((hit)*orig_number_of_noL3_psegs);
942  int pseg_noL4_pos = (pseg)+((hit)*orig_number_of_noL4_psegs);
943  int pseg_noL5_pos = (pseg)+((hit)*orig_number_of_noL5_psegs);
944  int pseg_noL6_pos = (pseg)+((hit)*orig_number_of_noL6_psegs);
945 
946  // - Loop all psegs.
947  // - If not last hit, clone existing protosegments (PAhits_onLayer[layer].size()-1) times
948  // - then add the new hits
949 
950  if( ! (hit == int(PAhits_onLayer[layer].size()-1)) ) { // not the last hit - prepare (copy) new protosegments for the following hits
951  // clone psegs (to add next hits or last hit on layer):
952 
953  Psegments.push_back(Psegments[ pseg_pos ]);
954  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) Psegments_noL1.push_back(Psegments_noL1[ pseg_noL1_pos ]);
955  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) Psegments_noL2.push_back(Psegments_noL2[ pseg_noL2_pos ]);
956  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) Psegments_noL3.push_back(Psegments_noL3[ pseg_noL3_pos ]);
957  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) Psegments_noL4.push_back(Psegments_noL4[ pseg_noL4_pos ]);
958  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) Psegments_noL5.push_back(Psegments_noL5[ pseg_noL5_pos ]);
959  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) Psegments_noL6.push_back(Psegments_noL6[ pseg_noL6_pos ]);
960  // clone weight corresponding to this segment too
961  weight_A.push_back(weight_A[ pseg_pos ]);
962  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) weight_noL1_A.push_back(weight_noL1_A[ pseg_noL1_pos ]);
963  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) weight_noL2_A.push_back(weight_noL2_A[ pseg_noL2_pos ]);
964  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) weight_noL3_A.push_back(weight_noL3_A[ pseg_noL3_pos ]);
965  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) weight_noL4_A.push_back(weight_noL4_A[ pseg_noL4_pos ]);
966  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) weight_noL5_A.push_back(weight_noL5_A[ pseg_noL5_pos ]);
967  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) weight_noL6_A.push_back(weight_noL6_A[ pseg_noL6_pos ]);
968  // clone curvature variable corresponding to this segment too
969  curv_A.push_back(curv_A[ pseg_pos ]);
970  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) curv_noL1_A.push_back(curv_noL1_A[ pseg_noL1_pos ]);
971  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) curv_noL2_A.push_back(curv_noL2_A[ pseg_noL2_pos ]);
972  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) curv_noL3_A.push_back(curv_noL3_A[ pseg_noL3_pos ]);
973  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) curv_noL4_A.push_back(curv_noL4_A[ pseg_noL4_pos ]);
974  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) curv_noL5_A.push_back(curv_noL5_A[ pseg_noL5_pos ]);
975  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) curv_noL6_A.push_back(curv_noL6_A[ pseg_noL6_pos ]);
976  // clone "y"-weight corresponding to this segment too
977  weight_B.push_back(weight_B[ pseg_pos ]);
978  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) weight_noL1_B.push_back(weight_noL1_B[ pseg_noL1_pos ]);
979  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) weight_noL2_B.push_back(weight_noL2_B[ pseg_noL2_pos ]);
980  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) weight_noL3_B.push_back(weight_noL3_B[ pseg_noL3_pos ]);
981  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) weight_noL4_B.push_back(weight_noL4_B[ pseg_noL4_pos ]);
982  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) weight_noL5_B.push_back(weight_noL5_B[ pseg_noL5_pos ]);
983  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) weight_noL6_B.push_back(weight_noL6_B[ pseg_noL6_pos ]);
984  }
985  // add hits to original pseg:
986  Psegments[ pseg_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
987  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) Psegments_noL1[ pseg_noL1_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
988  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) Psegments_noL2[ pseg_noL2_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
989  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) Psegments_noL3[ pseg_noL3_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
990  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) Psegments_noL4[ pseg_noL4_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
991  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) Psegments_noL5[ pseg_noL5_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
992  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) Psegments_noL6[ pseg_noL6_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
993 
994  // calculate/update the weight (only for >2 hits on psegment):
995 
996  if( Psegments[ pseg_pos ].size() > 2 ) {
997 
998  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
999  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1000 
1001  weight_A[ pseg_pos ] += theWeight(
1002  (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().x(),
1003  (*(Psegments[ pseg_pos ].end()-2 ))->localPosition().x(),
1004  (*(Psegments[ pseg_pos ].end()-3 ))->localPosition().x(),
1005  float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()),
1006  float((*(Psegments[ pseg_pos ].end()-2))->cscDetId().layer()),
1007  float((*(Psegments[ pseg_pos ].end()-3))->cscDetId().layer())
1008  );
1009 
1010  weight_B[ pseg_pos ] += theWeight(
1011  (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().y(),
1012  (*(Psegments[ pseg_pos ].end()-2 ))->localPosition().y(),
1013  (*(Psegments[ pseg_pos ].end()-3 ))->localPosition().y(),
1014  float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()),
1015  float((*(Psegments[ pseg_pos ].end()-2))->cscDetId().layer()),
1016  float((*(Psegments[ pseg_pos ].end()-3))->cscDetId().layer())
1017  );
1018 
1019  // if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1020 
1021  if(int(Psegments[ pseg_pos ].size()) == n_layers_occupied_tot) {
1022 
1023  curv_A[ pseg_pos ] += theWeight(
1024  (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().x(),
1025  (*(Psegments[ pseg_pos ].end()-midlayer_pointer[n_layers_occupied_tot-1] ))->localPosition().x(),
1026  (*(Psegments[ pseg_pos ].end()-n_layers_occupied_tot ))->localPosition().x(),
1027  float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()),
1028  float((*(Psegments[ pseg_pos ].end()-midlayer_pointer[n_layers_occupied_tot-1] ))->cscDetId().layer()),
1029  float((*(Psegments[ pseg_pos ].end()-n_layers_occupied_tot ))->cscDetId().layer())
1030  );
1031 
1032  if (curv_A[ pseg_pos ] > curvePenaltyThreshold) weight_A[ pseg_pos ] = weight_A[ pseg_pos ] * curvePenalty;
1033 
1034  if (weight_B[ pseg_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_A[ pseg_pos ] = weight_A[ pseg_pos ] * yweightPenalty;
1035 
1036  if (weight_A[ pseg_pos ] < min_weight_A ) {
1037  min_weight_A = weight_A[ pseg_pos ];
1038  //best_weight_B = weight_B[ pseg_pos ];
1039  //best_curv_A = curv_A[ pseg_pos ];
1040  best_pseg = pseg_pos ;
1041  }
1042 
1043  }
1044 
1045  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1046  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1047 
1048  }
1049 
1050  if ( n_layers_occupied_tot > 3 ) {
1051  if (pseg < orig_number_of_noL1_psegs && (n_layers_processed != 2)) {
1052  if(( Psegments_noL1[ pseg_noL1_pos ].size() > 2 ) ) {
1053 
1054  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1055  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1056 
1057  weight_noL1_A[ pseg_noL1_pos ] += theWeight(
1058  (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().x(),
1059  (*(Psegments_noL1[ pseg_noL1_pos ].end()-2 ))->localPosition().x(),
1060  (*(Psegments_noL1[ pseg_noL1_pos ].end()-3 ))->localPosition().x(),
1061  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1))->cscDetId().layer()),
1062  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-2))->cscDetId().layer()),
1063  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-3))->cscDetId().layer())
1064  );
1065 
1066  weight_noL1_B[ pseg_noL1_pos ] += theWeight(
1067  (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().y(),
1068  (*(Psegments_noL1[ pseg_noL1_pos ].end()-2 ))->localPosition().y(),
1069  (*(Psegments_noL1[ pseg_noL1_pos ].end()-3 ))->localPosition().y(),
1070  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1))->cscDetId().layer()),
1071  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-2))->cscDetId().layer()),
1072  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-3))->cscDetId().layer())
1073  );
1074 
1075  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1076 
1077  if(int(Psegments_noL1[ pseg_noL1_pos ].size()) == n_layers_occupied_tot -1 ) {
1078 
1079  curv_noL1_A[ pseg_noL1_pos ] += theWeight(
1080  (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().x(),
1081  (*(Psegments_noL1[ pseg_noL1_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1082  (*(Psegments_noL1[ pseg_noL1_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1083  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->cscDetId().layer()),
1084  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1085  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1086  );
1087 
1088  if (curv_noL1_A[ pseg_noL1_pos ] > curvePenaltyThreshold) weight_noL1_A[ pseg_noL1_pos ] = weight_noL1_A[ pseg_noL1_pos ] * curvePenalty;
1089 
1090  if (weight_noL1_B[ pseg_noL1_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1091  weight_noL1_A[ pseg_noL1_pos ] = weight_noL1_A[ pseg_noL1_pos ] * yweightPenalty;
1092 
1093  if (weight_noL1_A[ pseg_noL1_pos ] < min_weight_noLx_A ) {
1094  min_weight_noLx_A = weight_noL1_A[ pseg_noL1_pos ];
1095  //best_weight_noLx_B = weight_noL1_B[ pseg_noL1_pos ];
1096  //best_curv_noLx_A = curv_noL1_A[ pseg_noL1_pos ];
1097  best_noLx_pseg = pseg_noL1_pos;
1098  best_Layer_noLx = 1;
1099  }
1100 
1101  }
1102 
1103  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1104  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1105 
1106  }
1107  }
1108  }
1109 
1110  if ( n_layers_occupied_tot > 3 ) {
1111  if (pseg < orig_number_of_noL2_psegs && ( n_layers_processed != 2 )) {
1112  if(( Psegments_noL2[ pseg_noL2_pos ].size() > 2 )) {
1113 
1114  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1115  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1116 
1117  weight_noL2_A[ pseg_noL2_pos ] += theWeight(
1118  (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().x(),
1119  (*(Psegments_noL2[ pseg_noL2_pos ].end()-2 ))->localPosition().x(),
1120  (*(Psegments_noL2[ pseg_noL2_pos ].end()-3 ))->localPosition().x(),
1121  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1))->cscDetId().layer()),
1122  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-2))->cscDetId().layer()),
1123  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-3))->cscDetId().layer())
1124  );
1125 
1126  weight_noL2_B[ pseg_noL2_pos ] += theWeight(
1127  (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().y(),
1128  (*(Psegments_noL2[ pseg_noL2_pos ].end()-2 ))->localPosition().y(),
1129  (*(Psegments_noL2[ pseg_noL2_pos ].end()-3 ))->localPosition().y(),
1130  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1))->cscDetId().layer()),
1131  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-2))->cscDetId().layer()),
1132  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-3))->cscDetId().layer())
1133  );
1134 
1135  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1136 
1137  if(int(Psegments_noL2[ pseg_noL2_pos ].size()) == n_layers_occupied_tot -1 ) {
1138 
1139  curv_noL2_A[ pseg_noL2_pos ] += theWeight(
1140  (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().x(),
1141  (*(Psegments_noL2[ pseg_noL2_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1142  (*(Psegments_noL2[ pseg_noL2_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1143  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->cscDetId().layer()),
1144  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1145  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1146  );
1147 
1148  if (curv_noL2_A[ pseg_noL2_pos ] > curvePenaltyThreshold) weight_noL2_A[ pseg_noL2_pos ] = weight_noL2_A[ pseg_noL2_pos ] * curvePenalty;
1149 
1150  if (weight_noL2_B[ pseg_noL2_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1151  weight_noL2_A[ pseg_noL2_pos ] = weight_noL2_A[ pseg_noL2_pos ] * yweightPenalty;
1152 
1153  if (weight_noL2_A[ pseg_noL2_pos ] < min_weight_noLx_A ) {
1154  min_weight_noLx_A = weight_noL2_A[ pseg_noL2_pos ];
1155  //best_weight_noLx_B = weight_noL2_B[ pseg_noL2_pos ];
1156  //best_curv_noLx_A = curv_noL2_A[ pseg_noL2_pos ];
1157  best_noLx_pseg = pseg_noL2_pos;
1158  best_Layer_noLx = 2;
1159  }
1160 
1161  }
1162 
1163  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1164  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1165 
1166  }
1167  }
1168  }
1169 
1170  if ( n_layers_occupied_tot > 3 ) {
1171  if (pseg < orig_number_of_noL3_psegs && ( n_layers_processed != 3 )) {
1172  if(( Psegments_noL3[ pseg_noL3_pos ].size() > 2 )) {
1173 
1174  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1175  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1176 
1177  weight_noL3_A[ pseg_noL3_pos ] += theWeight(
1178  (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().x(),
1179  (*(Psegments_noL3[ pseg_noL3_pos ].end()-2 ))->localPosition().x(),
1180  (*(Psegments_noL3[ pseg_noL3_pos ].end()-3 ))->localPosition().x(),
1181  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1))->cscDetId().layer()),
1182  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-2))->cscDetId().layer()),
1183  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-3))->cscDetId().layer())
1184  );
1185 
1186  weight_noL3_B[ pseg_noL3_pos ] += theWeight(
1187  (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().y(),
1188  (*(Psegments_noL3[ pseg_noL3_pos ].end()-2 ))->localPosition().y(),
1189  (*(Psegments_noL3[ pseg_noL3_pos ].end()-3 ))->localPosition().y(),
1190  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1))->cscDetId().layer()),
1191  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-2))->cscDetId().layer()),
1192  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-3))->cscDetId().layer())
1193  );
1194 
1195  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1196 
1197  if(int(Psegments_noL3[ pseg_noL3_pos ].size()) == n_layers_occupied_tot -1 ) {
1198 
1199  curv_noL3_A[ pseg_noL3_pos ] += theWeight(
1200  (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().x(),
1201  (*(Psegments_noL3[ pseg_noL3_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1202  (*(Psegments_noL3[ pseg_noL3_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1203  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->cscDetId().layer()),
1204  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1205  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1206  );
1207 
1208  if (curv_noL3_A[ pseg_noL3_pos ] > curvePenaltyThreshold) weight_noL3_A[ pseg_noL3_pos ] = weight_noL3_A[ pseg_noL3_pos ] * curvePenalty;
1209 
1210  if (weight_noL3_B[ pseg_noL3_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1211  weight_noL3_A[ pseg_noL3_pos ] = weight_noL3_A[ pseg_noL3_pos ] * yweightPenalty;
1212 
1213  if (weight_noL3_A[ pseg_noL3_pos ] < min_weight_noLx_A ) {
1214  min_weight_noLx_A = weight_noL3_A[ pseg_noL3_pos ];
1215  //best_weight_noLx_B = weight_noL3_B[ pseg_noL3_pos ];
1216  //best_curv_noLx_A = curv_noL3_A[ pseg_noL3_pos ];
1217  best_noLx_pseg = pseg_noL3_pos;
1218  best_Layer_noLx = 3;
1219  }
1220 
1221  }
1222 
1223  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1224  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1225 
1226  }
1227  }
1228  }
1229 
1230  if ( n_layers_occupied_tot > 3 ) {
1231  if (pseg < orig_number_of_noL4_psegs && ( n_layers_processed != 4 )) {
1232  if(( Psegments_noL4[ pseg_noL4_pos ].size() > 2 )) {
1233 
1234  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1235  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1236 
1237  weight_noL4_A[ pseg_noL4_pos ] += theWeight(
1238  (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().x(),
1239  (*(Psegments_noL4[ pseg_noL4_pos ].end()-2 ))->localPosition().x(),
1240  (*(Psegments_noL4[ pseg_noL4_pos ].end()-3 ))->localPosition().x(),
1241  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1))->cscDetId().layer()),
1242  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-2))->cscDetId().layer()),
1243  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-3))->cscDetId().layer())
1244  );
1245 
1246  weight_noL4_B[ pseg_noL4_pos ] += theWeight(
1247  (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().y(),
1248  (*(Psegments_noL4[ pseg_noL4_pos ].end()-2 ))->localPosition().y(),
1249  (*(Psegments_noL4[ pseg_noL4_pos ].end()-3 ))->localPosition().y(),
1250  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1))->cscDetId().layer()),
1251  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-2))->cscDetId().layer()),
1252  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-3))->cscDetId().layer())
1253  );
1254 
1255  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1256 
1257  if(int(Psegments_noL4[ pseg_noL4_pos ].size()) == n_layers_occupied_tot -1 ) {
1258 
1259  curv_noL4_A[ pseg_noL4_pos ] += theWeight(
1260  (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().x(),
1261  (*(Psegments_noL4[ pseg_noL4_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1262  (*(Psegments_noL4[ pseg_noL4_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1263  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->cscDetId().layer()),
1264  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1265  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1266  );
1267 
1268  if (curv_noL4_A[ pseg_noL4_pos ] > curvePenaltyThreshold) weight_noL4_A[ pseg_noL4_pos ] = weight_noL4_A[ pseg_noL4_pos ] * curvePenalty;
1269 
1270  if (weight_noL4_B[ pseg_noL4_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1271  weight_noL4_A[ pseg_noL4_pos ] = weight_noL4_A[ pseg_noL4_pos ] * yweightPenalty;
1272 
1273  if (weight_noL4_A[ pseg_noL4_pos ] < min_weight_noLx_A ) {
1274  min_weight_noLx_A = weight_noL4_A[ pseg_noL4_pos ];
1275  //best_weight_noLx_B = weight_noL4_B[ pseg_noL4_pos ];
1276  //best_curv_noLx_A = curv_noL4_A[ pseg_noL4_pos ];
1277  best_noLx_pseg = pseg_noL4_pos;
1278  best_Layer_noLx = 4;
1279  }
1280 
1281  }
1282 
1283  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1284  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1285 
1286  }
1287  }
1288  }
1289 
1290  if ( n_layers_occupied_tot > 4 ) {
1291  if (pseg < orig_number_of_noL5_psegs && ( n_layers_processed != 5 )) {
1292  if(( Psegments_noL5[ pseg_noL5_pos ].size() > 2 )){
1293 
1294  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1295  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1296 
1297  weight_noL5_A[ pseg_noL5_pos ] += theWeight(
1298  (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().x(),
1299  (*(Psegments_noL5[ pseg_noL5_pos ].end()-2 ))->localPosition().x(),
1300  (*(Psegments_noL5[ pseg_noL5_pos ].end()-3 ))->localPosition().x(),
1301  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1))->cscDetId().layer()),
1302  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-2))->cscDetId().layer()),
1303  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-3))->cscDetId().layer())
1304  );
1305 
1306  weight_noL5_B[ pseg_noL5_pos ] += theWeight(
1307  (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().y(),
1308  (*(Psegments_noL5[ pseg_noL5_pos ].end()-2 ))->localPosition().y(),
1309  (*(Psegments_noL5[ pseg_noL5_pos ].end()-3 ))->localPosition().y(),
1310  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1))->cscDetId().layer()),
1311  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-2))->cscDetId().layer()),
1312  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-3))->cscDetId().layer())
1313  );
1314 
1315  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1316 
1317  if(int(Psegments_noL5[ pseg_noL5_pos ].size()) == n_layers_occupied_tot -1 ) {
1318 
1319  curv_noL5_A[ pseg_noL5_pos ] += theWeight(
1320  (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().x(),
1321  (*(Psegments_noL5[ pseg_noL5_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1322  (*(Psegments_noL5[ pseg_noL5_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1323  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->cscDetId().layer()),
1324  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1325  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1326  );
1327 
1328  if (curv_noL5_A[ pseg_noL5_pos ] > curvePenaltyThreshold) weight_noL5_A[ pseg_noL5_pos ] = weight_noL5_A[ pseg_noL5_pos ] * curvePenalty;
1329 
1330  if (weight_noL5_B[ pseg_noL5_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1331  weight_noL5_A[ pseg_noL5_pos ] = weight_noL5_A[ pseg_noL5_pos ] * yweightPenalty;
1332 
1333  if (weight_noL5_A[ pseg_noL5_pos ] < min_weight_noLx_A ) {
1334  min_weight_noLx_A = weight_noL5_A[ pseg_noL5_pos ];
1335  //best_weight_noLx_B = weight_noL5_B[ pseg_noL5_pos ];
1336  //best_curv_noLx_A = curv_noL5_A[ pseg_noL5_pos ];
1337  best_noLx_pseg = pseg_noL5_pos;
1338  best_Layer_noLx = 5;
1339  }
1340 
1341  }
1342 
1343  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1344  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1345 
1346  }
1347  }
1348  }
1349 
1350  if ( n_layers_occupied_tot > 5 ) {
1351  if (pseg < orig_number_of_noL6_psegs && ( n_layers_processed != 6 )) {
1352  if(( Psegments_noL6[ pseg_noL6_pos ].size() > 2 )){
1353 
1354  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1355  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1356 
1357  weight_noL6_A[ pseg_noL6_pos ] += theWeight(
1358  (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().x(),
1359  (*(Psegments_noL6[ pseg_noL6_pos ].end()-2 ))->localPosition().x(),
1360  (*(Psegments_noL6[ pseg_noL6_pos ].end()-3 ))->localPosition().x(),
1361  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1))->cscDetId().layer()),
1362  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-2))->cscDetId().layer()),
1363  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-3))->cscDetId().layer())
1364  );
1365 
1366  weight_noL6_B[ pseg_noL6_pos ] += theWeight(
1367  (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().y(),
1368  (*(Psegments_noL6[ pseg_noL6_pos ].end()-2 ))->localPosition().y(),
1369  (*(Psegments_noL6[ pseg_noL6_pos ].end()-3 ))->localPosition().y(),
1370  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1))->cscDetId().layer()),
1371  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-2))->cscDetId().layer()),
1372  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-3))->cscDetId().layer())
1373  );
1374 
1375  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1376 
1377  if(int(Psegments_noL6[ pseg_noL6_pos ].size()) == n_layers_occupied_tot -1 ) {
1378 
1379  curv_noL6_A[ pseg_noL6_pos ] += theWeight(
1380  (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().x(),
1381  (*(Psegments_noL6[ pseg_noL6_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1382  (*(Psegments_noL6[ pseg_noL6_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1383  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->cscDetId().layer()),
1384  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1385  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1386  );
1387 
1388  if (curv_noL6_A[ pseg_noL6_pos ] > curvePenaltyThreshold) weight_noL6_A[ pseg_noL6_pos ] = weight_noL6_A[ pseg_noL6_pos ] * curvePenalty;
1389 
1390  if (weight_noL6_B[ pseg_noL6_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1391  weight_noL6_A[ pseg_noL6_pos ] = weight_noL6_A[ pseg_noL6_pos ] * yweightPenalty;
1392 
1393  if (weight_noL6_A[ pseg_noL6_pos ] < min_weight_noLx_A ) {
1394  min_weight_noLx_A = weight_noL6_A[ pseg_noL6_pos ];
1395  //best_weight_noLx_B = weight_noL6_B[ pseg_noL6_pos ];
1396  //best_curv_noLx_A = curv_noL6_A[ pseg_noL6_pos ];
1397  best_noLx_pseg = pseg_noL6_pos;
1398  best_Layer_noLx = 6;
1399  }
1400 
1401  }
1402 
1403  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1404  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1405 
1406  }
1407  }
1408  }
1409 
1410  }
1411  }
1412  }
1413  }
1414 
1415  //************************************************************************;
1416  //*** End segment building *******************************************;
1417  //************************************************************************;
1418 
1419  // Important part! Here segment(s) are actually chosen. All the good segments
1420  // could be chosen or some (best) ones only (in order to save time).
1421 
1422  // Check if there is a segment with n-1 hits that has a signifcantly better
1423  // weight than the best n hit segment
1424 
1425  // IBL 070828: implicit assumption here is that there will always only be one segment per
1426  // cluster - if there are >1 we will need to find out which segment the alternative n-1 hit
1427  // protosegment belongs to!
1428 
1429 
1430  //float chosen_weight = min_weight_A;
1431  //float chosen_ywgt = best_weight_B;
1432  //float chosen_curv = best_curv_A;
1433  //int chosen_nlayers = n_layers_occupied_tot;
1434  int chosen_pseg = best_pseg;
1435  if (best_pseg<0) {
1436  return segmentInChamber;
1437  }
1440 
1441  float hit_drop_limit = -999999.999;
1442 
1443  // define different weight improvement requirements depending on how many layers are in the segment candidate
1444  switch ( n_layers_processed ) {
1445  case 1 :
1446  // do nothing;
1447  break;
1448  case 2 :
1449  // do nothing;
1450  break;
1451  case 3 :
1452  // do nothing;
1453  break;
1454  case 4 :
1455  hit_drop_limit = hitDropLimit6Hits * (1./2.) * hitDropLimit4Hits;
1456  if ((best_Layer_noLx < 1) || (best_Layer_noLx > 4)) {
1457  // std::cout<<"CSCSegAlgoST: For four layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl;
1458  }
1459  if ((best_Layer_noLx == 2) || (best_Layer_noLx == 3)) hit_drop_limit = hit_drop_limit * (1./2.);
1460  break;
1461  case 5 :
1462  hit_drop_limit = hitDropLimit6Hits * (2./3.) * hitDropLimit5Hits;
1463  if ((best_Layer_noLx < 1) || (best_Layer_noLx > 5)) {
1464  // std::cout<<"CSCSegAlgoST: For five layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl;
1465  }
1466  if ((best_Layer_noLx == 2) || (best_Layer_noLx == 4)) hit_drop_limit = hit_drop_limit * (1./2.);
1467  if (best_Layer_noLx == 3) hit_drop_limit = hit_drop_limit * (1./3.);
1468  break;
1469  case 6 :
1470  hit_drop_limit = hitDropLimit6Hits * (3./4.);
1471  if ((best_Layer_noLx < 1) || (best_Layer_noLx > 6)) {
1472  // std::cout<<"CSCSegAlgoST: For six layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl;
1473  }
1474  if ((best_Layer_noLx == 2) || (best_Layer_noLx == 5)) hit_drop_limit = hit_drop_limit * (1./2.);
1475  if ((best_Layer_noLx == 3) || (best_Layer_noLx == 4)) hit_drop_limit = hit_drop_limit * (1./3.);
1476  break;
1477 
1478  default :
1479  // Fallback - should never occur.
1480  LogTrace("CSCSegment|CSC") << "[CSCSegAlgoST::buildSegments] Unexpected number of layers with hits - please inform CSC DPG.";
1481  hit_drop_limit = 0.1;
1482  }
1483 
1484  // choose the NoLx collection (the one that contains the best N-1 candidate)
1485  switch ( best_Layer_noLx ) {
1486  case 1 :
1487  Psegments_noLx.clear();
1489  weight_noLx_A.clear();
1491  break;
1492  case 2 :
1493  Psegments_noLx.clear();
1495  weight_noLx_A.clear();
1497  break;
1498  case 3 :
1499  Psegments_noLx.clear();
1501  weight_noLx_A.clear();
1503  break;
1504  case 4 :
1505  Psegments_noLx.clear();
1507  weight_noLx_A.clear();
1509  break;
1510  case 5 :
1511  Psegments_noLx.clear();
1513  weight_noLx_A.clear();
1515  break;
1516  case 6 :
1517  Psegments_noLx.clear();
1519  weight_noLx_A.clear();
1521  break;
1522 
1523  default :
1524  // Fallback - should occur only for preclusters with only 3 layers with hits.
1525  Psegments_noLx.clear();
1526  weight_noLx_A.clear();
1527  }
1528 
1529  if( min_weight_A > 0. ) {
1530  if ( min_weight_noLx_A/min_weight_A < hit_drop_limit ) {
1531  //chosen_weight = min_weight_noLx_A;
1532  //chosen_ywgt = best_weight_noLx_B;
1533  //chosen_curv = best_curv_noLx_A;
1534  //chosen_nlayers = n_layers_occupied_tot-1;
1535  chosen_pseg = best_noLx_pseg;
1536  chosen_Psegments.clear();
1537  chosen_weight_A.clear();
1540  }
1541  }
1542 
1543  if(onlyBestSegment) {
1544  ChooseSegments2a( chosen_Psegments, chosen_pseg );
1545  }
1546  else {
1548  }
1549 
1550  for(unsigned int iSegment=0; iSegment<GoodSegments.size();++iSegment){
1551  protoSegment = GoodSegments[iSegment];
1552 
1553  // Create new fitter object
1554  CSCCondSegFit* segfit = new CSCCondSegFit( pset(), chamber(), protoSegment );
1555  condpass1 = false;
1556  condpass2 = false;
1557  segfit->setScaleXError( 1.0 );
1558  segfit->fit(condpass1, condpass2);
1559 
1560  // Attempt to handle numerical instability of the fit.
1561  // (Any segment with chi2/dof > chi2Norm_3D_ is considered
1562  // as potentially suffering from numerical instability in fit.)
1563  if( adjustCovariance() ){
1564  // Call the fit with prefitting option:
1565  // First fit a straight line to X-Z coordinates and calculate chi2
1566  // This is done in CSCCondSegFit::correctTheCovX()
1567  // Scale up errors in X if this chi2 is too big (default 'too big' is >20);
1568  // Then refit XY-Z with the scaled-up X errors
1569  if(segfit->chi2()/segfit->ndof()>chi2Norm_3D_){
1570  condpass1 = true;
1571  segfit->fit(condpass1, condpass2);
1572  }
1573  if(segfit->scaleXError() < 1.00005){
1574  LogTrace("CSCWeirdSegment") << "[CSCSegAlgoST::buildSegments] Segment ErrXX scaled and refit " << std::endl;
1575  if(segfit->chi2()/segfit->ndof()>chi2Norm_3D_){
1576  // Call the fit with direct adjustment of condition number;
1577  // If the attempt to improve fit by scaling up X error fails
1578  // call the procedure to make the condition number of M compatible with
1579  // the precision of X and Y measurements;
1580  // Achieved by decreasing abs value of the Covariance
1581  LogTrace("CSCWeirdSegment") << "[CSCSegAlgoST::buildSegments] Segment ErrXY changed to match cond. number and refit " << std::endl;
1582  condpass2 = true;
1583  segfit->fit(condpass1, condpass2);
1584  }
1585  }
1586  // Call the pre-pruning procedure;
1587  // If the attempt to improve fit by scaling up X error is successfull,
1588  // while scale factor for X errors is too big.
1589  // Prune the recHit inducing the biggest contribution into X-Z chi^2
1590  // and refit;
1591  if(prePrun_ && (sqrt(segfit->scaleXError())>prePrunLimit_) &&
1592  (segfit->nhits()>3)){
1593  LogTrace("CSCWeirdSegment") << "[CSCSegAlgoST::buildSegments] Scale factor chi2uCorrection too big, pre-Prune and refit " << std::endl;
1594  protoSegment.erase(protoSegment.begin() + segfit->worstHit(),
1595  protoSegment.begin() + segfit->worstHit()+1 );
1596 
1597  // Need to create new fitter object to repeat fit with fewer hits
1598  // Original code maintained current values of condpass1, condpass2, scaleXError - calc in CorrectTheCovX()
1599  //@@ DO THE SAME THING HERE, BUT IS THAT CORRECT?! It does make a difference.
1600  double tempcorr = segfit->scaleXError(); // save current value
1601  delete segfit;
1602  segfit = new CSCCondSegFit( pset(), chamber(), protoSegment );
1603  segfit->setScaleXError( tempcorr ); // reset to previous value (rather than init to 1)
1604  segfit->fit(condpass1, condpass2);
1605  }
1606  }
1607 
1608  // calculate covariance matrix
1609  // AlgebraicSymMatrix temp2 = segfit->covarianceMatrix();
1610 
1611  // build an actual CSC segment
1612  CSCSegment temp(protoSegment, segfit->intercept(), segfit->localdir(),
1613  segfit->covarianceMatrix(), segfit->chi2() );
1614  delete segfit;
1615 
1616  if( debug ) dumpSegment( temp );
1617 
1618  segmentInChamber.push_back(temp);
1619  }
1620  return segmentInChamber;
1621 }
int i
Definition: DBlmapReader.cc:9
LocalVector localdir() const
Definition: CSCSegFit.h:88
std::vector< ChamberHitContainer > Psegments_noL5
Definition: CSCSegAlgoST.h:131
std::vector< float > curv_noL2_A
Definition: CSCSegAlgoST.h:145
bool condpass1
Flag whether to &#39;improve&#39; covariance matrix.
Definition: CSCSegAlgoST.h:193
const CSCChamber * chamber() const
Definition: CSCSegAlgoST.h:112
void dumpSegment(const CSCSegment &seg) const
CSCSegment showerSeg(const CSCChamber *aChamber, const ChamberHitContainer &rechits)
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:119
std::vector< float > weight_noL4_A
Definition: CSCSegAlgoST.h:139
std::vector< float > curv_noL6_A
Definition: CSCSegAlgoST.h:149
void ChooseSegments3(int best_seg)
int worstHit(void)
Definition: CSCCondSegFit.h:38
std::vector< float > weight_noL3_B
Definition: CSCSegAlgoST.h:153
const edm::ParameterSet & pset(void) const
Definition: CSCSegAlgoST.h:86
std::vector< ChamberHitContainer > Psegments_noL1
Definition: CSCSegAlgoST.h:127
std::vector< ChamberHitContainer > chosen_Psegments
Definition: CSCSegAlgoST.h:133
std::vector< ChamberHitContainer > Psegments
Definition: CSCSegAlgoST.h:125
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
std::vector< float > weight_noL3_A
Definition: CSCSegAlgoST.h:138
double hitDropLimit4Hits
Definition: CSCSegAlgoST.h:178
size_t nhits(void) const
Definition: CSCSegFit.h:84
CSCSegAlgoShowering * showering_
Definition: CSCSegAlgoST.h:117
int nRecHits() const
Definition: CSCSegment.h:67
T sqrt(T t)
Definition: SSEVec.h:48
std::vector< ChamberHitContainer > Psegments_noLx
Definition: CSCSegAlgoST.h:126
double curvePenaltyThreshold
Definition: CSCSegAlgoST.h:187
double chi2(void) const
Definition: CSCSegFit.h:85
std::vector< ChamberHitContainer > Psegments_noL4
Definition: CSCSegAlgoST.h:130
double hitDropLimit6Hits
Definition: CSCSegAlgoST.h:180
std::vector< float > weight_A
Definition: CSCSegAlgoST.h:134
std::vector< float > weight_noL1_B
Definition: CSCSegAlgoST.h:151
int ndof(void) const
Definition: CSCSegFit.h:86
std::vector< float > curv_noL5_A
Definition: CSCSegAlgoST.h:148
std::vector< ChamberHitContainer > Psegments_noL6
Definition: CSCSegAlgoST.h:132
#define end
Definition: vmac.h:37
bool onlyBestSegment
Definition: CSCSegAlgoST.h:175
#define LogTrace(id)
std::vector< ChamberHitContainer > Psegments_noL2
Definition: CSCSegAlgoST.h:128
std::vector< float > weight_noL5_A
Definition: CSCSegAlgoST.h:140
std::vector< float > weight_noL1_A
Definition: CSCSegAlgoST.h:136
std::vector< float > curv_noL4_A
Definition: CSCSegAlgoST.h:147
std::vector< float > weight_noL2_A
Definition: CSCSegAlgoST.h:137
int ring() const
Definition: CSCDetId.h:88
std::vector< float > chosen_weight_A
Definition: CSCSegAlgoST.h:142
Segments GoodSegments
Definition: CSCSegAlgoST.h:120
bool adjustCovariance(void)
Definition: CSCSegAlgoST.h:89
int minHitsPerSegment
Definition: CSCSegAlgoST.h:164
ChamberHitContainer Psegments_hits
Definition: CSCSegAlgoST.h:123
AlgebraicSymMatrix covarianceMatrix(void)
Definition: CSCSegFit.cc:378
std::vector< float > curv_noL1_A
Definition: CSCSegAlgoST.h:144
void setScaleXError(double factor)
Definition: CSCSegFit.h:70
double theWeight(double coordinate_1, double coordinate_2, double coordinate_3, float layer_1, float layer_2, float layer_3)
Utility functions.
LocalPoint intercept() const
Definition: CSCSegFit.h:87
double curvePenalty
Definition: CSCSegAlgoST.h:188
std::vector< float > curv_A
Definition: CSCSegAlgoST.h:143
bool prePrun_
Chi^2 normalization for the initial fit.
Definition: CSCSegAlgoST.h:197
double chi2() const
Chi2 of the segment fit.
Definition: CSCSegment.h:57
double yweightPenalty
Definition: CSCSegAlgoST.h:185
std::vector< float > weight_noL5_B
Definition: CSCSegAlgoST.h:155
std::vector< float > weight_B
Definition: CSCSegAlgoST.h:150
float a_yweightPenaltyThreshold[5][5]
Definition: CSCSegAlgoST.h:182
void ChooseSegments2a(std::vector< ChamberHitContainer > &best_segments, int best_seg)
int maxRecHitsInCluster
Definition: CSCSegAlgoST.h:169
std::vector< float > weight_noL6_A
Definition: CSCSegAlgoST.h:141
std::vector< float > weight_noL2_B
Definition: CSCSegAlgoST.h:152
double hitDropLimit5Hits
Definition: CSCSegAlgoST.h:179
std::vector< float > weight_noLx_A
Definition: CSCSegAlgoST.h:135
std::vector< float > curv_noL3_A
Definition: CSCSegAlgoST.h:146
std::vector< float > weight_noL6_B
Definition: CSCSegAlgoST.h:156
void fit(bool condpass1=false, bool condpass2=false)
tuple size
Write out results.
ChamberHitContainer PAhits_onLayer[6]
Definition: CSCSegAlgoST.h:122
double scaleXError(void) const
Definition: CSCSegFit.h:83
std::vector< float > weight_noL4_B
Definition: CSCSegAlgoST.h:154
std::vector< ChamberHitContainer > Psegments_noL3
Definition: CSCSegAlgoST.h:129
double chi2Norm_3D_
Definition: CSCSegAlgoST.h:195
double prePrunLimit_
Definition: CSCSegAlgoST.h:199
std::vector<CSCSegment> CSCSegAlgoST::buildSegments2 ( const ChamberHitContainer rechits)

Build track segments in this chamber (this is where the actual segment-building algorithm hides.)

std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoST::chainHits ( const CSCChamber aChamber,
const ChamberHitContainer rechits 
)

Definition at line 512 of file CSCSegAlgoST.cc.

References begin, CSCChamberSpecs::chamberTypeName(), end, CSCChamberSpecs::gangedStrips(), i, isGoodToMerge(), CSCChamber::specs(), and groupFilesInBlocks::temp.

Referenced by run().

512  {
513 
514  std::vector<ChamberHitContainer> rechits_chains; // this is a collection of groups of rechits
515 
516 
517  std::vector<const CSCRecHit2D*> temp;
518 
519  std::vector< ChamberHitContainer > seeds;
520 
521  std::vector <bool> usedCluster;
522 
523  // split rechits into subvectors and return vector of vectors:
524  // Loop over rechits
525  // Create one seed per hit
526  //std::cout<<" rechits.size() = "<<rechits.size()<<std::endl;
527  for(unsigned int i = 0; i < rechits.size(); ++i) {
528  temp.clear();
529  temp.push_back(rechits[i]);
530  seeds.push_back(temp);
531  usedCluster.push_back(false);
532  }
533  // Only ME1/1A can have ganged strips so no need to test name
534  bool gangedME11a = false;
535  if ( ("ME1/a" == aChamber->specs()->chamberTypeName()) && aChamber->specs()->gangedStrips() ){
536  // if ( aChamber->specs()->gangedStrips() ){
537  gangedME11a = true;
538  }
539  // merge chains that are too close ("touch" each other)
540  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
541  for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) {
542  if(usedCluster[MMM] || usedCluster[NNN]){
543  continue;
544  }
545  // all is in the way we define "good";
546  // try not to "cluster" the hits but to "chain" them;
547  // it does the clustering but also does a better job
548  // for inclined tracks (not clustering them together;
549  // crossed tracks would be still clustered together)
550  // 22.12.09: In fact it is not much more different
551  // than the "clustering", we just introduce another
552  // variable in the game - Z. And it makes sense
553  // to re-introduce Y (or actually wire group mumber)
554  // in a similar way as for the strip number - see
555  // the code below.
556  bool goodToMerge = isGoodToMerge(gangedME11a, seeds[NNN], seeds[MMM]);
557  if(goodToMerge){
558  // merge chains!
559  // merge by adding seed NNN to seed MMM and erasing seed NNN
560 
561  // add seed NNN to MMM (lower to larger number)
562  seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end());
563 
564  // mark seed NNN as used
565  usedCluster[NNN] = true;
566  // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to
567  // next seed (NNN+1)
568  break;
569  }
570 
571  }
572  }
573 
574  // hand over the final seeds to the output
575  // would be more elegant if we could do the above step with
576  // erasing the merged ones, rather than the
577 
578  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
579  if(usedCluster[NNN]) continue; //skip seeds that have been marked as used up in merging
580  rechits_chains.push_back(seeds[NNN]);
581  }
582 
583  //***************************************************************
584 
585  return rechits_chains;
586 }
int i
Definition: DBlmapReader.cc:9
bool isGoodToMerge(bool isME11a, ChamberHitContainer &newChain, ChamberHitContainer &oldChain)
std::string chamberTypeName() const
const CSCChamberSpecs * specs() const
Definition: CSCChamber.h:42
#define end
Definition: vmac.h:37
bool gangedStrips() const
#define begin
Definition: vmac.h:30
const CSCChamber* CSCSegAlgoST::chamber ( ) const
inlineprivate

Definition at line 112 of file CSCSegAlgoST.h.

References theChamber.

Referenced by buildSegments(), dumpSegment(), geometryXMLparser.CSCAlignable::index(), and prune_bad_hits().

112 {return theChamber;}
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:119
void CSCSegAlgoST::ChooseSegments ( void  )
private
void CSCSegAlgoST::ChooseSegments2 ( int  best_seg)
private

Definition at line 1681 of file CSCSegAlgoST.cc.

References GoodSegments, LogTrace, Psegments, findQualityFiles::size, and weight_A.

1681  {
1682  // std::vector <int> CommonHits(6); // nice concept :)
1683  std::vector <unsigned int> BadCandidate;
1684  int SumCommonHits =0;
1685  GoodSegments.clear();
1686  BadCandidate.clear();
1687  for(unsigned int iCand=0;iCand<Psegments.size();++iCand) {
1688  // skip here if segment was marked bad
1689  for(unsigned int iiCand=iCand+1;iiCand<Psegments.size();++iiCand){
1690  // skip here too if segment was marked bad
1691  SumCommonHits =0;
1692  if( Psegments[iCand].size() != Psegments[iiCand].size() ) {
1693  LogTrace("CSCSegment|CSC") << "[CSCSegAlgoST::ChooseSegments2] ALARM!! Should not happen - please inform CSC DPG";
1694  }
1695  else {
1696  for( int ihits = 0; ihits < int(Psegments[iCand].size()); ++ihits ) { // iCand and iiCand NEED to have same nr of hits! (alsways have by construction)
1697  if( Psegments[iCand][ihits] == Psegments[iiCand][ihits]) {
1698  ++SumCommonHits;
1699  }
1700  }
1701  }
1702  if(SumCommonHits>1) {
1703  if( weight_A[iCand]>weight_A[iiCand] ) { // use weight_A here
1704  BadCandidate.push_back(iCand);
1705  // rather mark segment bad by an array which is in sync with protosegments!! e.g. set weight = weight*1000 or have an addidional array or set it to weight *= -1
1706  }
1707  else{
1708  BadCandidate.push_back(iiCand);
1709  // rather mark segment bad by an array which is in sync with protosegments!! e.g. set weight = weight*1000 or have an addidional array or set it to weight *= -1
1710  }
1711  }
1712  }
1713  }
1714  bool discard;
1715  for(unsigned int isegm=0;isegm<Psegments.size();++isegm) {
1716  // For best results another iteration/comparison over Psegments
1717  //should be applied here... It would make the program much slower.
1718  discard = false;
1719  for(unsigned int ibad=0;ibad<BadCandidate.size();++ibad) {
1720  // can save this loop if we used an array in sync with Psegments!!!!
1721  if(isegm == BadCandidate[ibad]) {
1722  discard = true;
1723  }
1724  }
1725  if(!discard) {
1726  GoodSegments.push_back( Psegments[isegm] );
1727  }
1728  }
1729 }
std::vector< ChamberHitContainer > Psegments
Definition: CSCSegAlgoST.h:125
std::vector< float > weight_A
Definition: CSCSegAlgoST.h:134
#define LogTrace(id)
Segments GoodSegments
Definition: CSCSegAlgoST.h:120
tuple size
Write out results.
void CSCSegAlgoST::ChooseSegments2a ( std::vector< ChamberHitContainer > &  best_segments,
int  best_seg 
)
private

Definition at line 1623 of file CSCSegAlgoST.cc.

References GoodSegments.

Referenced by buildSegments().

1623  {
1624  // just return best segment
1625  GoodSegments.clear();
1626  GoodSegments.push_back( chosen_segments[chosen_seg] );
1627 }
Segments GoodSegments
Definition: CSCSegAlgoST.h:120
void CSCSegAlgoST::ChooseSegments3 ( int  best_seg)
private

Referenced by buildSegments().

void CSCSegAlgoST::ChooseSegments3 ( std::vector< ChamberHitContainer > &  best_segments,
std::vector< float > &  best_weight,
int  best_seg 
)
private

Definition at line 1629 of file CSCSegAlgoST.cc.

References GoodSegments, and findQualityFiles::size.

1629  {
1630 
1631  int SumCommonHits = 0;
1632  GoodSegments.clear();
1633  int nr_remaining_candidates;
1634  unsigned int nr_of_segment_candidates;
1635 
1636  nr_remaining_candidates = nr_of_segment_candidates = chosen_segments.size();
1637 
1638  // always select and return best protosegment:
1639  GoodSegments.push_back( chosen_segments[ chosen_seg ] );
1640 
1641  float chosen_weight_temp = 999999.;
1642  int chosen_seg_temp = -1;
1643 
1644  // try to find further segment candidates:
1645  while( nr_remaining_candidates > 0 ) {
1646 
1647  for(unsigned int iCand=0; iCand < nr_of_segment_candidates; ++iCand) {
1648  //only compare current best to psegs that have not been marked bad:
1649  if( chosen_weight[iCand] < 0. ) continue;
1650  SumCommonHits = 0;
1651 
1652  for( int ihits = 0; ihits < int(chosen_segments[iCand].size()); ++ihits ) { // iCand and iiCand NEED to have same nr of hits! (always have by construction)
1653  if( chosen_segments[iCand][ihits] == chosen_segments[chosen_seg][ihits]) {
1654  ++SumCommonHits;
1655  }
1656  }
1657 
1658  //mark a pseg bad:
1659  if(SumCommonHits>1) { // needs to be a card; should be investigated first
1660  chosen_weight[iCand] = -1.;
1661  nr_remaining_candidates -= 1;
1662  }
1663  else {
1664  // save the protosegment with the smallest weight
1665  if( chosen_weight[ iCand ] < chosen_weight_temp ) {
1666  chosen_weight_temp = chosen_weight[ iCand ];
1667  chosen_seg_temp = iCand ;
1668  }
1669  }
1670  }
1671 
1672  if( chosen_seg_temp > -1 ) GoodSegments.push_back( chosen_segments[ chosen_seg_temp ] );
1673 
1674  chosen_seg = chosen_seg_temp;
1675  // re-initialze temporary best parameters
1676  chosen_weight_temp = 999999;
1677  chosen_seg_temp = -1;
1678  }
1679 }
Segments GoodSegments
Definition: CSCSegAlgoST.h:120
tuple size
Write out results.
std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoST::clusterHits ( const CSCChamber aChamber,
const ChamberHitContainer rechits 
)

Build groups of rechits that are separated in x and y to save time on the segment finding

Definition at line 396 of file CSCSegAlgoST.cc.

References begin, dXclusBoxMax, dYclusBoxMax, end, i, LogTrace, findQualityFiles::size, groupFilesInBlocks::temp, theChamber, x, and y.

Referenced by run().

396  {
397  theChamber = aChamber;
398 
399  std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits
400  // const float dXclus_box_cut = 4.; // seems to work reasonably 070116
401  // const float dYclus_box_cut = 8.; // seems to work reasonably 070116
402 
403  //float dXclus = 0.0;
404  //float dYclus = 0.0;
405  float dXclus_box = 0.0;
406  float dYclus_box = 0.0;
407 
408  std::vector<const CSCRecHit2D*> temp;
409 
410  std::vector< ChamberHitContainer > seeds;
411 
412  std::vector<float> running_meanX;
413  std::vector<float> running_meanY;
414 
415  std::vector<float> seed_minX;
416  std::vector<float> seed_maxX;
417  std::vector<float> seed_minY;
418  std::vector<float> seed_maxY;
419 
420  //std::cout<<"*************************************************************"<<std::endl;
421  //std::cout<<"Called clusterHits in Chamber "<< theChamber->specs()->chamberTypeName()<<std::endl;
422  //std::cout<<"*************************************************************"<<std::endl;
423 
424  // split rechits into subvectors and return vector of vectors:
425  // Loop over rechits
426  // Create one seed per hit
427  for(unsigned int i = 0; i < rechits.size(); ++i) {
428 
429  temp.clear();
430 
431  temp.push_back(rechits[i]);
432 
433  seeds.push_back(temp);
434 
435  // First added hit in seed defines the mean to which the next hit is compared
436  // for this seed.
437 
438  running_meanX.push_back( rechits[i]->localPosition().x() );
439  running_meanY.push_back( rechits[i]->localPosition().y() );
440 
441  // set min/max X and Y for box containing the hits in the precluster:
442  seed_minX.push_back( rechits[i]->localPosition().x() );
443  seed_maxX.push_back( rechits[i]->localPosition().x() );
444  seed_minY.push_back( rechits[i]->localPosition().y() );
445  seed_maxY.push_back( rechits[i]->localPosition().y() );
446  }
447 
448  // merge clusters that are too close
449  // measure distance between final "running mean"
450  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
451 
452  for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) {
453  if(running_meanX[MMM] == 999999. || running_meanX[NNN] == 999999. ) {
454  LogTrace("CSCSegment|CSC") << "[CSCSegAlgoST::clusterHits] ALARM! Skipping used seeds, this should not happen - inform CSC DPG";
455  // std::cout<<"We should never see this line now!!!"<<std::endl;
456  continue; //skip seeds that have been used
457  }
458 
459  // calculate cut criteria for simple running mean distance cut:
460  //dXclus = fabs(running_meanX[NNN] - running_meanX[MMM]);
461  //dYclus = fabs(running_meanY[NNN] - running_meanY[MMM]);
462 
463  // calculate minmal distance between precluster boxes containing the hits:
464  if ( running_meanX[NNN] > running_meanX[MMM] ) dXclus_box = seed_minX[NNN] - seed_maxX[MMM];
465  else dXclus_box = seed_minX[MMM] - seed_maxX[NNN];
466  if ( running_meanY[NNN] > running_meanY[MMM] ) dYclus_box = seed_minY[NNN] - seed_maxY[MMM];
467  else dYclus_box = seed_minY[MMM] - seed_maxY[NNN];
468 
469 
470  if( dXclus_box < dXclusBoxMax && dYclus_box < dYclusBoxMax ) {
471  // merge clusters!
472  // merge by adding seed NNN to seed MMM and erasing seed NNN
473 
474  // calculate running mean for the merged seed:
475  running_meanX[MMM] = (running_meanX[NNN]*seeds[NNN].size() + running_meanX[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size());
476  running_meanY[MMM] = (running_meanY[NNN]*seeds[NNN].size() + running_meanY[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size());
477 
478  // update min/max X and Y for box containing the hits in the merged cluster:
479  if ( seed_minX[NNN] <= seed_minX[MMM] ) seed_minX[MMM] = seed_minX[NNN];
480  if ( seed_maxX[NNN] > seed_maxX[MMM] ) seed_maxX[MMM] = seed_maxX[NNN];
481  if ( seed_minY[NNN] <= seed_minY[MMM] ) seed_minY[MMM] = seed_minY[NNN];
482  if ( seed_maxY[NNN] > seed_maxY[MMM] ) seed_maxY[MMM] = seed_maxY[NNN];
483 
484  // add seed NNN to MMM (lower to larger number)
485  seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end());
486 
487  // mark seed NNN as used (at the moment just set running mean to 999999.)
488  running_meanX[NNN] = 999999.;
489  running_meanY[NNN] = 999999.;
490  // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to
491  // next seed (NNN+1)
492  break;
493  }
494 
495  }
496  }
497 
498  // hand over the final seeds to the output
499  // would be more elegant if we could do the above step with
500  // erasing the merged ones, rather than the
501  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
502  if(running_meanX[NNN] == 999999.) continue; //skip seeds that have been marked as used up in merging
503  rechits_clusters.push_back(seeds[NNN]);
504  }
505 
506  //***************************************************************
507 
508  return rechits_clusters;
509 }
int i
Definition: DBlmapReader.cc:9
double dXclusBoxMax
Definition: CSCSegAlgoST.h:167
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:119
#define end
Definition: vmac.h:37
#define LogTrace(id)
double dYclusBoxMax
Definition: CSCSegAlgoST.h:168
#define begin
Definition: vmac.h:30
tuple size
Write out results.
void CSCSegAlgoST::dumpSegment ( const CSCSegment seg) const
private

Definition at line 1759 of file CSCSegAlgoST.cc.

References chamber(), CSCSegment::chi2(), CSCSegment::degreesOfFreedom(), CSCChamber::id(), CSCSegment::localDirection(), CSCSegment::localDirectionError(), CSCSegment::localPosition(), CSCSegment::localPositionError(), CSCSegment::parametersError(), CSCSegment::specificRecHits(), and CSCSegment::time().

Referenced by buildSegments().

1759  {
1760 
1761  // Only called if pset value 'CSCDebug' is set in config
1762 
1763  edm::LogVerbatim("CSCSegment") << "CSCSegment in " << chamber()->id()
1764  << "\nlocal position = " << seg.localPosition()
1765  << "\nerror = " << seg.localPositionError()
1766  << "\nlocal direction = " << seg.localDirection()
1767  << "\nerror =" << seg.localDirectionError()
1768  << "\ncovariance matrix"
1769  << seg.parametersError()
1770  << "chi2/ndf = " << seg.chi2() << "/" << seg.degreesOfFreedom()
1771  << "\n#rechits = " << seg.specificRecHits().size()
1772  << "\ntime = " << seg.time();
1773 }
const CSCChamber * chamber() const
Definition: CSCSegAlgoST.h:112
CSCDetId id() const
Get the (concrete) DetId.
Definition: CSCChamber.h:37
LocalError localPositionError() const
Definition: CSCSegment.cc:47
virtual int degreesOfFreedom() const
Degrees of freedom of the segment fit.
Definition: CSCSegment.h:61
LocalPoint localPosition() const
Definition: CSCSegment.h:38
LocalVector localDirection() const
Local direction.
Definition: CSCSegment.h:41
const std::vector< CSCRecHit2D > & specificRecHits() const
Definition: CSCSegment.h:65
AlgebraicSymMatrix parametersError() const
Covariance matrix of parameters()
Definition: CSCSegment.h:48
double chi2() const
Chi2 of the segment fit.
Definition: CSCSegment.h:57
float time() const
Definition: CSCSegment.cc:149
LocalError localDirectionError() const
Error on the local direction.
Definition: CSCSegment.cc:51
void CSCSegAlgoST::findDuplicates ( std::vector< CSCSegment > &  segments)
private

Definition at line 1732 of file CSCSegAlgoST.cc.

Referenced by run().

1732  {
1733  // this is intended for ME1/1a only - we have ghost segments because of the strips ganging
1734  // this function finds them (first the rechits by sharesInput() )
1735  // if a segment shares all the rechits with another segment it is a duplicate (even if
1736  // it has less rechits)
1737 
1738  for(std::vector<CSCSegment>::iterator it=segments.begin(); it != segments.end(); ++it) {
1739  std::vector<CSCSegment*> duplicateSegments;
1740  for(std::vector<CSCSegment>::iterator it2=segments.begin(); it2 != segments.end(); ++it2) {
1741  //
1742  bool allShared = true;
1743  if(it!=it2){
1744  allShared = it->sharesRecHits(*it2);
1745  }
1746  else{
1747  allShared = false;
1748  }
1749  //
1750  if(allShared){
1751  duplicateSegments.push_back(&(*it2));
1752  }
1753  }
1754  it->setDuplicateSegments(duplicateSegments);
1755  }
1756 
1757 }
bool CSCSegAlgoST::isGoodToMerge ( bool  isME11a,
ChamberHitContainer newChain,
ChamberHitContainer oldChain 
)
private

Definition at line 588 of file CSCSegAlgoST.cc.

Referenced by chainHits().

588  {
589  for(size_t iRH_new = 0;iRH_new<newChain.size();++iRH_new){
590  int layer_new = newChain[iRH_new]->cscDetId().layer()-1;
591  int middleStrip_new = newChain[iRH_new]->nStrips()/2;
592  int centralStrip_new = newChain[iRH_new]->channels(middleStrip_new);
593  int centralWire_new = newChain[iRH_new]->hitWire();
594  bool layerRequirementOK = false;
595  bool stripRequirementOK = false;
596  bool wireRequirementOK = false;
597  bool goodToMerge = false;
598  for(size_t iRH_old = 0;iRH_old<oldChain.size();++iRH_old){
599  int layer_old = oldChain[iRH_old]->cscDetId().layer()-1;
600  int middleStrip_old = oldChain[iRH_old]->nStrips()/2;
601  int centralStrip_old = oldChain[iRH_old]->channels(middleStrip_old);
602  int centralWire_old = oldChain[iRH_old]->hitWire();
603 
604  // to be chained, two hits need to be in neighbouring layers...
605  // or better allow few missing layers (upto 3 to avoid inefficiencies);
606  // however we'll not make an angle correction because it
607  // worsen the situation in some of the "regular" cases
608  // (not making the correction means that the conditions for
609  // forming a cluster are different if we have missing layers -
610  // this could affect events at the boundaries )
611  if(layer_new==layer_old+1 || layer_new==layer_old-1 ||
612  layer_new==layer_old+2 || layer_new==layer_old-2 ||
613  layer_new==layer_old+3 || layer_new==layer_old-3 ||
614  layer_new==layer_old+4 || layer_new==layer_old-4 ){
615  layerRequirementOK = true;
616  }
617  int allStrips = 48;
618  //to be chained, two hits need to be "close" in strip number (can do it in phi
619  // but it doesn't really matter); let "close" means upto 2 strips (3?) -
620  // this is more compared to what CLCT readout patterns allow
621  if(centralStrip_new==centralStrip_old ||
622  centralStrip_new==centralStrip_old+1 || centralStrip_new==centralStrip_old-1 ||
623  centralStrip_new==centralStrip_old+2 || centralStrip_new==centralStrip_old-2){
624  stripRequirementOK = true;
625  }
626  // same for wires (and ALCT patterns)
627  if(centralWire_new==centralWire_old ||
628  centralWire_new==centralWire_old+1 || centralWire_new==centralWire_old-1 ||
629  centralWire_new==centralWire_old+2 || centralWire_new==centralWire_old-2){
630  wireRequirementOK = true;
631  }
632 
633  if(gangedME11a){
634  if(centralStrip_new==centralStrip_old+1-allStrips || centralStrip_new==centralStrip_old-1-allStrips ||
635  centralStrip_new==centralStrip_old+2-allStrips || centralStrip_new==centralStrip_old-2-allStrips ||
636  centralStrip_new==centralStrip_old+1+allStrips || centralStrip_new==centralStrip_old-1+allStrips ||
637  centralStrip_new==centralStrip_old+2+allStrips || centralStrip_new==centralStrip_old-2+allStrips){
638  stripRequirementOK = true;
639  }
640  }
641  if(layerRequirementOK && stripRequirementOK && wireRequirementOK){
642  goodToMerge = true;
643  return goodToMerge;
644  }
645  }
646  }
647  return false;
648 }
std::vector< CSCSegment > CSCSegAlgoST::prune_bad_hits ( const CSCChamber aChamber,
std::vector< CSCSegment > &  segments 
)

Remove bad hits from found segments based not only on chi2, but also on charge and further "low level" chamber information.

Definition at line 181 of file CSCSegAlgoST.cc.

References adjustCovariance(), begin, BPMinImprovement, BrutePruning, chamber(), CSCSegFit::chi2(), chi2Norm_3D_, ChiSquaredProbability(), condpass1, condpass2, CSCSegFit::covarianceMatrix(), alignCSCRings::e, CSCCondSegFit::fit(), CSCSegFit::intercept(), CSCChamber::layer(), CSCSegFit::localdir(), visualization-live-secondInstance_cfg::m, minHitsPerSegment, CSCSegFit::ndof(), nhits, protoSegment, pset(), CSCSegFit::scaleXError(), CSCSegFit::setScaleXError(), groupFilesInBlocks::temp, theChamber, GeomDet::toGlobal(), PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), and PV3DBase< T, PVType, FrameType >::z().

Referenced by run().

181  {
182 
183  // std::cout<<"*************************************************************"<<std::endl;
184  // std::cout<<"Called prune_bad_hits in Chamber "<< theChamber->specs()->chamberTypeName()<<std::endl;
185  // std::cout<<"*************************************************************"<<std::endl;
186 
187  std::vector<CSCSegment> segments_temp;
188  std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits
189 
190  const float chi2ndfProbMin = 1.0e-4;
191  bool use_brute_force = BrutePruning;
192 
193  int hit_nr = 0;
194  int hit_nr_worst = -1;
195  //int hit_nr_2ndworst = -1;
196 
197  for(std::vector<CSCSegment>::iterator it=segments.begin(); it != segments.end(); ++it) {
198 
199  // do nothing for nhit <= minHitPerSegment
200  if( (*it).nRecHits() <= minHitsPerSegment ) continue;
201 
202  if( !use_brute_force ) {// find worst hit
203 
204  float chisq = (*it).chi2();
205  int nhits = (*it).nRecHits();
206  LocalPoint localPos = (*it).localPosition();
207  LocalVector segDir = (*it).localDirection();
208  const CSCChamber* cscchamber = theChamber;
209  float globZ ;
210 
211  GlobalPoint globalPosition = cscchamber->toGlobal(localPos);
212  globZ = globalPosition.z();
213 
214 
215  if( ChiSquaredProbability((double)chisq,(double)(2*nhits-4)) < chi2ndfProbMin ) {
216 
217  // find (rough) "residuals" (NOT excluding the hit from the fit - speed!) of hits on segment
218  std::vector<CSCRecHit2D> theseRecHits = (*it).specificRecHits();
219  std::vector<CSCRecHit2D>::const_iterator iRH_worst;
220  //float xdist_local = -99999.;
221 
222  float xdist_local_worst_sig = -99999.;
223  float xdist_local_2ndworst_sig = -99999.;
224  float xdist_local_sig = -99999.;
225 
226  hit_nr = 0;
227  hit_nr_worst = -1;
228  //hit_nr_2ndworst = -1;
229 
230  for ( std::vector<CSCRecHit2D>::const_iterator iRH = theseRecHits.begin(); iRH != theseRecHits.end(); ++iRH) {
231  //mark "worst" hit:
232 
233  //float z_at_target ;
234  //float radius ;
235  float loc_x_at_target;
236  //float loc_y_at_target;
237  //float loc_z_at_target;
238 
239  //z_at_target = 0.;
240  //radius = 0.;
241 
242  // set the z target in CMS global coordinates:
243  const CSCLayer* csclayerRH = theChamber->layer((*iRH).cscDetId().layer());
244  LocalPoint localPositionRH = (*iRH).localPosition();
245  GlobalPoint globalPositionRH = csclayerRH->toGlobal(localPositionRH);
246 
247  LocalError rerrlocal = (*iRH).localPositionError();
248  float xxerr = rerrlocal.xx();
249 
250  float target_z = globalPositionRH.z(); // target z position in cm (z pos of the hit)
251 
252  if(target_z > 0.) {
253  loc_x_at_target = localPos.x() + (segDir.x()/fabs(segDir.z())*( target_z - globZ ));
254  //loc_y_at_target = localPos.y() + (segDir.y()/fabs(segDir.z())*( target_z - globZ ));
255  //loc_z_at_target = target_z;
256  }
257  else {
258  loc_x_at_target = localPos.x() + ((-1)*segDir.x()/fabs(segDir.z())*( target_z - globZ ));
259  //loc_y_at_target = localPos.y() + ((-1)*segDir.y()/fabs(segDir.z())*( target_z - globZ ));
260  //loc_z_at_target = target_z;
261  }
262  // have to transform the segments coordinates back to the local frame... how?!!!!!!!!!!!!
263 
264  //xdist_local = fabs(localPositionRH.x() - loc_x_at_target);
265  xdist_local_sig = fabs((localPositionRH.x() -loc_x_at_target)/(xxerr));
266 
267  if( xdist_local_sig > xdist_local_worst_sig ) {
268  xdist_local_2ndworst_sig = xdist_local_worst_sig;
269  xdist_local_worst_sig = xdist_local_sig;
270  iRH_worst = iRH;
271  //hit_nr_2ndworst = hit_nr_worst;
272  hit_nr_worst = hit_nr;
273  }
274  else if(xdist_local_sig > xdist_local_2ndworst_sig) {
275  xdist_local_2ndworst_sig = xdist_local_sig;
276  //hit_nr_2ndworst = hit_nr;
277  }
278  ++hit_nr;
279  }
280 
281  // reset worst hit number if certain criteria apply.
282  // Criteria: 2nd worst hit must be at least a factor of
283  // 1.5 better than the worst in terms of sigma:
284  if ( xdist_local_worst_sig / xdist_local_2ndworst_sig < 1.5 ) {
285  hit_nr_worst = -1;
286  //hit_nr_2ndworst = -1;
287  }
288  }
289  }
290 
291  // if worst hit was found, refit without worst hit and select if considerably better than original fit.
292  // Can also use brute force: refit all n-1 hit segments and choose one over the n hit if considerably "better"
293 
294  std::vector< CSCRecHit2D > buffer;
295  std::vector< std::vector< CSCRecHit2D > > reduced_segments;
296  std::vector< CSCRecHit2D > theseRecHits = (*it).specificRecHits();
297  float best_red_seg_prob = 0.0;
298  // usefor chi2 1 diff float best_red_seg_prob = 99999.;
299  buffer.clear();
300 
301  if( ChiSquaredProbability((double)(*it).chi2(),(double)((2*(*it).nRecHits())-4)) < chi2ndfProbMin ) {
302 
303  buffer = theseRecHits;
304 
305  // Dirty switch: here one can select to refit all possible subsets or just the one without the
306  // tagged worst hit:
307  if( use_brute_force ) { // Brute force method: loop over all possible segments:
308  for(size_t bi = 0; bi < buffer.size(); ++bi) {
309  reduced_segments.push_back(buffer);
310  reduced_segments[bi].erase(reduced_segments[bi].begin()+(bi),reduced_segments[bi].begin()+(bi+1));
311  }
312  }
313  else { // More elegant but still biased: erase only worst hit
314  // Comment: There is not a very strong correlation of the worst hit with the one that one should remove...
315  if( hit_nr_worst >= 0 && hit_nr_worst <= int(buffer.size()) ) {
316  // fill segment in buffer, delete worst hit
317  buffer.erase(buffer.begin()+(hit_nr_worst),buffer.begin()+(hit_nr_worst+1));
318  reduced_segments.push_back(buffer);
319  }
320  else {
321  // only fill segment in array, do not delete anything
322  reduced_segments.push_back(buffer);
323  }
324  }
325  }
326 
327  // Loop over the subsegments and fit (only one segment if "use_brute_force" is false):
328  for(size_t iSegment=0; iSegment<reduced_segments.size(); ++iSegment) {
329  // loop over hits on given segment and push pointers to hits into protosegment
330  protoSegment.clear();
331  for(size_t m = 0; m<reduced_segments[iSegment].size(); ++m ) {
332  protoSegment.push_back(&reduced_segments[iSegment][m]);
333  }
334 
335  // Create fitter object
336  CSCCondSegFit* segfit = new CSCCondSegFit( pset(), chamber(), protoSegment );
337  condpass1 = false;
338  condpass2 = false;
339  segfit->setScaleXError( 1.0 );
340  segfit->fit(condpass1, condpass2);
341 
342  // Attempt to handle numerical instability of the fit;
343  // The same as in the build method;
344  // Preprune is not applied;
345  if( adjustCovariance() ){
346  if(segfit->chi2()/segfit->ndof()>chi2Norm_3D_){
347  condpass1 = true;
348  segfit->fit(condpass1, condpass2);
349  }
350  if( (segfit->scaleXError() < 1.00005)&&(segfit->chi2()/segfit->ndof()>chi2Norm_3D_) ){
351  condpass2 = true;
352  segfit->fit(condpass1, condpass2);
353  }
354  }
355 
356  // calculate error matrix
357  // AlgebraicSymMatrix temp2 = segfit->covarianceMatrix();
358 
359  // build an actual segment
360  CSCSegment temp(protoSegment, segfit->intercept(), segfit->localdir(),
361  segfit->covarianceMatrix(), segfit->chi2() );
362 
363  // and finished with this fit
364  delete segfit;
365 
366  // n-hit segment is (*it)
367  // (n-1)-hit segment is temp
368  // replace n-hit segment with (n-1)-hit segment if segment probability is BPMinImprovement better
369  double oldchi2 = (*it).chi2();
370  double olddof = 2 * (*it).nRecHits() - 4;
371  double newchi2 = temp.chi2();
372  double newdof = 2 * temp.nRecHits() - 4;
373  if( ( ChiSquaredProbability(oldchi2,olddof) < (1./BPMinImprovement)*
374  ChiSquaredProbability(newchi2,newdof) )
375  && ( ChiSquaredProbability(newchi2,newdof) > best_red_seg_prob )
376  && ( ChiSquaredProbability(newchi2,newdof) > 1e-10 )
377  ) {
378  best_red_seg_prob = ChiSquaredProbability(newchi2,newdof);
379  // The (n-1)- segment is better than the n-hit segment.
380  // If it has at least minHitsPerSegment hits replace the n-hit segment
381  // with this better (n-1)-hit segment:
382  if( temp.nRecHits() >= minHitsPerSegment ) {
383  (*it) = temp;
384  }
385  }
386  } // end of loop over subsegments (iSegment)
387 
388  } // end loop over segments (it)
389 
390  return segments;
391 
392 }
float xx() const
Definition: LocalError.h:24
LocalVector localdir() const
Definition: CSCSegFit.h:88
bool condpass1
Flag whether to &#39;improve&#39; covariance matrix.
Definition: CSCSegAlgoST.h:193
const CSCChamber * chamber() const
Definition: CSCSegAlgoST.h:112
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:119
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:52
const edm::ParameterSet & pset(void) const
Definition: CSCSegAlgoST.h:86
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
double BPMinImprovement
Definition: CSCSegAlgoST.h:174
double chi2(void) const
Definition: CSCSegFit.h:85
T z() const
Definition: PV3DBase.h:64
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:39
int ndof(void) const
Definition: CSCSegFit.h:86
float ChiSquaredProbability(double chiSquared, double nrDOF)
bool adjustCovariance(void)
Definition: CSCSegAlgoST.h:89
int minHitsPerSegment
Definition: CSCSegAlgoST.h:164
AlgebraicSymMatrix covarianceMatrix(void)
Definition: CSCSegFit.cc:378
void setScaleXError(double factor)
Definition: CSCSegFit.h:70
LocalPoint intercept() const
Definition: CSCSegFit.h:87
#define begin
Definition: vmac.h:30
T x() const
Definition: PV3DBase.h:62
void fit(bool condpass1=false, bool condpass2=false)
double scaleXError(void) const
Definition: CSCSegFit.h:83
double chi2Norm_3D_
Definition: CSCSegAlgoST.h:195
const edm::ParameterSet& CSCSegAlgoST::pset ( void  ) const
inlineprivate

Definition at line 86 of file CSCSegAlgoST.h.

References ps_.

Referenced by buildSegments(), and prune_bad_hits().

86 { return ps_;}
const edm::ParameterSet ps_
Definition: CSCSegAlgoST.h:116
std::vector< CSCSegment > CSCSegAlgoST::run ( const CSCChamber aChamber,
const ChamberHitContainer rechits 
)

Build segments for all desired groups of hits

Definition at line 87 of file CSCSegAlgoST.cc.

References a, a_yweightPenaltyThreshold, b, buildSegments(), chainHits(), CSCChamberSpecs::chamberTypeName(), clusterHits(), findDuplicates(), CSCChamberSpecs::gangedStrips(), CSCChamber::id(), LogTrace, preClustering, preClustering_useChaining, prune_bad_hits(), Pruning, CSCChamber::specs(), theChamber, and yweightPenaltyThreshold.

87  {
88 
89  // Set member variable
90  theChamber = aChamber;
91 
92  LogTrace("CSCSegAlgoST") << "[CSCSegAlgoST::run] Start building segments in chamber " << theChamber->id();
93 
94  // pre-cluster rechits and loop over all sub clusters seperately
95  std::vector<CSCSegment> segments_temp;
96  std::vector<CSCSegment> segments;
97  std::vector<ChamberHitContainer> rechits_clusters; // a collection of clusters of rechits
98 
99  // Define yweight penalty depending on chamber.
100  // We fixed the relative ratios, but they can be scaled by parameters:
101 
102  for(int a = 0; a<5; ++a) {
103  for(int b = 0; b<5; ++b) {
104  a_yweightPenaltyThreshold[a][b] = 0.0;
105  }
106  }
107 
118 
119  if(preClustering) {
120  // run a pre-clusterer on the given rechits to split clearly-separated segment seeds:
122  // it uses X,Y,Z information; there are no configurable parameters used;
123  // the X, Y, Z "cuts" are just (much) wider than the LCT readout ones
124  // (which are actually not step functions); this new code could accomodate
125  // the clusterHits one below but we leave it for security and backward
126  // comparison reasons
127  rechits_clusters = chainHits( theChamber, rechits );
128  }
129  else{
130  // it uses X,Y information + configurable parameters
131  rechits_clusters = clusterHits( theChamber, rechits );
132  }
133  // loop over the found clusters:
134  for(std::vector<ChamberHitContainer>::iterator sub_rechits = rechits_clusters.begin(); sub_rechits != rechits_clusters.end(); ++sub_rechits ) {
135  // clear the buffer for the subset of segments:
136  segments_temp.clear();
137  // build the subset of segments:
138  segments_temp = buildSegments( (*sub_rechits) );
139  // add the found subset of segments to the collection of all segments in this chamber:
140  segments.insert( segments.end(), segments_temp.begin(), segments_temp.end() );
141  }
142  // Any pruning of hits?
143  if( Pruning ) {
144  segments_temp.clear(); // segments_temp needed?!?!
145  segments_temp = prune_bad_hits( theChamber, segments );
146  segments.clear(); // segments_temp needed?!?!
147  segments.swap(segments_temp); // segments_temp needed?!?!
148  }
149 
150  // Ganged strips in ME1/1A?
151  if ( ("ME1/a" == aChamber->specs()->chamberTypeName()) && aChamber->specs()->gangedStrips() ){
152  // if ( aChamber->specs()->gangedStrips() ){
153  findDuplicates(segments);
154  }
155  return segments;
156  }
157  else {
158  segments = buildSegments(rechits);
159  if( Pruning ) {
160  segments_temp.clear(); // segments_temp needed?!?!
161  segments_temp = prune_bad_hits( theChamber, segments );
162  segments.clear(); // segments_temp needed?!?!
163  segments.swap(segments_temp); // segments_temp needed?!?!
164  }
165 
166  // Ganged strips in ME1/1A?
167  if ( ("ME1/a" == aChamber->specs()->chamberTypeName()) && aChamber->specs()->gangedStrips() ){
168  // if ( aChamber->specs()->gangedStrips() ){
169  findDuplicates(segments);
170  }
171  return segments;
172  //return buildSegments(rechits);
173  }
174 }
double yweightPenaltyThreshold
Definition: CSCSegAlgoST.h:184
bool preClustering_useChaining
Definition: CSCSegAlgoST.h:171
CSCDetId id() const
Get the (concrete) DetId.
Definition: CSCChamber.h:37
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:119
std::vector< std::vector< const CSCRecHit2D * > > clusterHits(const CSCChamber *aChamber, const ChamberHitContainer &rechits)
std::string chamberTypeName() const
const CSCChamberSpecs * specs() const
Definition: CSCChamber.h:42
std::vector< std::vector< const CSCRecHit2D * > > chainHits(const CSCChamber *aChamber, const ChamberHitContainer &rechits)
std::vector< CSCSegment > buildSegments(const ChamberHitContainer &rechits)
std::vector< CSCSegment > prune_bad_hits(const CSCChamber *aChamber, std::vector< CSCSegment > &segments)
bool gangedStrips() const
#define LogTrace(id)
void findDuplicates(std::vector< CSCSegment > &segments)
double b
Definition: hdecay.h:120
double a
Definition: hdecay.h:121
bool preClustering
Definition: CSCSegAlgoST.h:170
float a_yweightPenaltyThreshold[5][5]
Definition: CSCSegAlgoST.h:182
double CSCSegAlgoST::theWeight ( double  coordinate_1,
double  coordinate_2,
double  coordinate_3,
float  layer_1,
float  layer_2,
float  layer_3 
)
private

Utility functions.

Definition at line 653 of file CSCSegAlgoST.cc.

Referenced by buildSegments().

653  {
654  double sub_weight = 0;
655  sub_weight = fabs(
656  ( (coordinate_2 - coordinate_3) / (layer_2 - layer_3) ) -
657  ( (coordinate_1 - coordinate_2) / (layer_1 - layer_2) )
658  );
659  return sub_weight;
660 }

Member Data Documentation

float CSCSegAlgoST::a_yweightPenaltyThreshold[5][5]
private

Definition at line 182 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and run().

bool CSCSegAlgoST::adjustCovariance_
private

Definition at line 191 of file CSCSegAlgoST.h.

Referenced by adjustCovariance(), and CSCSegAlgoST().

double CSCSegAlgoST::BPMinImprovement
private

Definition at line 174 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and prune_bad_hits().

bool CSCSegAlgoST::BrutePruning
private

Definition at line 173 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and prune_bad_hits().

double CSCSegAlgoST::chi2Norm_3D_
private

Definition at line 195 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().

std::vector< ChamberHitContainer > CSCSegAlgoST::chosen_Psegments
private

Definition at line 133 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::chosen_weight_A
private

Definition at line 142 of file CSCSegAlgoST.h.

Referenced by buildSegments().

bool CSCSegAlgoST::condpass1
private

Flag whether to 'improve' covariance matrix.

Definition at line 193 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and prune_bad_hits().

bool CSCSegAlgoST::condpass2
private

Definition at line 193 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and prune_bad_hits().

std::vector< float > CSCSegAlgoST::curv_A
private

Definition at line 143 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL1_A
private

Definition at line 144 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL2_A
private

Definition at line 145 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL3_A
private

Definition at line 146 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL4_A
private

Definition at line 147 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL5_A
private

Definition at line 148 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL6_A
private

Definition at line 149 of file CSCSegAlgoST.h.

Referenced by buildSegments().

double CSCSegAlgoST::curvePenalty
private

Definition at line 188 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::curvePenaltyThreshold
private

Definition at line 187 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

bool CSCSegAlgoST::debug
private

Definition at line 161 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::dXclusBoxMax
private

Definition at line 167 of file CSCSegAlgoST.h.

Referenced by clusterHits(), and CSCSegAlgoST().

double CSCSegAlgoST::dYclusBoxMax
private

Definition at line 168 of file CSCSegAlgoST.h.

Referenced by clusterHits(), and CSCSegAlgoST().

Segments CSCSegAlgoST::GoodSegments
private

Definition at line 120 of file CSCSegAlgoST.h.

Referenced by buildSegments(), ChooseSegments2(), ChooseSegments2a(), and ChooseSegments3().

double CSCSegAlgoST::hitDropLimit4Hits
private

Definition at line 178 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::hitDropLimit5Hits
private

Definition at line 179 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::hitDropLimit6Hits
private

Definition at line 180 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

int CSCSegAlgoST::maxRecHitsInCluster
private

Definition at line 169 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

int CSCSegAlgoST::minHitsPerSegment
private

Definition at line 164 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().

const std::string CSCSegAlgoST::myName_
private

Definition at line 115 of file CSCSegAlgoST.h.

bool CSCSegAlgoST::onlyBestSegment
private

Definition at line 175 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

ChamberHitContainer CSCSegAlgoST::PAhits_onLayer[6]
private

Definition at line 122 of file CSCSegAlgoST.h.

Referenced by buildSegments().

bool CSCSegAlgoST::preClustering
private

Definition at line 170 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().

bool CSCSegAlgoST::preClustering_useChaining
private

Definition at line 171 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().

bool CSCSegAlgoST::prePrun_
private

Chi^2 normalization for the initial fit.

Definition at line 197 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::prePrunLimit_
private

Allow to prune a (rechit in a) segment in segment buld method once it passed through Chi^2-X and chi2uCorrection is big.

Definition at line 199 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

ChamberHitContainer CSCSegAlgoST::protoSegment
private

Definition at line 158 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and prune_bad_hits().

bool CSCSegAlgoST::Pruning
private

Definition at line 172 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().

const edm::ParameterSet CSCSegAlgoST::ps_
private

Definition at line 116 of file CSCSegAlgoST.h.

Referenced by pset().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments
private

Definition at line 125 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and ChooseSegments2().

ChamberHitContainer CSCSegAlgoST::Psegments_hits
private

Definition at line 123 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL1
private

Definition at line 127 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL2
private

Definition at line 128 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL3
private

Definition at line 129 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL4
private

Definition at line 130 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL5
private

Definition at line 131 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL6
private

Definition at line 132 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noLx
private

Definition at line 126 of file CSCSegAlgoST.h.

Referenced by buildSegments().

CSCSegAlgoShowering* CSCSegAlgoST::showering_
private

Definition at line 117 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and ~CSCSegAlgoST().

const CSCChamber* CSCSegAlgoST::theChamber
private

Definition at line 119 of file CSCSegAlgoST.h.

Referenced by buildSegments(), chamber(), clusterHits(), prune_bad_hits(), and run().

bool CSCSegAlgoST::useShowering
private

Definition at line 176 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

std::vector< float > CSCSegAlgoST::weight_A
private

Definition at line 134 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and ChooseSegments2().

std::vector< float > CSCSegAlgoST::weight_B
private

Definition at line 150 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL1_A
private

Definition at line 136 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL1_B
private

Definition at line 151 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL2_A
private

Definition at line 137 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL2_B
private

Definition at line 152 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL3_A
private

Definition at line 138 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL3_B
private

Definition at line 153 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL4_A
private

Definition at line 139 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL4_B
private

Definition at line 154 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL5_A
private

Definition at line 140 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL5_B
private

Definition at line 155 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL6_A
private

Definition at line 141 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL6_B
private

Definition at line 156 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noLx_A
private

Definition at line 135 of file CSCSegAlgoST.h.

Referenced by buildSegments().

double CSCSegAlgoST::yweightPenalty
private

Definition at line 185 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::yweightPenaltyThreshold
private

Definition at line 184 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().