CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
CaloRecHitCandidate.h
Go to the documentation of this file.
1 #ifndef RecoCandidate_CaloRecHitCandidate_h
2 #define RecoCandidate_CaloRecHitCandidate_h
3 
14 
15 namespace reco {
16 
18  public:
23  CaloRecHitCandidate( const LorentzVector & p4, Charge q = 0, const Point & vtx = Point( 0, 0, 0 ) ) :
24  LeafCandidate( q, p4, vtx ) { }
26  CaloRecHitCandidate( const PolarLorentzVector & p4, Charge q = 0, const Point & vtx = Point( 0, 0, 0 ) ) :
27  LeafCandidate( q, p4, vtx ) { }
29  virtual ~CaloRecHitCandidate();
31  virtual CaloRecHitCandidate * clone() const;
33  void setCaloRecHit( const CaloRecHitRef & r ) { caloRecHit_ = r; }
35  CaloRecHitRef caloRecHit() const { return caloRecHit_; }
36 
37  private:
39  virtual bool overlap( const Candidate & ) const;
42  };
45 
46 }
47 
48 #endif
int Charge
electric charge type
Definition: Candidate.h:35
CaloRecHitRef caloRecHit() const
reference to a CaloRecHit
edm::RefToBase< CaloRecHit > CaloRecHitRef
CaloRecHitCandidate(const PolarLorentzVector &p4, Charge q=0, const Point &vtx=Point(0, 0, 0))
constructor from values
virtual CaloRecHitCandidate * clone() const
returns a clone of the candidate
CaloRecHitCandidate(const LorentzVector &p4, Charge q=0, const Point &vtx=Point(0, 0, 0))
constructor from values
CaloRecHitRef caloRecHit_
reference to a CaloRecHit
void setCaloRecHit(const CaloRecHitRef &r)
set CaloRecHit reference
virtual bool overlap(const Candidate &) const
check overlap with another candidate
virtual ~CaloRecHitCandidate()
destructor
#define GET_DEFAULT_CANDIDATE_COMPONENT(CAND, TYPE, FUN)
Definition: component.h:92
CaloRecHitCandidate()
default constructor
math::XYZTLorentzVector LorentzVector
Lorentz vector.
Definition: Candidate.h:37
math::XYZPoint Point
point in the space
Definition: Candidate.h:41
virtual const LorentzVector & p4() const
four-momentum Lorentz vector
Definition: LeafCandidate.h:99
math::XYZPoint Point
point in the space
Definition: LeafCandidate.h:27
math::PtEtaPhiMLorentzVector PolarLorentzVector
Lorentz vector.
Definition: Candidate.h:39