CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Timing.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 //
3 // Package: Services
4 // Class : Timing
5 //
6 // Implementation:
7 //
8 // Original Author: Jim Kowalkowski
9 //
10 
12 
25 
26 #include <iostream>
27 #include <sstream>
28 #include <sys/resource.h>
29 #include <sys/time.h>
30 
31 namespace edm {
32  namespace service {
33 
34  static std::string d2str(double d) {
35  std::stringstream t;
36  t << d;
37  return t.str();
38  }
39 
40  static double getTime() {
41  struct timeval t;
42  if(gettimeofday(&t, 0) < 0)
43  throw cms::Exception("SysCallFailed", "Failed call to gettimeofday");
44  return static_cast<double>(t.tv_sec) + (static_cast<double>(t.tv_usec) * 1E-6);
45  }
46 
47  static double getCPU() {
48  struct rusage usage;
49  getrusage(RUSAGE_SELF, &usage);
50 
51  double totalCPUTime = 0.0;
52  // User code
53  totalCPUTime = (double)usage.ru_utime.tv_sec + (double(usage.ru_utime.tv_usec) * 1E-6);
54  // System functions
55  totalCPUTime += (double)usage.ru_stime.tv_sec + (double(usage.ru_stime.tv_usec) * 1E-6);
56  return totalCPUTime;
57  }
58 
59  //NOTE: We use a per thread stack for module times since unscheduled
60  // exectuion or tbb task spawning can cause a module to run on the
61  // same thread as an already running module
62  static
63  std::vector<double>& moduleTimeStack() {
64  static thread_local std::vector<double> s_stack;
65  return s_stack;
66  }
67 
68  Timing::Timing(ParameterSet const& iPS, ActivityRegistry& iRegistry) :
69  curr_job_time_(0.),
70  curr_job_cpu_(0.),
71  curr_events_time_(),
72  summary_only_(iPS.getUntrackedParameter<bool>("summaryOnly")),
73  report_summary_(iPS.getUntrackedParameter<bool>("useJobReport")),
74  max_events_time_(),
75  min_events_time_(),
76  total_event_count_(0) {
77  iRegistry.watchPostBeginJob(this, &Timing::postBeginJob);
78  iRegistry.watchPostEndJob(this, &Timing::postEndJob);
79 
80  iRegistry.watchPreEvent(this, &Timing::preEvent);
81  iRegistry.watchPostEvent(this, &Timing::postEvent);
82 
83  if(not summary_only_) {
84  iRegistry.watchPreModuleEvent(this, &Timing::preModule);
85  iRegistry.watchPostModuleEvent(this, &Timing::postModule);
86  }
87 
88  iRegistry.preallocateSignal_.connect([this](service::SystemBounds const& iBounds){
89  auto nStreams = iBounds.maxNumberOfStreams();
90  curr_events_time_.resize(nStreams,0.);
91  sum_events_time_.resize(nStreams,0.);
92  max_events_time_.resize(nStreams,0.);
93  min_events_time_.resize(nStreams,1.E6);
94  });
95 
96  iRegistry.postGlobalEndRunSignal_.connect([this](edm::GlobalContext const&) {
99  });
100  }
101 
103  }
104 
105  void Timing::addToCPUTime(StreamID id, double iTime) {
106  //For accounting purposes we effectively can say we started earlier
107  curr_job_cpu_ -= iTime;
108  }
109 
110 
113  desc.addUntracked<bool>("summaryOnly", false)->setComment(
114  "If 'true' do not report timing for each event");
115  desc.addUntracked<bool>("useJobReport", true)->setComment(
116  "If 'true' write summary information to JobReport");
117  descriptions.add("Timing", desc);
118  descriptions.setComment(
119  "This service reports the time it takes to run each module in a job.");
120  }
121 
124  curr_job_cpu_ = getCPU();
125 
126  if(not summary_only_) {
127  LogImportant("TimeReport")
128  << "TimeReport> Report activated" << "\n"
129  << "TimeReport> Report columns headings for events: "
130  << "eventnum runnum timetaken\n"
131  << "TimeReport> Report columns headings for modules: "
132  << "eventnum runnum modulelabel modulename timetakeni\n"
133  << "TimeReport> JobTime=" << curr_job_time_ << " JobCPU=" << curr_job_cpu_ << "\n";
134  }
135  }
136 
138  double total_job_time = getTime() - curr_job_time_;
139 
140  double total_job_cpu = getCPU() - curr_job_cpu_;
141 
142  double min_event_time = *(std::min_element(min_events_time_.begin(),
143  min_events_time_.end()));
144  double max_event_time = *(std::max_element(max_events_time_.begin(),
145  max_events_time_.end()));
146  auto total_loop_time = last_run_time_ - curr_job_time_;
147  auto total_loop_cpu = last_run_cpu_ - curr_job_cpu_;
148 
149  double sum_all_events_time = 0;
150  for(auto t : sum_events_time_) { sum_all_events_time += t; }
151  double average_event_time = sum_all_events_time / total_event_count_;
152 
153  LogImportant("TimeReport")
154  << "TimeReport> Time report complete in "
155  << total_job_time << " seconds"
156  << "\n"
157  << " Time Summary: \n"
158  << " - Min event: " << min_event_time << "\n"
159  << " - Max event: " << max_event_time << "\n"
160  << " - Avg event: " << average_event_time << "\n"
161  << " - Total loop: " <<total_loop_time <<"\n"
162  << " - Total job: " << total_job_time << "\n"
163  << " Event Throughput: "<<total_event_count_/ total_loop_time<<" ev/s\n"
164  << " CPU Summary: \n"
165  << " - Total loop: " << total_loop_cpu << "\n"
166  << " - Total job: " << total_job_cpu << "\n";
167 
168  if(report_summary_) {
169  Service<JobReport> reportSvc;
170  std::map<std::string, std::string> reportData;
171 
172  reportData.insert(std::make_pair("MinEventTime", d2str(min_event_time)));
173  reportData.insert(std::make_pair("MaxEventTime", d2str(max_event_time)));
174  reportData.insert(std::make_pair("AvgEventTime", d2str(average_event_time)));
175  reportData.insert(std::make_pair("EventThroughput", d2str(total_event_count_/total_loop_time)));
176  reportData.insert(std::make_pair("TotalJobTime", d2str(total_job_time)));
177  reportData.insert(std::make_pair("TotalJobCPU", d2str(total_job_cpu)));
178  reportData.insert(std::make_pair("TotalLoopCPU", d2str(total_loop_cpu)));
179 
180  reportSvc->reportPerformanceSummary("Timing", reportData);
181  }
182  }
183 
184  void Timing::preEvent(StreamContext const& iStream) {
185  auto index = iStream.streamID().value();
187  }
188 
189  void Timing::postEvent(StreamContext const& iStream) {
190  auto index = iStream.streamID().value();
191 
192  double curr_event_time = getTime() - curr_events_time_[index];
193  sum_events_time_[index] +=curr_event_time;
194 
195  if(not summary_only_) {
196  auto const & eventID = iStream.eventID();
197  LogPrint("TimeEvent")
198  << "TimeEvent> "
199  << eventID.event() << " "
200  << eventID.run() << " "
201  << curr_event_time ;
202  }
203  if(curr_event_time > max_events_time_[index]) max_events_time_[index] = curr_event_time;
204  if(curr_event_time < min_events_time_[index]) min_events_time_[index] = curr_event_time;
206  }
207 
209  auto & modStack = moduleTimeStack();
210  modStack.push_back(getTime());
211  }
212 
213  void Timing::postModule(StreamContext const& iStream, ModuleCallingContext const& iModule) {
214  //LogInfo("TimeModule")
215  auto& modStack = moduleTimeStack();
216  assert(modStack.size() > 0);
217  double curr_module_time = modStack.back();
218  modStack.pop_back();
219  double t = getTime() - curr_module_time;
220  //move waiting module start times forward to account
221  // for the fact that they were paused while this module ran
222  for(auto& waitingModuleStartTime : modStack) {
223  waitingModuleStartTime +=t;
224  }
225  auto const & eventID = iStream.eventID();
226  auto const & desc = *(iModule.moduleDescription());
227 
228  LogPrint("TimeModule") << "TimeModule> "
229  << eventID.event() << " "
230  << eventID.run() << " "
231  << desc.moduleLabel() << " "
232  << desc.moduleName() << " "
233  << t;
234  }
235  }
236 }
237 
std::vector< double > sum_events_time_
Definition: Timing.h:59
tuple t
Definition: tree.py:139
void watchPreEvent(PreEvent::slot_type const &iSlot)
double curr_job_time_
Definition: Timing.h:45
std::atomic< double > last_run_cpu_
Definition: Timing.h:49
std::vector< double > max_events_time_
Definition: Timing.h:57
ParameterDescriptionBase * addUntracked(U const &iLabel, T const &value)
bool report_summary_
Definition: Timing.h:52
void watchPostEndJob(PostEndJob::slot_type const &iSlot)
std::vector< double > curr_events_time_
Definition: Timing.h:50
void watchPreModuleEvent(PreModuleEvent::slot_type const &iSlot)
void watchPostEvent(PostEvent::slot_type const &iSlot)
assert(m_qm.get())
static double getCPU()
Definition: Timing.cc:47
void watchPostModuleEvent(PostModuleEvent::slot_type const &iSlot)
void postEvent(StreamContext const &)
Definition: Timing.cc:189
double curr_job_cpu_
Definition: Timing.h:46
Preallocate preallocateSignal_
signal is emitted before beginJob
unsigned int maxNumberOfStreams() const
Definition: SystemBounds.h:43
Timing(ParameterSet const &, ActivityRegistry &)
Definition: Timing.cc:68
ModuleDescription const * moduleDescription() const
std::atomic< double > last_run_time_
Definition: Timing.h:48
static void fillDescriptions(edm::ConfigurationDescriptions &descriptions)
Definition: Timing.cc:111
StreamID const & streamID() const
Definition: StreamContext.h:57
virtual void addToCPUTime(StreamID id, double iTime) override
Definition: Timing.cc:105
void setComment(std::string const &value)
unsigned int value() const
Definition: StreamID.h:46
std::atomic< unsigned long > total_event_count_
Definition: Timing.h:60
static std::vector< double > & moduleTimeStack()
Definition: Timing.cc:63
static std::string d2str(double d)
Definition: Memory.cc:62
void add(std::string const &label, ParameterSetDescription const &psetDescription)
PostGlobalEndRun postGlobalEndRunSignal_
static double getTime()
Definition: Timing.cc:40
EventID const & eventID() const
Definition: StreamContext.h:59
void postModule(StreamContext const &, ModuleCallingContext const &)
Definition: Timing.cc:213
void connect(U iFunc)
Definition: Signal.h:63
void preEvent(StreamContext const &)
Definition: Timing.cc:184
void preModule(StreamContext const &, ModuleCallingContext const &)
Definition: Timing.cc:208
std::vector< double > min_events_time_
Definition: Timing.h:58
void watchPostBeginJob(PostBeginJob::slot_type const &iSlot)
convenience function for attaching to signal