CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
PseudoTopProducer.cc
Go to the documentation of this file.
2 
4 
6 #include "fastjet/ClusterSequence.hh"
7 
8 using namespace std;
9 using namespace edm;
10 using namespace reco;
11 
13  leptonMinPt_(pset.getParameter<double>("leptonMinPt")),
14  leptonMaxEta_(pset.getParameter<double>("leptonMaxEta")),
15  jetMinPt_(pset.getParameter<double>("jetMinPt")),
16  jetMaxEta_(pset.getParameter<double>("jetMaxEta")),
17  wMass_(pset.getParameter<double>("wMass")),
18  tMass_(pset.getParameter<double>("tMass"))
19 {
20  finalStateToken_ = consumes<edm::View<reco::Candidate> >(pset.getParameter<edm::InputTag>("finalStates"));
21  genParticleToken_ = consumes<edm::View<reco::Candidate> >(pset.getParameter<edm::InputTag>("genParticles"));
22 
23  const double leptonConeSize = pset.getParameter<double>("leptonConeSize");
24  const double jetConeSize = pset.getParameter<double>("jetConeSize");
25  fjLepDef_ = std::shared_ptr<JetDef>(new JetDef(fastjet::antikt_algorithm, leptonConeSize));
26  fjJetDef_ = std::shared_ptr<JetDef>(new JetDef(fastjet::antikt_algorithm, jetConeSize));
27 
29 
30  produces<reco::GenParticleCollection>("neutrinos");
31  produces<reco::GenJetCollection>("leptons");
32  produces<reco::GenJetCollection>("jets");
33 
34  produces<reco::GenParticleCollection>();
35 
36 }
37 
39 {
40  edm::Handle<edm::View<reco::Candidate> > finalStateHandle;
41  event.getByToken(finalStateToken_, finalStateHandle);
42 
43  edm::Handle<edm::View<reco::Candidate> > genParticleHandle;
44  event.getByToken(genParticleToken_, genParticleHandle);
45 
46  std::auto_ptr<reco::GenParticleCollection> neutrinos(new reco::GenParticleCollection);
47  std::auto_ptr<reco::GenJetCollection> leptons(new reco::GenJetCollection);
48  std::auto_ptr<reco::GenJetCollection> jets(new reco::GenJetCollection);
49  auto neutrinosRefHandle = event.getRefBeforePut<reco::GenParticleCollection>("neutrinos");
50  auto leptonsRefHandle = event.getRefBeforePut<reco::GenJetCollection>("leptons");
51  auto jetsRefHandle = event.getRefBeforePut<reco::GenJetCollection>("jets");
52 
53  std::auto_ptr<reco::GenParticleCollection> pseudoTop(new reco::GenParticleCollection);
54  auto pseudoTopRefHandle = event.getRefBeforePut<reco::GenParticleCollection>();
55 
56  // Collect unstable B-hadrons
57  std::set<size_t> bHadronIdxs;
58  for ( size_t i=0, n=genParticleHandle->size(); i<n; ++i )
59  {
60  const reco::Candidate& p = genParticleHandle->at(i);
61  const int status = p.status();
62  if ( status == 1 ) continue;
63 
64  // Collect B-hadrons, to be used in b tagging
65  if ( isBHadron(&p) ) bHadronIdxs.insert(i);
66  }
67 
68  // Collect stable leptons and neutrinos
69  size_t nStables = 0;
70  std::vector<size_t> leptonIdxs;
71  std::set<size_t> neutrinoIdxs;
72  for ( size_t i=0, n=finalStateHandle->size(); i<n; ++i )
73  {
74  const reco::Candidate& p = finalStateHandle->at(i);
75  const int absPdgId = abs(p.pdgId());
76  if ( p.status() != 1 ) continue;
77 
78  ++nStables;
79  if ( p.numberOfMothers() == 0 ) continue; // Skip orphans (if exists)
80  if ( p.mother()->status() == 4 ) continue; // Treat particle as hadronic if directly from the incident beam (protect orphans in MINIAOD)
81  if ( isFromHadron(&p) ) continue;
82  switch ( absPdgId )
83  {
84  case 11: case 13: // Leptons
85  case 22: // Photons
86  leptonIdxs.push_back(i);
87  break;
88  case 12: case 14: case 16:
89  neutrinoIdxs.insert(i);
90  neutrinos->push_back(reco::GenParticle(p.charge(), p.p4(), p.vertex(), p.pdgId(), p.status(), true));
91  break;
92  }
93  }
94 
95  // Sort neutrinos by pT.
96  std::sort(neutrinos->begin(), neutrinos->end(), GreaterByPt<reco::Candidate>());
97 
98  // Make dressed leptons with anti-kt(0.1) algorithm
100  std::vector<fastjet::PseudoJet> fjLepInputs;
101  fjLepInputs.reserve(leptonIdxs.size());
102  for ( auto index : leptonIdxs )
103  {
104  const reco::Candidate& p = finalStateHandle->at(index);
105  if ( std::isnan(p.pt()) or p.pt() <= 0 ) continue;
106 
107  fjLepInputs.push_back(fastjet::PseudoJet(p.px(), p.py(), p.pz(), p.energy()));
108  fjLepInputs.back().set_user_index(index);
109  }
110 
112  fastjet::ClusterSequence fjLepClusterSeq(fjLepInputs, *fjLepDef_);
113  std::vector<fastjet::PseudoJet> fjLepJets = fastjet::sorted_by_pt(fjLepClusterSeq.inclusive_jets(leptonMinPt_));
114 
116  leptons->reserve(fjLepJets.size());
117  std::set<size_t> lepDauIdxs; // keep lepton constituents to remove from GenJet construction
118  for ( auto& fjJet : fjLepJets )
119  {
120  if ( abs(fjJet.eta()) > leptonMaxEta_ ) continue;
121 
122  // Get jet constituents from fastJet
123  const std::vector<fastjet::PseudoJet> fjConstituents = fastjet::sorted_by_pt(fjJet.constituents());
124  // Convert to CandidatePtr
125  std::vector<reco::CandidatePtr> constituents;
126  reco::CandidatePtr lepCand;
127  for ( auto& fjConstituent : fjConstituents )
128  {
129  const size_t index = fjConstituent.user_index();
130  reco::CandidatePtr cand = finalStateHandle->ptrAt(index);
131  const int absPdgId = abs(cand->pdgId());
132  if ( absPdgId == 11 or absPdgId == 13 )
133  {
134  if ( lepCand.isNonnull() and lepCand->pt() > cand->pt() ) continue; // Choose one with highest pt
135  lepCand = cand;
136  }
137  constituents.push_back(cand);
138  }
139  if ( lepCand.isNull() ) continue;
140  if ( lepCand->pt() < fjJet.pt()/2 ) continue; // Central lepton must be the major component
141 
142  const LorentzVector jetP4(fjJet.px(), fjJet.py(), fjJet.pz(), fjJet.E());
143  reco::GenJet lepJet;
144  reco::writeSpecific(lepJet, jetP4, genVertex_, constituents, eventSetup);
145 
146  lepJet.setPdgId(lepCand->pdgId());
147  lepJet.setCharge(lepCand->charge());
148 
149  const double jetArea = fjJet.has_area() ? fjJet.area() : 0;
150  lepJet.setJetArea(jetArea);
151 
152  leptons->push_back(lepJet);
153 
154  // Keep constituent indices to be used in the next step.
155  for ( auto& fjConstituent : fjConstituents )
156  {
157  lepDauIdxs.insert(fjConstituent.user_index());
158  }
159  }
160 
161  // Now proceed to jets.
162  // Jets: anti-kt excluding the e, mu, nu, and photons in selected leptons.
164  std::vector<fastjet::PseudoJet> fjJetInputs;
165  fjJetInputs.reserve(nStables);
166  for ( size_t i=0, n=finalStateHandle->size(); i<n; ++i )
167  {
168  const reco::Candidate& p = finalStateHandle->at(i);
169  if ( p.status() != 1 ) continue;
170  if ( std::isnan(p.pt()) or p.pt() <= 0 ) continue;
171 
172  if ( neutrinoIdxs.find(i) != neutrinoIdxs.end() ) continue;
173  if ( lepDauIdxs.find(i) != lepDauIdxs.end() ) continue;
174 
175  fjJetInputs.push_back(fastjet::PseudoJet(p.px(), p.py(), p.pz(), p.energy()));
176  fjJetInputs.back().set_user_index(i);
177  }
179  for ( auto index : bHadronIdxs )
180  {
181  const reco::Candidate& p = genParticleHandle->at(index);
182  if ( std::isnan(p.pt()) or p.pt() <= 0 ) continue;
183 
184  const double scale = 1e-20/p.p();
185  fjJetInputs.push_back(fastjet::PseudoJet(p.px()*scale, p.py()*scale, p.pz()*scale, p.energy()*scale));
186  fjJetInputs.back().set_user_index(index);
187  }
188 
190  fastjet::ClusterSequence fjJetClusterSeq(fjJetInputs, *fjJetDef_);
191  std::vector<fastjet::PseudoJet> fjJets = fastjet::sorted_by_pt(fjJetClusterSeq.inclusive_jets(jetMinPt_));
192 
194  jets->reserve(fjJets.size());
195  std::vector<size_t> bjetIdxs, ljetIdxs;
196  for ( auto& fjJet : fjJets )
197  {
198  if ( abs(fjJet.eta()) > jetMaxEta_ ) continue;
199 
200  // Get jet constituents from fastJet
201  const std::vector<fastjet::PseudoJet> fjConstituents = fastjet::sorted_by_pt(fjJet.constituents());
202  // Convert to CandidatePtr
203  std::vector<reco::CandidatePtr> constituents;
204  bool hasBHadron = false;
205  for ( size_t j=0, m=fjConstituents.size(); j<m; ++j )
206  {
207  const size_t index = fjConstituents[j].user_index();
208  if ( bHadronIdxs.find(index) != bHadronIdxs.end() ) hasBHadron = true;
209  reco::CandidatePtr cand = finalStateHandle->ptrAt(index);
210  constituents.push_back(cand);
211  }
212 
213  const LorentzVector jetP4(fjJet.px(), fjJet.py(), fjJet.pz(), fjJet.E());
214  reco::GenJet genJet;
215  reco::writeSpecific(genJet, jetP4, genVertex_, constituents, eventSetup);
216 
217  const double jetArea = fjJet.has_area() ? fjJet.area() : 0;
218  genJet.setJetArea(jetArea);
219  if ( hasBHadron )
220  {
221  genJet.setPdgId(5);
222  bjetIdxs.push_back(jets->size());
223  }
224  else
225  {
226  ljetIdxs.push_back(jets->size());
227  }
228 
229  jets->push_back(genJet);
230  }
231 
232  // Every building blocks are ready. Continue to pseudo-W and pseudo-top combination
233  // NOTE : A C++ trick, use do-while instead of long-nested if-statements.
234  do
235  {
236  // Note : we will do dilepton or semilepton channel only
237  const size_t nLepton = leptons->size();
238 
239  // Collect leptonic-decaying W's
240  std::vector<std::pair<int, int> > wCandIdxs;
241  for ( auto lep = leptons->begin(); lep != leptons->end(); ++lep )
242  {
243  const size_t iLep = lep-leptons->begin();
244  for ( auto nu = neutrinos->begin(); nu != neutrinos->end(); ++nu )
245  {
246  //if ( abs(lep->pdgId()+nu->pdgId()) != 1 ) continue; // Enforce to conserve flavour, this reduces combinatorial bkg
247  const double m = (lep->p4()+nu->p4()).mass();
248  if ( m > 300 ) continue; // Raw mass cut, reduce combinatorial background
249 
250  const size_t iNu = nu-neutrinos->begin();
251  wCandIdxs.push_back(make_pair(iLep, iNu));
252  }
253  }
254 
255  if ( nLepton == 0 or wCandIdxs.empty() ) break; // Skip full hadronic channel
256  else if ( nLepton == 1 and wCandIdxs.size() >= 1 ) // Semi-leptonic channel
257  {
258  double dm = 1e9; // Note: this will be re-used later.
259  int bestLepIdx = -1, bestNuIdx = -1;
260  for ( auto wCandIdx : wCandIdxs )
261  {
262  const int lepIdx = wCandIdx.first;
263  const int nuIdx = wCandIdx.second;
264  const LorentzVector& lepLVec = leptons->at(lepIdx).p4();
265  const LorentzVector& nuLVec = neutrinos->at(nuIdx).p4();
266  const double mW = (lepLVec + nuLVec).mass();
267  if ( mW > 300 ) continue;
268 
269  const double dmNew = abs(mW-wMass_);
270  if ( dmNew < dm )
271  {
272  dm = dmNew;
273  bestLepIdx = lepIdx;
274  bestNuIdx = nuIdx;
275  }
276  }
277  if ( bestLepIdx < 0 ) break; // Actually this should never happen
278  const auto& lepton = leptons->at(bestLepIdx);
279  const auto& neutrino = neutrinos->at(bestNuIdx);
280  const LorentzVector w1LVec = lepton.p4()+neutrino.p4();
281 
282  // Continue to hadronic W
283  // We also collect b jets to be used in the next step.
284  dm = 1e9; // Reset dM to very large value.
285  int bestJ1Idx = -1, bestJ2Idx = -1;
286  for ( auto j1Idx = ljetIdxs.begin(); j1Idx != ljetIdxs.end(); ++j1Idx )
287  {
288  const auto& j1 = jets->at(*j1Idx);
289  for ( auto j2Idx = j1Idx+1; j2Idx != ljetIdxs.end(); ++j2Idx )
290  {
291  const auto& j2 = jets->at(*j2Idx);
292  const double mW = (j1.p4()+j2.p4()).mass();
293  if ( mW > 300 ) continue;
294 
295  const double dmNew = abs(mW-wMass_);
296  if ( dmNew < dm )
297  {
298  dm = dmNew;
299  bestJ1Idx = *j1Idx;
300  bestJ2Idx = *j2Idx;
301  }
302  }
303  }
304  if ( bestJ1Idx < 0 ) break;
305  const auto& wJet1 = jets->at(bestJ1Idx);
306  const auto& wJet2 = jets->at(bestJ2Idx);
307  const LorentzVector w2LVec = wJet1.p4() + wJet2.p4();
308 
309  // Now we have leptonic W and hadronic W.
310  // Contiue to top quarks
311  dm = 1e9; // Reset once again for top combination.
312  int bestB1Idx = -1, bestB2Idx = -1;
313  if ( bjetIdxs.size() < 2 ) break;
314  for ( auto b1Idx : bjetIdxs )
315  {
316  const double t1Mass = (w1LVec + jets->at(b1Idx).p4()).mass();
317  if ( t1Mass > 300 ) continue;
318  for ( auto b2Idx : bjetIdxs )
319  {
320  if ( b1Idx == b2Idx ) continue;
321  const double t2Mass = (w2LVec + jets->at(b2Idx).p4()).mass();
322  if ( t2Mass > 300 ) continue;
323 
324  const double dmNew = abs(t1Mass-tMass_) + abs(t2Mass-tMass_);
325  if ( dmNew < dm )
326  {
327  dm = dmNew;
328  bestB1Idx = b1Idx;
329  bestB2Idx = b2Idx;
330  }
331  }
332  }
333  if ( bestB1Idx < 0 ) break;
334  const auto& bJet1 = jets->at(bestB1Idx);
335  const auto& bJet2 = jets->at(bestB2Idx);
336  const LorentzVector t1LVec = w1LVec + bJet1.p4();
337  const LorentzVector t2LVec = w2LVec + bJet2.p4();
338 
339  // Put all of them into candidate collection
340  if ( true ) // Trick to restrict variables' scope to avoid collision
341  {
342  const int lepQ = lepton.charge();
343 
344  reco::GenParticle t1(lepQ*2/3, t1LVec, genVertex_, lepQ*6, 3, false);
345  reco::GenParticle w1(lepQ, w1LVec, genVertex_, lepQ*24, 3, true);
346  reco::GenParticle b1(0, bJet1.p4(), genVertex_, lepQ*5, 1, true);
347  reco::GenParticle l1(lepQ, lepton.p4(), genVertex_, lepton.pdgId(), 1, true);
348  reco::GenParticle n1(0, neutrino.p4(), genVertex_, neutrino.pdgId(), 1, true);
349 
350  reco::GenParticle t2(-lepQ*2/3, t2LVec, genVertex_, -lepQ*6, 3, false);
351  reco::GenParticle w2(-lepQ, w2LVec, genVertex_, -lepQ*24, 3, true);
352  reco::GenParticle b2(0, bJet2.p4(), genVertex_, -lepQ*5, 1, true);
353  reco::GenParticle qA(0, wJet1.p4(), genVertex_, 1, 1, true);
354  reco::GenParticle qB(0, wJet2.p4(), genVertex_, 2, 1, true);
355 
356  pseudoTop->push_back(t1);
357  pseudoTop->push_back(w1);
358  pseudoTop->push_back(b1);
359  pseudoTop->push_back(l1);
360  pseudoTop->push_back(n1);
361 
362  pseudoTop->push_back(t2);
363  pseudoTop->push_back(w2);
364  pseudoTop->push_back(b2);
365  pseudoTop->push_back(qA);
366  pseudoTop->push_back(qB);
367  }
368  }
369  else if ( nLepton == 2 and wCandIdxs.size() >= 2 ) // Dilepton channel
370  {
371  double dm = 1e9;
372  int bestLep1Idx = -1, bestLep2Idx = -1, bestNu1Idx = -1, bestNu2Idx = -1;
373  for ( auto i : wCandIdxs )
374  {
375  const auto& lepton1 = leptons->at(i.first);
376  if ( lepton1.charge() < 0 ) continue;
377  const auto& neutrino1 = neutrinos->at(i.second);
378  const double mW1 = (lepton1.p4()+neutrino1.p4()).mass();
379  if ( mW1 > 300 ) continue;
380  for ( auto j : wCandIdxs )
381  {
382  if ( i == j ) continue;
383  const auto& lepton2 = leptons->at(j.first);
384  if ( lepton2.charge() > 0 ) continue;
385  const auto& neutrino2 = neutrinos->at(j.second);
386  const double mW2 = (lepton2.p4()+neutrino2.p4()).mass();
387  if ( mW2 > 300 ) continue;
388 
389  const double dmNew = abs(mW1-wMass_) + abs(mW2-wMass_);
390  if ( dmNew < dm )
391  {
392  dm = dmNew;
393  bestLep1Idx = i.first;
394  bestLep2Idx = j.first;
395  bestNu1Idx = i.second;
396  bestNu2Idx = j.second;
397  }
398  }
399  }
400  if ( bestLep1Idx < 0 ) break;
401  const auto& lepton1 = leptons->at(bestLep1Idx);
402  const auto& lepton2 = leptons->at(bestLep2Idx);
403  const auto& neutrino1 = neutrinos->at(bestNu1Idx);
404  const auto& neutrino2 = neutrinos->at(bestNu2Idx);
405  const LorentzVector w1LVec = lepton1.p4()+neutrino1.p4();
406  const LorentzVector w2LVec = lepton2.p4()+neutrino2.p4();
407 
408  // Contiue to top quarks
409  dm = 1e9; // Reset once again for top combination.
410  int bestB1Idx = -1, bestB2Idx = -1;
411  if ( bjetIdxs.size() < 2 ) break;
412  for ( auto b1Idx : bjetIdxs )
413  {
414  const double t1Mass = (w1LVec + jets->at(b1Idx).p4()).mass();
415  if ( t1Mass > 300 ) continue;
416  for ( auto b2Idx : bjetIdxs )
417  {
418  if ( b1Idx == b2Idx ) continue;
419  const double t2Mass = (w2LVec + jets->at(b2Idx).p4()).mass();
420  if ( t2Mass > 300 ) continue;
421 
422  const double dmNew = abs(t1Mass-tMass_) + abs(t2Mass-tMass_);
423  if ( dmNew < dm )
424  {
425  dm = dmNew;
426  bestB1Idx = b1Idx;
427  bestB2Idx = b2Idx;
428  }
429  }
430  }
431  if ( bestB1Idx < 0 ) break;
432  const auto& bJet1 = jets->at(bestB1Idx);
433  const auto& bJet2 = jets->at(bestB2Idx);
434  const LorentzVector t1LVec = w1LVec + bJet1.p4();
435  const LorentzVector t2LVec = w2LVec + bJet2.p4();
436 
437  // Put all of them into candidate collection
438  if ( true ) // Trick to restrict variables' scope to avoid collision
439  {
440  const int lep1Q = lepton1.charge();
441  const int lep2Q = lepton2.charge();
442 
443  reco::GenParticle t1(lep1Q*2/3, t1LVec, genVertex_, lep1Q*6, 3, true);
444  reco::GenParticle w1(lep1Q, w1LVec, genVertex_, lep1Q*24, 3, true);
445  reco::GenParticle b1(0, bJet1.p4(), genVertex_, lep1Q*5, 1, true);
446  reco::GenParticle l1(lep1Q, lepton1.p4(), genVertex_, lepton1.pdgId(), 1, true);
447  reco::GenParticle n1(0, neutrino1.p4(), genVertex_, neutrino1.pdgId(), 1, true);
448 
449  reco::GenParticle t2(lep2Q*2/3, t2LVec, genVertex_, lep2Q*6, 3, true);
450  reco::GenParticle w2(lep2Q, w2LVec, genVertex_, lep2Q*24, 3, true);
451  reco::GenParticle b2(0, bJet2.p4(), genVertex_, lep2Q*5, 1, true);
452  reco::GenParticle l2(0, lepton2.p4(), genVertex_, lepton2.pdgId(), 1, true);
453  reco::GenParticle n2(0, neutrino2.p4(), genVertex_, neutrino2.pdgId(), 1, true);
454 
455  pseudoTop->push_back(t1);
456  pseudoTop->push_back(w1);
457  pseudoTop->push_back(b1);
458  pseudoTop->push_back(l1);
459  pseudoTop->push_back(n1);
460 
461  pseudoTop->push_back(t2);
462  pseudoTop->push_back(w2);
463  pseudoTop->push_back(b2);
464  pseudoTop->push_back(l2);
465  pseudoTop->push_back(n2);
466  }
467  }
468 
469  if ( pseudoTop->size() == 10 ) // If pseudtop decay tree is completed
470  {
471  // t->W+b
472  pseudoTop->at(0).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 1)); // t->W
473  pseudoTop->at(0).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 2)); // t->b
474  pseudoTop->at(1).addMother(reco::GenParticleRef(pseudoTopRefHandle, 0)); // t->W
475  pseudoTop->at(2).addMother(reco::GenParticleRef(pseudoTopRefHandle, 0)); // t->b
476 
477  // W->lv or W->jj
478  pseudoTop->at(1).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 3));
479  pseudoTop->at(1).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 4));
480  pseudoTop->at(3).addMother(reco::GenParticleRef(pseudoTopRefHandle, 1));
481  pseudoTop->at(4).addMother(reco::GenParticleRef(pseudoTopRefHandle, 1));
482 
483  // tbar->W-b
484  pseudoTop->at(5).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 6));
485  pseudoTop->at(5).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 7));
486  pseudoTop->at(6).addMother(reco::GenParticleRef(pseudoTopRefHandle, 5));
487  pseudoTop->at(7).addMother(reco::GenParticleRef(pseudoTopRefHandle, 5));
488 
489  // W->jj
490  pseudoTop->at(6).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 8));
491  pseudoTop->at(6).addDaughter(reco::GenParticleRef(pseudoTopRefHandle, 9));
492  pseudoTop->at(8).addMother(reco::GenParticleRef(pseudoTopRefHandle, 6));
493  pseudoTop->at(9).addMother(reco::GenParticleRef(pseudoTopRefHandle, 6));
494  }
495  } while (false);
496 
497  event.put(neutrinos, "neutrinos");
498  event.put(leptons, "leptons");
499  event.put(jets, "jets");
500 
501  event.put(pseudoTop);
502 }
503 
505 {
506  for ( size_t i=0, n=p->numberOfDaughters(); i<n; ++i )
507  {
508  const reco::Candidate* dau = p->daughter(i);
509  if ( p->pdgId() == dau->pdgId() ) return getLast(dau);
510  }
511  return p;
512 }
513 
515 {
516  for ( size_t i=0, n=p->numberOfMothers(); i<n; ++i )
517  {
518  const reco::Candidate* mother = p->mother(i);
519  if ( mother->numberOfMothers() == 0 ) continue; // Skip incident beam
520  const int pdgId = abs(mother->pdgId());
521 
522  if ( pdgId > 100 ) return true;
523  else if ( isFromHadron(mother) ) return true;
524  }
525  return false;
526 }
527 
529 {
530  const unsigned int absPdgId = abs(p->pdgId());
531  if ( !isBHadron(absPdgId) ) return false;
532 
533  // Do not consider this particle if it has B hadron daughter
534  // For example, B* -> B0 + photon; then we drop B* and take B0 only
535  for ( int i=0, n=p->numberOfDaughters(); i<n; ++i )
536  {
537  const reco::Candidate* dau = p->daughter(i);
538  if ( isBHadron(abs(dau->pdgId())) ) return false;
539  }
540 
541  return true;
542 }
543 
544 bool PseudoTopProducer::isBHadron(const unsigned int absPdgId) const
545 {
546  if ( absPdgId <= 100 ) return false; // Fundamental particles and MC internals
547  if ( absPdgId >= 1000000000 ) return false; // Nuclei, +-10LZZZAAAI
548 
549  // General form of PDG ID is 7 digit form
550  // +- n nr nL nq1 nq2 nq3 nJ
551  //const int nJ = absPdgId % 10; // Spin
552  const int nq3 = (absPdgId / 10) % 10;
553  const int nq2 = (absPdgId / 100) % 10;
554  const int nq1 = (absPdgId / 1000) % 10;
555 
556  if ( nq3 == 0 ) return false; // Diquarks
557  if ( nq1 == 0 and nq2 == 5 ) return true; // B mesons
558  if ( nq1 == 5 ) return true; // B baryons
559 
560  return false;
561 }
562 
564  std::auto_ptr<reco::GenParticleCollection>& outColl) const
565 {
566  reco::GenParticle pOut(*dynamic_cast<const reco::GenParticle*>(p));
567  pOut.clearMothers();
568  pOut.clearDaughters();
569  pOut.resetMothers(refHandle.id());
570  pOut.resetDaughters(refHandle.id());
571 
572  outColl->push_back(pOut);
573 
574  return reco::GenParticleRef(refHandle, outColl->size()-1);
575 }
576 
bool isBHadron(const reco::Candidate *p) const
PseudoTopProducer(const edm::ParameterSet &pset)
const double leptonMaxEta_
std::vector< GenParticle > GenParticleCollection
collection of GenParticles
T getParameter(std::string const &) const
int i
Definition: DBlmapReader.cc:9
reco::Particle::Point genVertex_
virtual double energy() const =0
energy
virtual const Candidate * daughter(size_type i) const =0
return daughter at a given position, i = 0, ... numberOfDaughters() - 1 (read only mode) ...
const double leptonMinPt_
const double jetMaxEta_
common ppss p3p6s2 common epss epspn46 common const1 w2
Definition: inclppp.h:1
edm::EDGetTokenT< edm::View< reco::Candidate > > finalStateToken_
fastjet::JetDefinition JetDef
virtual const Candidate * mother(size_type i=0) const =0
return pointer to mother
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e< void, edm::EventIDconst &, edm::Timestampconst & > We also list in braces which AR_WATCH_USING_METHOD_ is used for those or
Definition: Activities.doc:12
virtual double pt() const =0
transverse momentum
std::shared_ptr< JetDef > fjJetDef_
virtual int status() const =0
status word
edm::Ref< GenParticleCollection > GenParticleRef
persistent reference to a GenParticle
std::vector< GenJet > GenJetCollection
collection of GenJet objects
virtual double pz() const =0
z coordinate of momentum vector
virtual size_type numberOfMothers() const =0
number of mothers (zero or one in most of but not all the cases)
bool isFromHadron(const reco::Candidate *p) const
std::shared_ptr< JetDef > fjLepDef_
reco::Particle::LorentzVector LorentzVector
void clearDaughters()
clear daughter references
void addDaughter(const typename daughters::value_type &)
add a daughter via a reference
void resetDaughters(const edm::ProductID &id)
set daughters product ID
virtual size_type numberOfDaughters() const =0
number of daughters
virtual double p() const =0
magnitude of momentum vector
bool isnan(float x)
Definition: math.h:13
const reco::Candidate * getLast(const reco::Candidate *p)
vector< PseudoJet > jets
void produce(edm::Event &event, const edm::EventSetup &eventSetup) override
bool isNull() const
Checks for null.
Definition: Ptr.h:148
math::XYZPoint Point
point in the space
Definition: Particle.h:25
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
int j
Definition: DBlmapReader.cc:9
Jets made from MC generator particles.
Definition: GenJet.h:24
virtual const Point & vertex() const =0
vertex position
virtual int charge() const =0
electric charge
virtual double py() const =0
y coordinate of momentum vector
How EventSelector::AcceptEvent() decides whether to accept an event for output otherwise it is excluding the probing of A single or multiple positive and the trigger will pass if any such matching triggers are PASS or EXCEPTION[A criterion thatmatches no triggers at all is detected and causes a throw.] A single negative with an expectation of appropriate bit checking in the decision and the trigger will pass if any such matching triggers are FAIL or EXCEPTION A wildcarded negative criterion that matches more than one trigger in the trigger but the state exists so we define the behavior If all triggers are the negative crieriion will lead to accepting the event(this again matches the behavior of"!*"before the partial wildcard feature was incorporated).The per-event"cost"of each negative criterion with multiple relevant triggers is about the same as!*was in the past
edm::EDGetTokenT< edm::View< reco::Candidate > > genParticleToken_
bool isNonnull() const
Checks for non-null.
Definition: Ptr.h:152
virtual double px() const =0
x coordinate of momentum vector
virtual int pdgId() const =0
PDG identifier.
reco::GenParticleRef buildGenParticle(const reco::Candidate *p, reco::GenParticleRefProd &refHandle, std::auto_ptr< reco::GenParticleCollection > &outColl) const
ProductID id() const
Accessor for product ID.
Definition: RefProd.h:140
const double jetMinPt_
void resetMothers(const edm::ProductID &id)
set mother product ID
tuple status
Definition: ntuplemaker.py:245
void clearMothers()
clear mother references
void writeSpecific(reco::CaloJet &jet, reco::Particle::LorentzVector const &p4, reco::Particle::Point const &point, std::vector< reco::CandidatePtr > const &constituents, edm::EventSetup const &c)
Definition: JetSpecific.cc:41
virtual const LorentzVector & p4() const =0
four-momentum Lorentz vector