CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
MuonGeometryArrange.cc
Go to the documentation of this file.
3 #include "CLHEP/Vector/RotationInterfaces.h"
5 
10 
12 
16 // The following looks generic enough to use
24 
27 
28 #include "MuonGeometryArrange.h"
29 #include "TFile.h"
30 #include "TLatex.h"
31 #include "TArrow.h"
32 #include "TGraph.h"
33 #include "TH1F.h"
34 #include "TH2F.h"
35 #include "CLHEP/Vector/ThreeVector.h"
36 
37 // Database
39 
40 #include <iostream>
41 #include <fstream>
42 
44  theSurveyIndex(0), _writeToDB(false), _commonMuonLevel(align::invalid), firstEvent_(true)
45 {
46  referenceMuon=0x0;
47  currentMuon=0x0;
48  // Input is XML
49  _inputXMLCurrent = cfg.getUntrackedParameter<std::string> ("inputXMLCurrent");
50  _inputXMLReference = cfg.getUntrackedParameter<std::string> ("inputXMLReference");
51 
52  //input is ROOT
54  ("inputROOTFile1");
56  ("inputROOTFile2");
57  _inputTreename = cfg.getUntrackedParameter< std::string > ("treeName");
58 
59  //output file
60  _filename = cfg.getUntrackedParameter< std::string > ("outputFile");
61 
62 
63  const std::vector<std::string>& levels =
64  cfg.getUntrackedParameter< std::vector<std::string> > ("levels");
65 
66  _weightBy = cfg.getUntrackedParameter< std::string > ("weightBy");
67  _detIdFlag = cfg.getUntrackedParameter< bool > ("detIdFlag");
69  ("detIdFlagFile");
70  _weightById = cfg.getUntrackedParameter< bool > ("weightById");
72  ("weightByIdFile");
73  _endcap = cfg.getUntrackedParameter<int> ("endcapNumber");
74  _station = cfg.getUntrackedParameter<int> ("stationNumber");
75  _ring = cfg.getUntrackedParameter<int> ("ringNumber");
76 
77  //setting the levels being used in the geometry comparator
78  edm::LogInfo("MuonGeometryArrange") << "levels: " << levels.size();
79  for (unsigned int l = 0; l < levels.size(); ++l){
80  theLevels.push_back( AlignableObjectId::stringToId(levels[l]));
81  edm::LogInfo("MuonGeometryArrange") << "level: " << levels[l];
82  }
83 
84 
85  // if want to use, make id cut list
86  if (_detIdFlag){
87  std::ifstream fin;
88  fin.open( _detIdFlagFile.c_str() );
89 
90  while (!fin.eof() && fin.good() ){
91 
92  uint32_t id;
93  fin >> id;
94  _detIdFlagVector.push_back(id);
95  }
96  fin.close();
97  }
98 
99  // turn weightByIdFile into weightByIdVector
100  unsigned int lastID=999999999;
101  if (_weightById){
102  std::ifstream inFile;
103  inFile.open( _weightByIdFile.c_str() );
104  int ctr = 0;
105  while ( !inFile.eof() ){
106  ctr++;
107  unsigned int listId;
108  inFile >> listId;
109  inFile.ignore(256, '\n');
110  if(listId!=lastID){
111  _weightByIdVector.push_back( listId );
112  }
113  lastID=listId;
114  }
115  inFile.close();
116  }
117 
118 
119 
120  //root configuration
121  _theFile = new TFile(_filename.c_str(),"RECREATE");
122  _alignTree = new TTree("alignTree","alignTree");
123  _alignTree->Branch("id", &_id, "id/I");
124  _alignTree->Branch("level", &_level, "level/I");
125  _alignTree->Branch("mid", &_mid, "mid/I");
126  _alignTree->Branch("mlevel", &_mlevel, "mlevel/I");
127  _alignTree->Branch("sublevel", &_sublevel, "sublevel/I");
128  _alignTree->Branch("x", &_xVal, "x/F");
129  _alignTree->Branch("y", &_yVal, "y/F");
130  _alignTree->Branch("z", &_zVal, "z/F");
131  _alignTree->Branch("r", &_rVal, "r/F");
132  _alignTree->Branch("phi", &_phiVal, "phi/F");
133  _alignTree->Branch("eta", &_etaVal, "eta/F");
134  _alignTree->Branch("alpha", &_alphaVal, "alpha/F");
135  _alignTree->Branch("beta", &_betaVal, "beta/F");
136  _alignTree->Branch("gamma", &_gammaVal, "gamma/F");
137  _alignTree->Branch("dx", &_dxVal, "dx/F");
138  _alignTree->Branch("dy", &_dyVal, "dy/F");
139  _alignTree->Branch("dz", &_dzVal, "dz/F");
140  _alignTree->Branch("dr", &_drVal, "dr/F");
141  _alignTree->Branch("dphi", &_dphiVal, "dphi/F");
142  _alignTree->Branch("dalpha", &_dalphaVal, "dalpha/F");
143  _alignTree->Branch("dbeta", &_dbetaVal, "dbeta/F");
144  _alignTree->Branch("dgamma", &_dgammaVal, "dgamma/F");
145  _alignTree->Branch("ldx", &_ldxVal, "ldx/F");
146  _alignTree->Branch("ldy", &_ldyVal, "ldy/F");
147  _alignTree->Branch("ldz", &_ldzVal, "ldz/F");
148  _alignTree->Branch("ldr", &_ldrVal, "ldr/F");
149  _alignTree->Branch("ldphi", &_ldphiVal, "ldphi/F");
150  _alignTree->Branch("useDetId", &_useDetId, "useDetId/I");
151  _alignTree->Branch("detDim", &_detDim, "detDim/I");
152  _alignTree->Branch("rotx",&_rotxVal, "rotx/F");
153  _alignTree->Branch("roty",&_rotyVal, "roty/F");
154  _alignTree->Branch("rotz",&_rotzVal, "rotz/F");
155  _alignTree->Branch("drotx",&_drotxVal, "drotx/F");
156  _alignTree->Branch("droty",&_drotyVal, "droty/F");
157  _alignTree->Branch("drotz",&_drotzVal, "drotz/F");
158  _alignTree->Branch("surW", &_surWidth, "surW/F");
159  _alignTree->Branch("surL", &_surLength, "surL/F");
160  _alignTree->Branch("surRot", &_surRot, "surRot[9]/D");
161 
162  _mgacollection.clear();
163 }
166  // Unpack the list and create ntuples here.
167 
168  int size=_mgacollection.size();
169  if(size<=0) return; // nothing to do here.
170  float* xp = new float[size+1];
171  float* yp = new float[size+1];
172  int i;
173  float minV, maxV;
174  int minI, maxI;
175 
176  minV=99999999.; maxV=-minV; minI=9999999; maxI=-minI;
177  TGraph* grx=0x0;
178  TH2F* dxh=0x0;
179 
180 // for position plots:
181  for(i=0; i<size; i++){
182  if(_mgacollection[i].phipos<minI) minI=_mgacollection[i].phipos;
183  if(_mgacollection[i].phipos>maxI) maxI=_mgacollection[i].phipos;
184  xp[i]=_mgacollection[i].phipos;
185  }
186  if(minI>=maxI) return; // can't do anything?
187  xp[size]=xp[size-1]+1; // wraparound point
188 
189  if(1<minI) minI=1;
190  if(size>maxI) maxI=size;
191  maxI++; // allow for wraparound to show neighbors
192  int sizeI=maxI+1-minI;
193  float smi=minI-1;
194  float sma=maxI+1;
195 
196 
197 // Dx plot
198 
199  for(i=0; i<size; i++){
200  if(_mgacollection[i].ldx<minV) minV=_mgacollection[i].ldx;
201  if(_mgacollection[i].ldx>maxV) maxV=_mgacollection[i].ldx;
202  yp[i]=_mgacollection[i].ldx;
203  }
204  yp[size]=yp[0]; // wraparound point
205 
206  makeGraph(sizeI, smi, sma, minV, maxV,
207  dxh, grx, "delX_vs_position", "Local #delta X vs position",
208  "GdelX_vs_position","#delta x in cm", xp, yp, size);
209 // Dy plot
210  minV=99999999.; maxV=-minV;
211  for(i=0; i<size; i++){
212  if(_mgacollection[i].ldy<minV) minV=_mgacollection[i].ldy;
213  if(_mgacollection[i].ldy>maxV) maxV=_mgacollection[i].ldy;
214  yp[i]=_mgacollection[i].ldy;
215  }
216  yp[size]=yp[0]; // wraparound point
217 
218  makeGraph(sizeI, smi, sma, minV, maxV,
219  dxh, grx, "delY_vs_position", "Local #delta Y vs position",
220  "GdelY_vs_position","#delta y in cm", xp, yp, size);
221 
222 // Dz plot
223  minV=99999999.; maxV=-minV;
224  for(i=0; i<size; i++){
225  if(_mgacollection[i].dz<minV) minV=_mgacollection[i].dz;
226  if(_mgacollection[i].dz>maxV) maxV=_mgacollection[i].dz;
227  yp[i]=_mgacollection[i].dz;
228  }
229  yp[size]=yp[0]; // wraparound point
230 
231  makeGraph(sizeI, smi, sma, minV, maxV,
232  dxh, grx, "delZ_vs_position", "Local #delta Z vs position",
233  "GdelZ_vs_position","#delta z in cm", xp, yp, size);
234 
235 // Dphi plot
236  minV=99999999.; maxV=-minV;
237  for(i=0; i<size; i++){
238  if(_mgacollection[i].dphi<minV) minV=_mgacollection[i].dphi;
239  if(_mgacollection[i].dphi>maxV) maxV=_mgacollection[i].dphi;
240  yp[i]=_mgacollection[i].dphi;
241  }
242  yp[size]=yp[0]; // wraparound point
243 
244  makeGraph(sizeI, smi, sma, minV, maxV,
245  dxh, grx, "delphi_vs_position", "#delta #phi vs position",
246  "Gdelphi_vs_position","#delta #phi in radians", xp, yp, size);
247 
248 // Dr plot
249  minV=99999999.; maxV=-minV;
250  for(i=0; i<size; i++){
251  if(_mgacollection[i].dr<minV) minV=_mgacollection[i].dr;
252  if(_mgacollection[i].dr>maxV) maxV=_mgacollection[i].dr;
253  yp[i]=_mgacollection[i].dr;
254  }
255  yp[size]=yp[0]; // wraparound point
256 
257  makeGraph(sizeI, smi, sma, minV, maxV,
258  dxh, grx, "delR_vs_position", "#delta R vs position",
259  "GdelR_vs_position","#delta R in cm", xp, yp, size);
260 
261 // Drphi plot
262  minV=99999999.; maxV=-minV;
263  for(i=0; i<size; i++){
264  float ttemp=_mgacollection[i].r*_mgacollection[i].dphi;
265  if(ttemp<minV) minV=ttemp;
266  if(ttemp>maxV) maxV=ttemp;
267  yp[i]=ttemp;
268  }
269  yp[size]=yp[0]; // wraparound point
270 
271  makeGraph(sizeI, smi, sma, minV, maxV,
272  dxh, grx, "delRphi_vs_position", "R #delta #phi vs position",
273  "GdelRphi_vs_position","R #delta #phi in cm", xp, yp, size);
274 
275 // Dalpha plot
276  minV=99999999.; maxV=-minV;
277  for(i=0; i<size; i++){
278  if(_mgacollection[i].dalpha<minV) minV=_mgacollection[i].dalpha;
279  if(_mgacollection[i].dalpha>maxV) maxV=_mgacollection[i].dalpha;
280  yp[i]=_mgacollection[i].dalpha;
281  }
282  yp[size]=yp[0]; // wraparound point
283 
284  makeGraph(sizeI, smi, sma, minV, maxV,
285  dxh, grx, "delalpha_vs_position", "#delta #alpha vs position",
286  "Gdelalpha_vs_position","#delta #alpha in rad", xp, yp, size);
287 
288 // Dbeta plot
289  minV=99999999.; maxV=-minV;
290  for(i=0; i<size; i++){
291  if(_mgacollection[i].dbeta<minV) minV=_mgacollection[i].dbeta;
292  if(_mgacollection[i].dbeta>maxV) maxV=_mgacollection[i].dbeta;
293  yp[i]=_mgacollection[i].dbeta;
294  }
295  yp[size]=yp[0]; // wraparound point
296 
297  makeGraph(sizeI, smi, sma, minV, maxV,
298  dxh, grx, "delbeta_vs_position", "#delta #beta vs position",
299  "Gdelbeta_vs_position","#delta #beta in rad", xp, yp, size);
300 
301 // Dgamma plot
302  minV=99999999.; maxV=-minV;
303  for(i=0; i<size; i++){
304  if(_mgacollection[i].dgamma<minV) minV=_mgacollection[i].dgamma;
305  if(_mgacollection[i].dgamma>maxV) maxV=_mgacollection[i].dgamma;
306  yp[i]=_mgacollection[i].dgamma;
307  }
308  yp[size]=yp[0]; // wraparound point
309 
310  makeGraph(sizeI, smi, sma, minV, maxV,
311  dxh, grx, "delgamma_vs_position", "#delta #gamma vs position",
312  "Gdelgamma_vs_position","#delta #gamma in rad", xp, yp, size);
313 
314 // Drotx plot
315  minV=99999999.; maxV=-minV;
316  for(i=0; i<size; i++){
317  if(_mgacollection[i].drotx<minV) minV=_mgacollection[i].drotx;
318  if(_mgacollection[i].drotx>maxV) maxV=_mgacollection[i].drotx;
319  yp[i]=_mgacollection[i].drotx;
320  }
321  yp[size]=yp[0]; // wraparound point
322 
323  makeGraph(sizeI, smi, sma, minV, maxV,
324  dxh, grx, "delrotX_vs_position", "#delta rotX vs position",
325  "GdelrotX_vs_position","#delta rotX in rad", xp, yp, size);
326 
327 // Droty plot
328  minV=99999999.; maxV=-minV;
329  for(i=0; i<size; i++){
330  if(_mgacollection[i].droty<minV) minV=_mgacollection[i].droty;
331  if(_mgacollection[i].droty>maxV) maxV=_mgacollection[i].droty;
332  yp[i]=_mgacollection[i].droty;
333  }
334  yp[size]=yp[0]; // wraparound point
335 
336  makeGraph(sizeI, smi, sma, minV, maxV,
337  dxh, grx, "delrotY_vs_position", "#delta rotY vs position",
338  "GdelrotY_vs_position","#delta rotY in rad", xp, yp, size);
339 
340 // Drotz plot
341  minV=99999999.; maxV=-minV;
342  for(i=0; i<size; i++){
343  if(_mgacollection[i].drotz<minV) minV=_mgacollection[i].drotz;
344  if(_mgacollection[i].drotz>maxV) maxV=_mgacollection[i].drotz;
345  yp[i]=_mgacollection[i].drotz;
346  }
347  yp[size]=yp[0]; // wraparound point
348 
349  makeGraph(sizeI, smi, sma, minV, maxV,
350  dxh, grx, "delrotZ_vs_position", "#delta rotZ vs position",
351  "GdelrotZ_vs_position","#delta rotZ in rad", xp, yp, size);
352 
353 
354 
355 // Vector plots
356 // First find the maximum length of sqrt(dx*dx+dy*dy): we'll have to
357 // scale these for visibility
358  maxV=-99999999.;
359  float ttemp, rtemp;
360  float maxR=-9999999.;
361  for(i=0; i<size; i++){
362  ttemp= sqrt(_mgacollection[i].dx*_mgacollection[i].dx+
363  _mgacollection[i].dy*_mgacollection[i].dy);
364  rtemp= sqrt(_mgacollection[i].x*_mgacollection[i].x+
366  if(ttemp>maxV) maxV=ttemp;
367  if(rtemp>maxR) maxR=rtemp;
368  }
369 
370  // Don't try to scale rediculously small values
371  float smallestVcm=.001; // 10 microns
372  if(maxV<smallestVcm) maxV=smallestVcm;
373  float scale=0.;
374  float lside=1.1*maxR;
375  if(lside<=0) lside=100.;
376  if(maxV>0){scale=.09*lside/maxV;} // units of pad length!
377  char scalename[50];
378  int ret=snprintf(scalename,50,"#delta #bar{x} length =%f cm",maxV);
379  // If ret<=0 we don't want to print the scale!
380 
381  if(ret>0){
382  dxh=new TH2F("vecdrplot",scalename,80,-lside,lside,80,-lside,lside);
383  }
384  else{
385  dxh=new TH2F("vecdrplot","delta #bar{x} Bad scale",80,-lside,lside,80,-lside,lside);
386  }
387  dxh->GetXaxis()->SetTitle("x in cm");
388  dxh->GetYaxis()->SetTitle("y in cm");
389  dxh->SetStats(kFALSE);
390  dxh->Draw();
391  TArrow* arrow;
392  for(i=0; i<size; i++){
393  ttemp= sqrt(_mgacollection[i].dx*_mgacollection[i].dx+
394  _mgacollection[i].dy*_mgacollection[i].dy);
395 // ttemp=ttemp*scale;
396  float nx=_mgacollection[i].x+scale*_mgacollection[i].dx;
397  float ny=_mgacollection[i].y+scale*_mgacollection[i].dy;
398  arrow = new TArrow(_mgacollection[i].x,
399  _mgacollection[i].y, nx, ny);// ttemp*.3*.05, "->");
400  arrow->SetLineWidth(2); arrow->SetArrowSize(ttemp*.2*.05/maxV);
401  arrow->SetLineColor(1); arrow->SetLineStyle(1);
402  arrow->Paint();
403  dxh->GetListOfFunctions()->Add(static_cast<TObject*>(arrow));
404 // arrow->Draw();
405 // arrow->Write();
406  }
407  dxh->Write();
408 
409  _theFile->Write();
410  _theFile->Close();
411 
412  delete [] yp; delete [] xp;
413 
414 }
416 void MuonGeometryArrange::makeGraph(int sizeI, float smi, float sma,
417  float minV, float maxV,
418  TH2F* dxh, TGraph* grx, const char* name, const char* title,
419  const char* titleg, const char* axis,
420  float* xp, float* yp, int size){
421 
422  if(minV>=maxV || smi>=sma || sizeI<=1 || xp==0x0 || yp==0x0) return;
423  // out of bounds, bail
424  float diff=maxV-minV;
425  float over=.05*diff;
426  double ylo=minV-over;
427  double yhi=maxV+over;
428  double dsmi, dsma;
429  dsmi=smi; dsma=sma;
430  dxh= new TH2F(name, title,
431  sizeI+2, dsmi, dsma, 50, ylo, yhi);
432  dxh->GetXaxis()->SetTitle("Position around ring");
433  dxh->GetYaxis()->SetTitle(axis);
434  dxh->SetStats(kFALSE);
435  dxh->Draw();
436  grx = new TGraph(size, xp, yp);
437  grx->SetName(titleg);
438  grx->SetTitle(title);
439  grx->SetMarkerColor(2); grx->SetMarkerStyle(3);
440  grx->GetXaxis()->SetLimits(dsmi, dsma);
441  grx->GetXaxis()->SetTitle("position number");
442  grx->GetYaxis()->SetLimits(ylo,yhi);
443  grx->GetYaxis()->SetTitle(axis);
444  grx->Draw("A*");
445  grx->Write();
446  return;
447 }
450  firstEvent_ = true;
451 }
452 
457  const edm::EventSetup& iSetup){
458  if (firstEvent_) {
459 
460  // My stuff
462  inputAlign1 = new MuonAlignment(iSetup, inputMethod1);
465  inputAlign2 = new MuonAlignment(iSetup, inputMethod2);
468  inputAlign2a = new MuonAlignment(iSetup, inputMethod3);
470 
473  Alignable* inputGeometry2Copy2 =
474  static_cast<Alignable*> (inputAlign2a->getAlignableMuon());
475 
476  //compare the goemetries
477  compare(inputGeometry1, inputGeometry2, inputGeometry2Copy2);
478 
479  //write out ntuple
480  //might be better to do within output module
481  _theFile->cd();
482  _alignTree->Write();
483  endHist();
484  // _theFile->Close();
485 
486  firstEvent_ = false;
487  }
488 }
489 
492  Alignable* curAliCopy2){
493 
494  // First sanity
495  if(refAli==0x0){return;}
496  if(curAli==0x0){return;}
497 
498  const std::vector<Alignable*>& refComp = refAli->components();
499  const std::vector<Alignable*>& curComp = curAli->components();
500  const std::vector<Alignable*>& curComp2 = curAliCopy2->components();
501  compareGeometries(refAli, curAli, curAliCopy2);
502 
503  int nComp=refComp.size();
504  for(int i=0; i<nComp; i++){
505  compare(refComp[i], curComp[i], curComp2[i]);
506  }
507  return;
508 }
509 
512  Alignable* curAli, Alignable* curCopy){
513  // First sanity
514  if(refAli==0x0){return;}
515  if(curAli==0x0){return;}
516  // Is this the Ring we want to align? If so it will contain the
517  // chambers specified in the configuration file
518  if(!isMother(refAli)) return; // Not the desired alignable object
519  // But... There are granddaughters involved--and I don't want to monkey with
520  // the layers of the chambers. So, if the mother of this is also an approved
521  // mother, bail.
522  if(isMother(refAli->mother() )) return;
523  const std::vector<Alignable*>& refComp = refAli->components();
524  const std::vector<Alignable*>& curComp = curCopy->components();
525  if(refComp.size()!=curComp.size()){
526  return;
527  }
528  // GlobalVectors is a vector of GlobalVector which is a 3D vector
529  align::GlobalVectors originalVectors;
530  align::GlobalVectors currentVectors;
531  align::GlobalVectors originalRelativeVectors;
532  align::GlobalVectors currentRelativeVectors;
533 
534 
535  int nComp = refComp.size();
536  int nUsed = 0;
537  // Use the total displacements here:
538  CLHEP::Hep3Vector TotalX, TotalL;
539  TotalX.set(0.,0.,0.); TotalL.set(0., 0., 0.);
540 // CLHEP::Hep3Vector* Rsubtotal, Wsubtotal, DRsubtotal, DWsubtotal;
541  std::vector<CLHEP::Hep3Vector> Positions;
542  std::vector<CLHEP::Hep3Vector> DelPositions;
543 
544  double xrcenter=0.;
545  double yrcenter=0.;
546  double zrcenter=0.;
547  double xccenter=0.;
548  double yccenter=0.;
549  double zccenter=0.;
550 
551  bool useIt;
552  // Create the "center" for the reference alignment chambers, and
553  // load a vector of their centers
554  for(int ich=0; ich<nComp; ich++){
555  useIt=true;
556  if(_weightById){
557  if(!align::readModuleList(curComp[ich]->id(), curComp[ich]->id(), _weightByIdVector))
558  useIt=false;
559  }
560  if(!useIt) continue;
561  align::GlobalVectors curVs;
562  align::createPoints(&curVs, refComp[ich],
564  align::GlobalVector pointsCM = align::centerOfMass(curVs);
565  originalVectors.push_back(pointsCM);
566  nUsed++;
567  xrcenter+= pointsCM.x();
568  yrcenter+= pointsCM.y();
569  zrcenter+= pointsCM.z();
570  }
571  xrcenter=xrcenter/nUsed;
572  yrcenter=yrcenter/nUsed;
573  zrcenter=zrcenter/nUsed;
574 
575  // Create the "center" for the current alignment chambers, and
576  // load a vector of their centers
577  for(int ich=0; ich<nComp; ich++){
578  useIt=true;
579  if(_weightById){
580  if(!align::readModuleList(curComp[ich]->id(), curComp[ich]->id(), _weightByIdVector))
581  useIt=false;
582  }
583  if(!useIt)continue;
584  align::GlobalVectors curVs;
585  align::createPoints(&curVs, curComp[ich],
587  align::GlobalVector pointsCM = align::centerOfMass(curVs);
588  currentVectors.push_back(pointsCM);
589 
590  xccenter+= pointsCM.x();
591  yccenter+= pointsCM.y();
592  zccenter+= pointsCM.z();
593  }
594  xccenter=xccenter/nUsed;
595  yccenter=yccenter/nUsed;
596  zccenter=zccenter/nUsed;
597 
598 
599  // OK, now load the <very approximate> vectors from the ring "centers"
600  align::GlobalVector CCur(xccenter, yccenter, zccenter);
601  align::GlobalVector CRef(xrcenter, yrcenter, zrcenter);
602  int nCompR = currentVectors.size();
603  for(int ich=0; ich<nCompR; ich++){
604  originalRelativeVectors.push_back(originalVectors[ich]-CRef);
605  currentRelativeVectors.push_back(currentVectors[ich]-CCur);
606  }
607 
608  // All right. Now let the hacking begin.
609  // First out of the gate let's try using the raw values and see what
610  // diffRot does for us.
611 
612 
613  align::RotationType rtype3=align::diffRot(currentRelativeVectors,
614  originalRelativeVectors);
615 
616 
617  align::EulerAngles angles(3);
618  angles = align::toAngles(rtype3);
619 
620  for(int ich=0; ich<nComp; ich++){
621  if(_weightById){
622  if(!align::readModuleList(curComp[ich]->id(), curComp[ich]->id(), _weightByIdVector))
623  continue;
624  }
625  CLHEP::Hep3Vector Rtotal, Wtotal;
626  Rtotal.set(0.,0.,0.); Wtotal.set(0.,0.,0.);
627  for (int i = 0; i < 100; i++){
628  AlgebraicVector diff = align::diffAlignables(refComp[ich],curComp[ich],
630  CLHEP::Hep3Vector dR(diff[0],diff[1],diff[2]);
631  Rtotal+=dR;
632  CLHEP::Hep3Vector dW(diff[3],diff[4],diff[5]);
633  CLHEP::HepRotation rot(Wtotal.unit(),Wtotal.mag());
634  CLHEP::HepRotation drot(dW.unit(),dW.mag());
635  rot*=drot;
636  Wtotal.set(rot.axis().x()*rot.delta(),
637  rot.axis().y()*rot.delta(), rot.axis().z()*rot.delta());
638  align::moveAlignable(curComp[ich], diff);
639  float tolerance = 1e-7;
640  AlgebraicVector check = align::diffAlignables(refComp[ich],curComp[ich],
642  align::GlobalVector checkR(check[0],check[1],check[2]);
643  align::GlobalVector checkW(check[3],check[4],check[5]);
644  DetId detid(refComp[ich]->id());
645  if ((checkR.mag() > tolerance)||(checkW.mag() > tolerance)){
646 // edm::LogInfo("CompareGeoms") << "Tolerance Exceeded!(alObjId: "
647 // << refAli->alignableObjectId()
648 // << ", rawId: " << refComp[ich]->geomDetId().rawId()
649 // << ", subdetId: "<< detid.subdetId() << "): " << diff;
650  }
651  else{
652  TotalX+=Rtotal;
653  break;
654  } // end of else
655  } // end of for on int i
656  } // end of for on ich
657 
658  // At this point we should have a total displacement and total L
659  TotalX=TotalX/nUsed;
660 
661  // Now start again!
662  AlgebraicVector change(6);
663  change(1)=TotalX.x();
664  change(2)=TotalX.y();
665  change(3)=TotalX.z();
666 
667  change(4)=angles[0];
668  change(5)=angles[1];
669  change(6)=angles[2];
670  align::moveAlignable(curAli, change); // move as a chunk
671 
672  // Now get the components again. They should be in new locations
673  const std::vector<Alignable*>& curComp2 = curAli->components();
674 
675  for(int ich=0; ich<nComp; ich++){
676  CLHEP::Hep3Vector Rtotal, Wtotal;
677  Rtotal.set(0.,0.,0.); Wtotal.set(0.,0.,0.);
678  if(_weightById){
679  if(!align::readModuleList(curComp[ich]->id(), curComp[ich]->id(), _weightByIdVector))
680  continue;
681  }
682 
683  for (int i = 0; i < 100; i++){
684  AlgebraicVector diff = align::diffAlignables(refComp[ich],curComp2[ich],
686  CLHEP::Hep3Vector dR(diff[0],diff[1],diff[2]);
687  Rtotal+=dR;
688  CLHEP::Hep3Vector dW(diff[3],diff[4],diff[5]);
689  CLHEP::HepRotation rot(Wtotal.unit(),Wtotal.mag());
690  CLHEP::HepRotation drot(dW.unit(),dW.mag());
691  rot*=drot;
692  Wtotal.set(rot.axis().x()*rot.delta(), rot.axis().y()*rot.delta(),
693  rot.axis().z()*rot.delta());
694  align::moveAlignable(curComp2[ich], diff);
695  float tolerance = 1e-7;
696  AlgebraicVector check = align::diffAlignables(refComp[ich],curComp2[ich],
698  align::GlobalVector checkR(check[0],check[1],check[2]);
699  align::GlobalVector checkW(check[3],check[4],check[5]);
700  if ((checkR.mag() > tolerance)||(checkW.mag() > tolerance)){}
701  else{break;}
702  } // end of for on int i
703  AlgebraicVector TRtot(6);
704  TRtot(1) = Rtotal.x(); TRtot(2) = Rtotal.y(); TRtot(3) = Rtotal.z();
705  TRtot(4) = Wtotal.x(); TRtot(5) = Wtotal.y(); TRtot(6) = Wtotal.z();
706  fillTree(refComp[ich], TRtot);
707  } // end of for on ich
708 
709 
710 
711 }
712 
714 
716 
717 
718  _id = refAli->id();
719  _level = refAli->alignableObjectId();
720  //need if ali has no mother
721  if (refAli->mother()){
722  _mid = refAli->mother()->geomDetId().rawId();
723  _mlevel = refAli->mother()->alignableObjectId();
724  }
725  else{
726  _mid = -1;
727  _mlevel = -1;
728  }
729  DetId detid(_id);
730  _sublevel = detid.subdetId();
731  int ringPhiPos=-99;
732  if(detid.det()==DetId::Muon && detid.subdetId()== MuonSubdetId::CSC){
733  CSCDetId cscId(refAli->geomDetId());
734  ringPhiPos = cscId.chamber();
735  }
736  _xVal = refAli->globalPosition().x();
737  _yVal = refAli->globalPosition().y();
738  _zVal = refAli->globalPosition().z();
740  _rVal = vec.perp();
741  _phiVal = vec.phi();
742  _etaVal = vec.eta();
744  align::EulerAngles eulerAngles = align::toAngles(rot);
745  _rotxVal = atan2(rot.yz(), rot.zz());
746  float ttt=-rot.xz();
747  if(ttt>1.) ttt=1.;
748  if(ttt<-1.) ttt=-1.;
749  _rotyVal = asin(ttt);
750  _rotzVal = atan2(rot.xy(), rot.xx());
751  _alphaVal = eulerAngles[0];
752  _betaVal = eulerAngles[1];
753  _gammaVal = eulerAngles[2];
754  _dxVal = diff[0];
755  _dyVal = diff[1];
756  _dzVal = diff[2];
757  //getting dR and dPhi
760  _drVal = vCur.perp() - vRef.perp();
761  _dphiVal = vCur.phi() - vRef.phi();
762 
763  _dalphaVal = diff[3];
764  _dbetaVal = diff[4];
765  _dgammaVal = diff[5];
766  _drotxVal=-999.; _drotyVal=-999.; _drotzVal=-999.;
767 
768  align::EulerAngles deuler(3);
769  deuler(1)=_dalphaVal;
770  deuler(2)= _dbetaVal;
771  deuler(3)= _dgammaVal;
772  align::RotationType drot = align::toMatrix(deuler);
773  double xx=rot.xx();
774  double xy=rot.xy();
775  double xz=rot.xz();
776  double yx=rot.yx();
777  double yy=rot.yy();
778  double yz=rot.yz();
779  double zx=rot.zx();
780  double zy=rot.zy();
781  double zz=rot.zz();
782  double detrot=(zz*yy - zy*yz)*xx + (-zz*yx + zx*yz)*xy + (zy*yx - zx*yy)*xz;
783  detrot=1/detrot;
784  double ixx=(zz*yy - zy*yz)*detrot;
785  double ixy=(-zz*xy + zy*xz)*detrot;
786  double ixz=(yz*xy - yy*xz)*detrot;
787  double iyx=(-zz*yx + zx*yz)*detrot;
788  double iyy=(zz*xx - zx*xz)*detrot;
789  double iyz=(-yz*xx + yx*xz)*detrot;
790  double izx=(zy*yx - zx*yy)*detrot;
791  double izy=(-zy*xx + zx*xy)*detrot;
792  double izz=(yy*xx - yx*xy)*detrot;
793  align::RotationType invrot(ixx,ixy,ixz, iyx,iyy,iyz, izx,izy,izz);
794  align::RotationType prot = rot*drot*invrot;
795 // align::RotationType prot = rot*drot;
796  float protx; //, proty, protz;
797  protx = atan2(prot.yz(), prot.zz());
798  _drotxVal = protx;//_rotxVal-protx; //atan2(drot.yz(), drot.zz());
799  ttt=-prot.xz();
800  if(ttt>1.) ttt=1.;
801  if(ttt<-1.) ttt=-1.;
802  _drotyVal = asin(ttt);// -_rotyVal;
803  _drotzVal = atan2(prot.xy(), prot.xx());// - _rotzVal;
804 // Above does not account for 2Pi wraparounds!
805 // Prior knowledge: these are supposed to be small rotations. Therefore:
806  if(_drotxVal>3.141592656) _drotxVal=-6.2831853072+_drotxVal;
807  if(_drotxVal<-3.141592656) _drotxVal=6.2831853072+_drotxVal;
808  if(_drotyVal>3.141592656) _drotyVal=-6.2831853072+_drotyVal;
809  if(_drotyVal<-3.141592656) _drotyVal=6.2831853072+_drotyVal;
810  if(_drotzVal>3.141592656) _drotzVal=-6.2831853072+_drotzVal;
811  if(_drotzVal<-3.141592656) _drotzVal=6.2831853072+_drotzVal;
812 
813  _ldxVal=-999.; _ldyVal=-999.; _ldxVal=-999.;
814  _ldrVal=-999.; _ldphiVal=-999; // set fake
815 
816 // if(refAli->alignableObjectId() == align::AlignableDetUnit){
818  align::LocalVector pointL = refAli->surface().toLocal(dV);
819  //align::LocalVector pointL = (refAli->mother())->surface().toLocal(dV);
820  _ldxVal=pointL.x(); _ldyVal=pointL.y(); _ldzVal=pointL.z();
821  _ldphiVal=pointL.phi(); _ldrVal=pointL.perp();
822 // }
823  //detIdFlag
824  if (refAli->alignableObjectId() == align::AlignableDetUnit){
825  if (_detIdFlag){
826  if ((passIdCut(refAli->id()))||(passIdCut(refAli->mother()->id()))){
827  _useDetId = 1;
828  }
829  else{
830  _useDetId = 0;
831  }
832  }
833  }
834  // det module dimension
835  if (refAli->alignableObjectId() == align::AlignableDetUnit){
836  if (refAli->mother()->alignableObjectId() != align::AlignableDet){
837  _detDim = 1;}
838  else if (refAli->mother()->alignableObjectId() ==
840  }
841  else _detDim = 0;
842 
843 
844 
845  _surWidth = refAli->surface().width();
846  _surLength = refAli->surface().length();
847  align::RotationType rt = refAli->globalRotation();
848  _surRot[0] = rt.xx(); _surRot[1] = rt.xy(); _surRot[2] = rt.xz();
849  _surRot[3] = rt.yx(); _surRot[4] = rt.yy(); _surRot[5] = rt.yz();
850  _surRot[6] = rt.zx(); _surRot[7] = rt.zy(); _surRot[8] = rt.zz();
851 
852  MGACollection holdit;
853  holdit.id=_id; holdit.level=_level; holdit.mid=_mid;
854  holdit.mlevel=_mlevel;
855  holdit.sublevel=_sublevel;
856  holdit.x=_xVal; holdit.y=_yVal; holdit.z=_zVal;
857  holdit.r=_rVal; holdit.phi=_phiVal; holdit.eta=_etaVal;
858  holdit.alpha=_alphaVal; holdit.beta=_betaVal; holdit.gamma=_gammaVal;
859  holdit.dx=_dxVal; holdit.dy=_dyVal; holdit.dz=_dzVal;
860  holdit.dr=_drVal; holdit.dphi=_dphiVal;
861  holdit.dalpha=_dalphaVal; holdit.dbeta=_dbetaVal;
862  holdit.dgamma=_dgammaVal;
863  holdit.useDetId=_useDetId; holdit.detDim=_detDim;
864  holdit.surW=_surWidth; holdit.surL=_surLength;
865  holdit.ldx=_ldxVal; holdit.ldy=_ldyVal; holdit.ldz=_ldzVal;
866  holdit.ldr=_ldrVal; holdit.ldphi=_ldphiVal;
867  holdit.rotx=_rotxVal; holdit.roty=_rotyVal; holdit.rotz=_rotzVal;
868  holdit.drotx=_drotxVal; holdit.droty=_drotyVal; holdit.drotz=_drotzVal;
869  for(int i=0; i<9; i++){holdit.surRot[i]=_surRot[i];}
870  holdit.phipos=ringPhiPos;
871  _mgacollection.push_back(holdit);
872 
873 
874  //Fill
875  _alignTree->Fill();
876 
877 }
878 
881  // Is this the mother ring?
882  if(ali==0x0) return false; // elementary sanity
883  const std::vector<Alignable*>& aliComp = ali->components();
884 
885  int size=aliComp.size();
886  if(size<=0) return false; // no subcomponents
887 
888  for(int i=0; i<size; i++){
889  if(checkChosen(aliComp[i])) return true; // A ring has CSC chambers
890  } // as subcomponents
891  return false; // 1'st layer of subcomponents weren't CSC chambers
892 }
894 
896  // Check whether the item passed satisfies the criteria given.
897  if(ali==0x0) return false; // elementary sanity
898  // Is this in the CSC section? If not, bail. Later may extend.
899  if(ali->geomDetId().det()!=DetId::Muon ||
900  ali->geomDetId().subdetId()!=MuonSubdetId::CSC) return false;
901  // If it is a CSC alignable, then check that the station, etc are
902  // those requested.
903  // One might think of aligning more than a single ring at a time,
904  // by using a vector of ring numbers. I don't see the sense in
905  // trying to align more than one station at a time for comparison.
906  CSCDetId cscId(ali->geomDetId());
907 #ifdef jnbdebug
908 std::cout<<"JNB "<<ali->id()<<" "<<cscId.endcap()<<" "
909 <<cscId.station()<<" "<<cscId.ring()<<" "<<cscId.chamber()<<" "
910 <<_endcap<<" "<<_station<<" "<<_ring
911 <<"\n"<<std::flush;
912 #endif
913  if(cscId.endcap()==_endcap && cscId.station()==_station &&
914  cscId.ring()==_ring) {
915  return true;
916  }
917  return false;
918 }
920 
922 
923  // Check to see if this contains CSC components of the appropriate ring
924  // Ring will contain N Alignables which represent chambers, each of which
925  // in turn contains M planes. For our purposes we don't care about the
926  // planes.
927  // Hmm. Interesting question: Do I want to try to fit the chamber as
928  // such, or use the geometry?
929  // I want to fit the chamber, so I'll try to use its presence as the marker.
930  // What specifically identifies a chamber as a chamber, and not as a layer?
931  // The fact that it has layers as sub components, or the fact that it is
932  // the first item with a non-zero ID breakdown? Pick the latter.
933  //
934  if(ali==0x0) return false;
935  if(checkChosen(ali)) return true; // If this is one of the desired
936  // CSC chambers, accept it
937  const std::vector<Alignable*>& aliComp = ali->components();
938 
939  int size=aliComp.size();
940  if(size<=0) return false; // no subcomponents
941 
942  for(int i=0; i<size; i++){
943  if(checkChosen(aliComp[i])) return true; // A ring has CSC chambers
944  } // as subcomponents
945  return false; // 1'st layer of subcomponents weren't CSC chambers
946 }
948 bool MuonGeometryArrange::passIdCut( uint32_t id ){
949 
950  bool pass = false;
951  DetId detid(id);
952 // if(detid.det()==DetId::Muon && detid.subdetId()== MuonSubdetId::CSC){
953 // CSCDetId cscId(refAli->geomDetId());
954 // if(cscId.layer()!=1) return false; // ONLY FIRST LAYER!
955 // }
956  int nEntries = _detIdFlagVector.size();
957 
958  for (int i = 0; i < nEntries; i++){
959  if (_detIdFlagVector[i] == id) pass = true;
960  }
961 
962  return pass;
963 
964 }
965 
966 
T xx() const
align::Scalar width() const
int chamber() const
Definition: CSCDetId.h:81
align::ID id() const
Return the ID of Alignable, i.e. DetId of &#39;first&#39; component GeomDet(Unit).
Definition: Alignable.h:180
T getUntrackedParameter(std::string const &, T const &) const
int i
Definition: DBlmapReader.cc:9
bool passChosen(Alignable *ali)
std::vector< align::StructureType > theLevels
tuple cfg
Definition: looper.py:259
T perp() const
Definition: PV3DBase.h:72
void compareGeometries(Alignable *refAli, Alignable *curAli, Alignable *curAliCopy2)
int iyy[18][41][3]
bool isMother(Alignable *ali)
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:17
Geom::Phi< T > phi() const
Definition: PV3DBase.h:69
MuonGeometryArrange(const edm::ParameterSet &)
Do nothing. Required by framework.
T y() const
Definition: PV3DBase.h:63
T yx() const
std::vector< unsigned int > _weightByIdVector
bool checkChosen(Alignable *ali)
AlgebraicVector diffAlignables(Alignable *refAli, Alignable *curAli, const std::string &weightBy, bool weightById, const std::vector< unsigned int > &weightByIdVector)
Definition: AlignTools.cc:10
const RotationType & globalRotation() const
Return the global orientation of the object.
Definition: Alignable.h:132
int ixx[18][41][3]
void createPoints(GlobalVectors *Vs, Alignable *ali, const std::string &weightBy, bool weightById, const std::vector< unsigned int > &weightByIdVector)
Definition: AlignTools.cc:92
void makeGraph(int sizeI, float smi, float sma, float minV, float maxV, TH2F *dxh, TGraph *grx, const char *name, const char *title, const char *titleg, const char *axis, float *xp, float *yp, int numEntries)
MuonAlignment * inputAlign2a
virtual Alignables components() const =0
Return vector of all direct components.
virtual void beginJob()
Read from DB and print survey info.
MuonAlignment * inputAlign2
RotationType diffRot(const GlobalVectors &current, const GlobalVectors &nominal)
Definition: Utilities.cc:71
virtual void analyze(const edm::Event &, const edm::EventSetup &)
static align::StructureType stringToId(const char *)
uint32_t rawId() const
get the raw id
Definition: DetId.h:43
T zx() const
T xy() const
void createROOTGeometry(const edm::EventSetup &iSetup)
T zz() const
static const int CSC
Definition: MuonSubdetId.h:13
T mag() const
Definition: PV3DBase.h:67
align::RotationType toLocal(const align::RotationType &) const
Return in local frame a rotation given in global frame.
bool check(const std::string &)
AlignableMuon * getAlignableMuon()
Definition: MuonAlignment.h:30
T sqrt(T t)
Definition: SSEVec.h:48
void compare(Alignable *refAli, Alignable *curAli, Alignable *curAliCopy2)
T z() const
Definition: PV3DBase.h:64
bool readModuleList(unsigned int, unsigned int, const std::vector< unsigned int > &)
Definition: AlignTools.cc:142
virtual StructureType alignableObjectId() const =0
Return the alignable type identifier.
T zy() const
std::vector< uint32_t > _detIdFlagVector
EulerAngles toAngles(const RotationType &)
Convert rotation matrix to angles about x-, y-, z-axes (frame rotation).
Definition: Utilities.cc:7
T yy() const
int subdetId() const
get the contents of the subdetector field (not cast into any detector&#39;s numbering enum) ...
Definition: DetId.h:37
const AlignableSurface & surface() const
Return the Surface (global position and orientation) of the object.
Definition: Alignable.h:126
MuonAlignment * inputAlign1
GlobalVector centerOfMass(const GlobalVectors &theVs)
Find the CM of a set of points.
Definition: Utilities.cc:185
void fillTree(Alignable *refAli, const AlgebraicVector &diff)
Definition: DetId.h:18
CLHEP::HepVector AlgebraicVector
AlgebraicVector EulerAngles
Definition: Definitions.h:36
align::Scalar length() const
void fillGapsInSurvey(double shiftErr, double angleErr)
AlignableMuon * referenceMuon
std::vector< GlobalVector > GlobalVectors
Definition: Utilities.h:24
T eta() const
Definition: PV3DBase.h:76
AlignableMuon * currentMuon
T xz() const
RotationType toMatrix(const EulerAngles &)
Convert rotation angles about x-, y-, z-axes to matrix.
Definition: Utilities.cc:40
tuple cout
Definition: gather_cfg.py:121
const PositionType & globalPosition() const
Return the global position of the object.
Definition: Alignable.h:129
volatile std::atomic< bool > shutdown_flag false
Definition: DDAxes.h:10
Detector det() const
get the detector field from this detid
Definition: DetId.h:35
T x() const
Definition: PV3DBase.h:62
void moveAlignable(Alignable *ali, AlgebraicVector diff)
Moves the alignable by the AlgebraicVector.
Definition: AlignTools.cc:81
Alignable * mother() const
Return pointer to container alignable (if any)
Definition: Alignable.h:85
T yz() const
const DetId & geomDetId() const
Definition: Alignable.h:177
tuple size
Write out results.
std::vector< MGACollection > _mgacollection