CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
AnalyticalCurvilinearJacobian.cc
Go to the documentation of this file.
3 #include <vdt/vdtMath.h>
4 
5 
7 (const GlobalTrajectoryParameters& globalParameters,
8  const GlobalPoint& x,
9  const GlobalVector& p,
10  const double& s) : theJacobian(AlgebraicMatrixID())
11 {
12  //
13  // helix: calculate full jacobian
14  //
15  if ( s*s*fabs(globalParameters.transverseCurvature())>1.e-5 ) {
16  // GlobalPoint xStart = globalParameters.position();
17  // GlobalVector h = globalParameters.magneticFieldInInverseGeV(xStart);
18  GlobalVector h = globalParameters.magneticFieldInInverseGeV();
19  computeFullJacobian(globalParameters,x,p,h,s);
20  }
21  //
22  // straight line approximation, error in RPhi about 0.1um
23  //
24  else
25  computeStraightLineJacobian(globalParameters,x,p,s);
26  //dbg::dbg_trace(1,"ACJ1", globalParameters.vector(),x,p,s,theJacobian);
27 }
28 
29 
31 (const GlobalTrajectoryParameters& globalParameters,
32  const GlobalPoint& x,
33  const GlobalVector& p,
34  const GlobalVector& h, // h is the magnetic Field in Inverse GeV
35  const double& s) : theJacobian(AlgebraicMatrixID())
36 {
37  //
38  // helix: calculate full jacobian
39  //
40  if ( s*s*fabs(globalParameters.transverseCurvature())>1.e-5 )
41  computeFullJacobian(globalParameters,x,p,h,s);
42  //
43  // straight line approximation, error in RPhi about 0.1um
44  //
45  else
46  computeStraightLineJacobian(globalParameters,x,p,s);
47 
48  //dbg::dbg_trace(1,"ACJ2", globalParameters.vector(),x,p,s,theJacobian);
49 }
50 
51 
52 #if defined(USE_SSEVECT) && !defined(TRPRFN_SCALAR)
53 #include "AnalyticalCurvilinearJacobianSSE.icc"
54 #elif defined(USE_EXTVECT) && !defined(TRPRFN_SCALAR)
55 #include "AnalyticalCurvilinearJacobianEXT.icc"
56 
57 #else
58 
59 void
61 (const GlobalTrajectoryParameters& globalParameters,
62  const GlobalPoint& x,
63  const GlobalVector& p,
64  const GlobalVector& h,
65  const double& s)
66 {
67  //GlobalVector p1 = fts.momentum().unit();
68  GlobalVector p1 = globalParameters.momentum().unit();
69  GlobalVector p2 = p.unit();
70  //GlobalPoint xStart = fts.position();
71  GlobalPoint xStart = globalParameters.position();
72  GlobalVector dx = xStart - x;
73  //GlobalVector h = MagneticField::inInverseGeV(xStart);
74  // Martijn: field is now given as parameter.. GlobalVector h = globalParameters.magneticFieldInInverseGeV(xStart);
75 
76  //double qbp = fts.signedInverseMomentum();
77  double qbp = globalParameters.signedInverseMomentum();
78  double absS = s;
79 
80  // calculate transport matrix
81  // Origin: TRPRFN
82  double t11 = p1.x(); double t12 = p1.y(); double t13 = p1.z();
83  double t21 = p2.x(); double t22 = p2.y(); double t23 = p2.z();
84  double cosl0 = p1.perp(); double cosl1 = 1./p2.perp();
85  //AlgebraicMatrix a(5,5,1);
86  // define average magnetic field and gradient
87  // at initial point - inlike TRPRFN
88  GlobalVector hn = h.unit();
89  double qp = -h.mag();
90 // double q = -h.mag()*qbp;
91  double q = qp*qbp;
92  double theta = q*absS; double sint,cost; vdt::fast_sincos(theta,sint,cost);
93  double hn1 = hn.x(); double hn2 = hn.y(); double hn3 = hn.z();
94  double dx1 = dx.x(); double dx2 = dx.y(); double dx3 = dx.z();
95  double gamma = hn1*t21 + hn2*t22 + hn3*t23;
96  double an1 = hn2*t23 - hn3*t22;
97  double an2 = hn3*t21 - hn1*t23;
98  double an3 = hn1*t22 - hn2*t21;
99  double au = 1./sqrt(t11*t11 + t12*t12);
100  double u11 = -au*t12; double u12 = au*t11;
101  double v11 = -t13*u12; double v12 = t13*u11; double v13 = t11*u12 - t12*u11;
102  au = 1./sqrt(t21*t21 + t22*t22);
103  double u21 = -au*t22; double u22 = au*t21;
104  double v21 = -t23*u22; double v22 = t23*u21; double v23 = t21*u22 - t22*u21;
105  // now prepare the transport matrix
106  // pp only needed in high-p case (WA)
107 // double pp = 1./qbp;
109 // moved up (where -h.mag() is needed()
110 // double qp = q*pp;
111  double anv = -(hn1*u21 + hn2*u22 );
112  double anu = (hn1*v21 + hn2*v22 + hn3*v23);
113  double omcost = 1. - cost; double tmsint = theta - sint;
114 
115  double hu1 = - hn3*u12;
116  double hu2 = hn3*u11;
117  double hu3 = hn1*u12 - hn2*u11;
118 
119  double hv1 = hn2*v13 - hn3*v12;
120  double hv2 = hn3*v11 - hn1*v13;
121  double hv3 = hn1*v12 - hn2*v11;
122 
123  // 1/p - doesn't change since |p1| = |p2|
124  theJacobian(0,0) = 1.; for (auto i=1;i<5; ++i) theJacobian(0,i)=0.;
125  // lambda
126 
127  theJacobian(1,0) = -qp*anv*(t21*dx1 + t22*dx2 + t23*dx3);
128 
129  theJacobian(1,1) = cost*(v11*v21 + v12*v22 + v13*v23) +
130  sint*(hv1*v21 + hv2*v22 + hv3*v23) +
131  omcost*(hn1*v11 + hn2*v12 + hn3*v13) *
132  (hn1*v21 + hn2*v22 + hn3*v23) +
133  anv*(-sint*(v11*t21 + v12*t22 + v13*t23) +
134  omcost*(v11*an1 + v12*an2 + v13*an3) -
135  tmsint*gamma*(hn1*v11 + hn2*v12 + hn3*v13) );
136 
137  theJacobian(1,2) = cost*(u11*v21 + u12*v22 ) +
138  sint*(hu1*v21 + hu2*v22 + hu3*v23) +
139  omcost*(hn1*u11 + hn2*u12 ) *
140  (hn1*v21 + hn2*v22 + hn3*v23) +
141  anv*(-sint*(u11*t21 + u12*t22 ) +
142  omcost*(u11*an1 + u12*an2 ) -
143  tmsint*gamma*(hn1*u11 + hn2*u12 ) );
144  theJacobian(1,2) *= cosl0;
145 
146  theJacobian(1,3) = -q*anv*(u11*t21 + u12*t22 );
147 
148  theJacobian(1,4) = -q*anv*(v11*t21 + v12*t22 + v13*t23);
149 
150  // phi
151 
152  theJacobian(2,0) = -qp*anu*(t21*dx1 + t22*dx2 + t23*dx3)*cosl1;
153 
154  theJacobian(2,1) = cost*(v11*u21 + v12*u22 ) +
155  sint*(hv1*u21 + hv2*u22 ) +
156  omcost*(hn1*v11 + hn2*v12 + hn3*v13) *
157  (hn1*u21 + hn2*u22 ) +
158  anu*(-sint*(v11*t21 + v12*t22 + v13*t23) +
159  omcost*(v11*an1 + v12*an2 + v13*an3) -
160  tmsint*gamma*(hn1*v11 + hn2*v12 + hn3*v13) );
161  theJacobian(2,1) *= cosl1;
162 
163  theJacobian(2,2) = cost*(u11*u21 + u12*u22 ) +
164  sint*(hu1*u21 + hu2*u22 ) +
165  omcost*(hn1*u11 + hn2*u12 ) *
166  (hn1*u21 + hn2*u22 ) +
167  anu*(-sint*(u11*t21 + u12*t22 ) +
168  omcost*(u11*an1 + u12*an2 ) -
169  tmsint*gamma*(hn1*u11 + hn2*u12 ) );
170  theJacobian(2,2) *= cosl1*cosl0;
171 
172  theJacobian(2,3) = -q*anu*(u11*t21 + u12*t22 )*cosl1;
173 
174  theJacobian(2,4) = -q*anu*(v11*t21 + v12*t22 + v13*t23)*cosl1;
175 
176  // yt
177 
178  //double cutCriterion = abs(s/fts.momentum().mag());
179  double cutCriterion = fabs(s/globalParameters.momentum().mag());
180  const double limit = 5.; // valid for propagations with effectively float precision
181 
182  if (cutCriterion > limit) {
183  double pp = 1./qbp;
184  theJacobian(3,0) = pp*(u21*dx1 + u22*dx2 );
185  theJacobian(4,0) = pp*(v21*dx1 + v22*dx2 + v23*dx3);
186  }
187  else {
188  double hp11 = hn2*t13 - hn3*t12;
189  double hp12 = hn3*t11 - hn1*t13;
190  double hp13 = hn1*t12 - hn2*t11;
191  double temp1 = hp11*u21 + hp12*u22;
192  double s2 = s*s;
193  double secondOrder41 = 0.5 * qp * temp1 * s2;
194  double ghnmp1 = gamma*hn1 - t11;
195  double ghnmp2 = gamma*hn2 - t12;
196  double ghnmp3 = gamma*hn3 - t13;
197  double temp2 = ghnmp1*u21 + ghnmp2*u22;
198  double s3 = s2 * s;
199  double s4 = s3 * s;
200  double h1 = h.mag();
201  double h2 = h1 * h1;
202  double h3 = h2 * h1;
203  double qbp2 = qbp * qbp;
204  // s*qp*s* (qp*s *qbp)
205  double thirdOrder41 = 1./3 * h2 * s3 * qbp * temp2;
206  // -qp * s * qbp * above
207  double fourthOrder41 = 1./8 * h3 * s4 * qbp2 * temp1;
208  theJacobian(3,0) = secondOrder41 + (thirdOrder41 + fourthOrder41);
209 
210  double temp3 = hp11*v21 + hp12*v22 + hp13*v23;
211  double secondOrder51 = 0.5 * qp * temp3 * s2;
212  double temp4 = ghnmp1*v21 + ghnmp2*v22 + ghnmp3*v23;
213  double thirdOrder51 = 1./3 * h2 * s3 * qbp * temp4;
214  double fourthOrder51 = 1./8 * h3 * s4 * qbp2 * temp3;
215  theJacobian(4,0) = secondOrder51 + (thirdOrder51 + fourthOrder51);
216  }
217 
218  theJacobian(3,1) = (sint*(v11*u21 + v12*u22 ) +
219  omcost*(hv1*u21 + hv2*u22 ) +
220  tmsint*(hn1*u21 + hn2*u22 ) *
221  (hn1*v11 + hn2*v12 + hn3*v13))/q;
222 
223  theJacobian(3,2) = (sint*(u11*u21 + u12*u22 ) +
224  omcost*(hu1*u21 + hu2*u22 ) +
225  tmsint*(hn1*u21 + hn2*u22 ) *
226  (hn1*u11 + hn2*u12 ))*cosl0/q;
227 
228  theJacobian(3,3) = (u11*u21 + u12*u22 );
229 
230  theJacobian(3,4) = (v11*u21 + v12*u22 );
231 
232  // zt
233 
234  theJacobian(4,1) = (sint*(v11*v21 + v12*v22 + v13*v23) +
235  omcost*(hv1*v21 + hv2*v22 + hv3*v23) +
236  tmsint*(hn1*v21 + hn2*v22 + hn3*v23) *
237  (hn1*v11 + hn2*v12 + hn3*v13))/q;
238 
239  theJacobian(4,2) = (sint*(u11*v21 + u12*v22 ) +
240  omcost*(hu1*v21 + hu2*v22 + hu3*v23) +
241  tmsint*(hn1*v21 + hn2*v22 + hn3*v23) *
242  (hn1*u11 + hn2*u12 ))*cosl0/q;
243 
244  theJacobian(4,3) = (u11*v21 + u12*v22 );
245 
246  theJacobian(4,4) = (v11*v21 + v12*v22 + v13*v23);
247  // end of TRPRFN
248 }
249 
250 #endif
251 
253 (const GlobalTrajectoryParameters& globalParameters,
254  const GlobalPoint&,
255  const GlobalVector& p,
256  const GlobalVector& h,
257  const double& s) {
258  /*
259  * origin TRPROP
260  *
261  C *** ERROR PROPAGATION ALONG A PARTICLE TRAJECTORY IN A MAGNETIC FIELD
262  C ROUTINE ASSUMES THAT IN THE INTERVAL (X1,X2) THE QUANTITIES 1/P
263  C AND (HX,HY,HZ) ARE RATHER CONSTANT. DELTA(PHI) MUST NOT BE TOO LARGE
264  C
265  C Authors: A. Haas and W. Wittek
266  C
267 
268  */
269 
270 
271  double qbp = globalParameters.signedInverseMomentum();
272  double absS = s;
273 
274  // average momentum
275  GlobalVector tn = (globalParameters.momentum()+p).unit();
276  double sinl = tn.z();
277  double cosl = std::sqrt(1.-sinl*sinl);
278  double cosl1 = 1./cosl;
279  double tgl=sinl*cosl1;
280  double sinp = tn.y()*cosl1;
281  double cosp = tn.x()*cosl1;
282 
283  // define average magnetic field and gradient
284  // at initial point - inlike TRPROP
285  double b0= h.x()*cosp+h.y()*sinp;
286  double b2=-h.x()*sinp+h.y()*cosp;
287  double b3=-b0*sinl+h.z()*cosl;
288 
289  theJacobian = AlgebraicMatrixID();
290 
291  theJacobian(3,2)=absS*cosl;
292  theJacobian(4,1)=absS;
293 
294 
295  theJacobian(1,0) = absS*b2;
296  //if ( qbp<0) theJacobian(1,0) = -theJacobian(1,0);
297  theJacobian(1,2) = -b0*(absS*qbp);
298  theJacobian(1,3) = b3*(b2*qbp*(absS*qbp));
299  theJacobian(1,4) = -b2*(b2*qbp*(absS*qbp));
300 
301  theJacobian(2,0) = -absS*b3*cosl1;
302  // if ( qbp<0) theJacobian(2,0) = -theJacobian(2,0);
303  theJacobian(2,1) = b0*(absS*qbp)*cosl1*cosl1;
304  theJacobian(2,2) = 1.+tgl*b2*(absS*qbp);
305  theJacobian(2,3) = -b3*(b3*qbp*(absS*qbp)*cosl1);
306  theJacobian(2,4) = b2*(b3*qbp*(absS*qbp)*cosl1);
307 
308  theJacobian(3,4) = -b3*tgl*(absS*qbp);
309  theJacobian(4,3) = b3*tgl*(absS*qbp);
310 
311 
312 }
313 
314 void
316 (const GlobalTrajectoryParameters& globalParameters,
317  const GlobalPoint&, const GlobalVector&, const double& s)
318 {
319  //
320  // matrix: elements =1 on diagonal and =0 are already set
321  // in initialisation
322  //
323  theJacobian = AlgebraicMatrixID();
324  GlobalVector p1 = globalParameters.momentum().unit();
325  double cosl0 = p1.perp();
326  theJacobian(3,2) = cosl0 * s;
327  theJacobian(4,1) = s;
328 }
int i
Definition: DBlmapReader.cc:9
T perp() const
Definition: PV3DBase.h:72
tuple pp
Definition: createTree.py:15
ROOT::Math::SMatrixIdentity AlgebraicMatrixID
Geom::Theta< T > theta() const
T y() const
Definition: PV3DBase.h:63
void computeStraightLineJacobian(const GlobalTrajectoryParameters &, const GlobalPoint &, const GlobalVector &, const double &s)
straight line approximation
void computeInfinitesimalJacobian(const GlobalTrajectoryParameters &, const GlobalPoint &, const GlobalVector &, const GlobalVector &, const double &s)
result for non-vanishing curvature and &quot;small&quot; step
GlobalVector magneticFieldInInverseGeV(const GlobalPoint &x) const
tuple s2
Definition: indexGen.py:106
T mag() const
Definition: PV3DBase.h:67
string unit
Definition: csvLumiCalc.py:46
T sqrt(T t)
Definition: SSEVec.h:48
T z() const
Definition: PV3DBase.h:64
The Signals That Services Can Subscribe To This is based on ActivityRegistry h
Helper function to determine trigger accepts.
Definition: Activities.doc:4
double p2[4]
Definition: TauolaWrapper.h:90
Vector3DBase unit() const
Definition: Vector3DBase.h:57
void computeFullJacobian(const GlobalTrajectoryParameters &, const GlobalPoint &, const GlobalVector &, const GlobalVector &, const double &s)
result for non-vanishing curvature
double p1[4]
Definition: TauolaWrapper.h:89
Definition: DDAxes.h:10
T x() const
Definition: PV3DBase.h:62
AnalyticalCurvilinearJacobian()
default constructor (for tests)