CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
PFAlgo.cc
Go to the documentation of this file.
2 
8 
12 
20 
24 
25 // #include "FWCore/Framework/interface/OrphanHandle.h"
27 // #include "DataFormats/Common/interface/ProductID.h"
30 
31 
34 
37 
38 
39 #include "Math/PxPyPzM4D.h"
40 #include "Math/LorentzVector.h"
41 #include "Math/DisplacementVector3D.h"
42 #include "Math/SMatrix.h"
43 #include "TDecompChol.h"
44 
45 #include "boost/graph/adjacency_matrix.hpp"
46 #include "boost/graph/graph_utility.hpp"
47 
48 
49 
50 using namespace std;
51 using namespace reco;
52 using namespace boost;
53 
54 typedef std::list< reco::PFBlockRef >::iterator IBR;
55 
56 
57 
59  : pfCandidates_( new PFCandidateCollection),
60  nSigmaECAL_(0),
61  nSigmaHCAL_(1),
62  algo_(1),
63  debug_(false),
64  pfele_(0),
65  pfpho_(0),
66  pfegamma_(0),
67  useVertices_(false)
68 {}
69 
71  if (usePFElectrons_) delete pfele_;
72  if (usePFPhotons_) delete pfpho_;
73  if (useEGammaFilters_) delete pfegamma_;
74 }
75 
76 
77 void
78 PFAlgo::setParameters(double nSigmaECAL,
79  double nSigmaHCAL,
80  const boost::shared_ptr<PFEnergyCalibration>& calibration,
81  const boost::shared_ptr<PFEnergyCalibrationHF>& thepfEnergyCalibrationHF) {
82 
83  nSigmaECAL_ = nSigmaECAL;
85 
86  calibration_ = calibration;
87  thepfEnergyCalibrationHF_ = thepfEnergyCalibrationHF;
88 
89 }
90 
91 
93  return pfmu_;
94 }
95 
96 //PFElectrons: a new method added to set the parameters for electron reconstruction.
97 void
98 PFAlgo::setPFEleParameters(double mvaEleCut,
99  string mvaWeightFileEleID,
100  bool usePFElectrons,
101  const boost::shared_ptr<PFSCEnergyCalibration>& thePFSCEnergyCalibration,
102  const boost::shared_ptr<PFEnergyCalibration>& thePFEnergyCalibration,
105  double coneEcalIsoForEgammaSC,
108  unsigned int nTrackIsoForEgammaSC,
111  bool usePFSCEleCalib,
112  bool useEGElectrons,
113  bool useEGammaSupercluster) {
114 
115  mvaEleCut_ = mvaEleCut;
119  thePFSCEnergyCalibration_ = thePFSCEnergyCalibration;
120  useEGElectrons_ = useEGElectrons;
129 
130 
131  if(!usePFElectrons_) return;
132  mvaWeightFileEleID_ = mvaWeightFileEleID;
133  FILE * fileEleID = fopen(mvaWeightFileEleID_.c_str(), "r");
134  if (fileEleID) {
135  fclose(fileEleID);
136  }
137  else {
138  string err = "PFAlgo: cannot open weight file '";
139  err += mvaWeightFileEleID;
140  err += "'";
141  throw invalid_argument( err );
142  }
145  thePFEnergyCalibration,
157 }
158 
159 void
161  std::string mvaWeightFileConvID,
162  double mvaConvCut,
163  bool useReg,
165  const boost::shared_ptr<PFEnergyCalibration>& thePFEnergyCalibration,
166  double sumPtTrackIsoForPhoton,
168  {
169 
171 
172  //for MVA pass PV if there is one in the collection otherwise pass a dummy
173  reco::Vertex dummy;
174  if(useVertices_)
175  {
176  dummy = primaryVertex_;
177  }
178  else { // create a dummy PV
180  e(0, 0) = 0.0015 * 0.0015;
181  e(1, 1) = 0.0015 * 0.0015;
182  e(2, 2) = 15. * 15.;
183  reco::Vertex::Point p(0, 0, 0);
184  dummy = reco::Vertex(p, e, 0, 0, 0);
185  }
186  // pv=&dummy;
187  if(! usePFPhotons_) return;
188  FILE * filePhotonConvID = fopen(mvaWeightFileConvID.c_str(), "r");
189  if (filePhotonConvID) {
190  fclose(filePhotonConvID);
191  }
192  else {
193  string err = "PFAlgo: cannot open weight file '";
194  err += mvaWeightFileConvID;
195  err += "'";
196  throw invalid_argument( err );
197  }
198  const reco::Vertex* pv=&dummy;
199  pfpho_ = new PFPhotonAlgo(mvaWeightFileConvID,
200  mvaConvCut,
201  useReg,
202  X0_Map,
203  *pv,
204  thePFEnergyCalibration,
205  sumPtTrackIsoForPhoton,
206  sumPtTrackIsoSlopeForPhoton
207  );
208  return;
209 }
210 
211 void PFAlgo::setEGammaParameters(bool use_EGammaFilters,
212  std::string ele_iso_path_mvaWeightFile,
213  double ele_iso_pt,
214  double ele_iso_mva_barrel,
215  double ele_iso_mva_endcap,
216  double ele_iso_combIso_barrel,
217  double ele_iso_combIso_endcap,
218  double ele_noniso_mva,
219  unsigned int ele_missinghits,
221  const edm::ParameterSet& ele_protectionsForJetMET,
222  double ph_MinEt,
223  double ph_combIso,
224  double ph_HoE,
225  double ph_sietaieta_eb,
226  double ph_sietaieta_ee,
227  const edm::ParameterSet& ph_protectionsForJetMET
228  )
229 {
230 
231  useEGammaFilters_ = use_EGammaFilters;
232 
233  if(!useEGammaFilters_ ) return;
234  FILE * fileEGamma_ele_iso_ID = fopen(ele_iso_path_mvaWeightFile.c_str(), "r");
235  if (fileEGamma_ele_iso_ID) {
236  fclose(fileEGamma_ele_iso_ID);
237  }
238  else {
239  string err = "PFAlgo: cannot open weight file '";
240  err += ele_iso_path_mvaWeightFile;
241  err += "'";
242  throw invalid_argument( err );
243  }
244 
245  // ele_iso_mvaID_ = new ElectronMVAEstimator(ele_iso_path_mvaWeightFile_);
247 
248  pfegamma_ = new PFEGammaFilters(ph_MinEt,
249  ph_combIso,
250  ph_HoE,
251  ph_sietaieta_eb,
252  ph_sietaieta_ee,
253  ph_protectionsForJetMET,
254  ele_iso_pt,
255  ele_iso_mva_barrel,
256  ele_iso_mva_endcap,
257  ele_iso_combIso_barrel,
258  ele_iso_combIso_endcap,
259  ele_noniso_mva,
260  ele_missinghits,
261  ele_iso_path_mvaWeightFile,
262  ele_protectionsForJetMET);
263 
264  return;
265 }
267  const edm::ValueMap<reco::GsfElectronRef> & valueMapGedElectrons,
268  const edm::ValueMap<reco::PhotonRef> & valueMapGedPhotons){
269  if(useEGammaFilters_) {
270  pfEgammaCandidates_ = & pfEgammaCandidates;
271  valueMapGedElectrons_ = & valueMapGedElectrons;
272  valueMapGedPhotons_ = & valueMapGedPhotons;
273  }
274 }
275 
276 
277 
278 /*
279 void PFAlgo::setPFPhotonRegWeights(
280  const GBRForest *LCorrForest,
281  const GBRForest *GCorrForest,
282  const GBRForest *ResForest
283  ) {
284  if(usePFPhotons_)
285  pfpho_->setGBRForest(LCorrForest, GCorrForest, ResForest);
286 }
287 */
289  const GBRForest *LCorrForestEB,
290  const GBRForest *LCorrForestEE,
291  const GBRForest *GCorrForestBarrel,
292  const GBRForest *GCorrForestEndcapHr9,
293  const GBRForest *GCorrForestEndcapLr9, const GBRForest *PFEcalResolution
294  ){
295 
296  pfpho_->setGBRForest(LCorrForestEB,LCorrForestEE,
297  GCorrForestBarrel, GCorrForestEndcapHr9,
298  GCorrForestEndcapLr9, PFEcalResolution);
299 }
300 void
302  // std::vector<double> muonHCAL,
303  // std::vector<double> muonECAL,
304  // std::vector<double> muonHO,
305  // double nSigmaTRACK,
306  // double ptError,
307  // std::vector<double> factors45)
308 {
309 
310 
311 
312 
313  pfmu_ = new PFMuonAlgo();
314  pfmu_->setParameters(pset);
315 
316  // Muon parameters
317  muonHCAL_= pset.getParameter<std::vector<double> >("muon_HCAL");
318  muonECAL_= pset.getParameter<std::vector<double> >("muon_ECAL");
319  muonHO_= pset.getParameter<std::vector<double> >("muon_HO");
320  assert ( muonHCAL_.size() == 2 && muonECAL_.size() == 2 && muonHO_.size() == 2);
321  nSigmaTRACK_= pset.getParameter<double>("nsigma_TRACK");
322  ptError_= pset.getParameter<double>("pt_Error");
323  factors45_ = pset.getParameter<std::vector<double> >("factors_45");
324  assert ( factors45_.size() == 2 );
325 
326 }
327 
328 
329 void
331  muonHandle_ = muons;
332 }
333 
334 
335 void
337  double minHFCleaningPt,
338  double minSignificance,
339  double maxSignificance,
341  double maxDeltaPhiPt,
342  double minDeltaMet) {
350 }
351 
352 void
354  bool rejectTracks_Step45,
356  bool usePFConversions,
357  bool usePFDecays,
358  double dptRel_DispVtx){
359 
366 
367 }
368 
369 
370 void
374 
375  //Set the vertices for muon cleaning
376  pfmu_->setInputsForCleaning(primaryVertices);
377 
378 
379  //Now find the primary vertex!
380  bool primaryVertexFound = false;
381  nVtx_ = primaryVertices->size();
382  if(usePFPhotons_){
383  pfpho_->setnPU(nVtx_);
384  }
385  for (unsigned short i=0 ;i<primaryVertices->size();++i)
386  {
387  if(primaryVertices->at(i).isValid()&&(!primaryVertices->at(i).isFake()))
388  {
389  primaryVertex_ = primaryVertices->at(i);
390  primaryVertexFound = true;
391  break;
392  }
393  }
394  //Use vertices if the user wants to but only if it exists a good vertex
395  useVertices_ = useVertex && primaryVertexFound;
396  if(usePFPhotons_) {
397  if (useVertices_ ){
399  }
400  else{
402  e(0, 0) = 0.0015 * 0.0015;
403  e(1, 1) = 0.0015 * 0.0015;
404  e(2, 2) = 15. * 15.;
405  reco::Vertex::Point p(0, 0, 0);
406  reco::Vertex dummy = reco::Vertex(p, e, 0, 0, 0);
407  // std::cout << " PFPho " << pfpho_ << std::endl;
408  pfpho_->setPhotonPrimaryVtx(dummy);
409  }
410  }
411 }
412 
413 
415 
416  blockHandle_ = blockHandle;
418 }
419 
420 
421 
423 
424  // reset output collection
425  if(pfCandidates_.get() )
426  pfCandidates_->clear();
427  else
429 
430  if(pfElectronCandidates_.get() )
431  pfElectronCandidates_->clear();
432  else
434 
435  // Clearing pfPhotonCandidates
436  if( pfPhotonCandidates_.get() )
437  pfPhotonCandidates_->clear();
438  else
440 
441  if(pfCleanedCandidates_.get() )
442  pfCleanedCandidates_->clear();
443  else
445 
446  // not a auto_ptr; shout not be deleted after transfer
447  pfElectronExtra_.clear();
448  pfPhotonExtra_.clear();
449 
450  if( debug_ ) {
451  cout<<"*********************************************************"<<endl;
452  cout<<"***** Particle flow algorithm *****"<<endl;
453  cout<<"*********************************************************"<<endl;
454  }
455 
456  // sort elements in three lists:
457  std::list< reco::PFBlockRef > hcalBlockRefs;
458  std::list< reco::PFBlockRef > ecalBlockRefs;
459  std::list< reco::PFBlockRef > hoBlockRefs;
460  std::list< reco::PFBlockRef > otherBlockRefs;
461 
462  for( unsigned i=0; i<blocks.size(); ++i ) {
463  // reco::PFBlockRef blockref( blockh,i );
464  reco::PFBlockRef blockref = createBlockRef( blocks, i);
465 
466  const reco::PFBlock& block = *blockref;
468  elements = block.elements();
469 
470  bool singleEcalOrHcal = false;
471  if( elements.size() == 1 ){
472  if( elements[0].type() == reco::PFBlockElement::ECAL ){
473  ecalBlockRefs.push_back( blockref );
474  singleEcalOrHcal = true;
475  }
476  if( elements[0].type() == reco::PFBlockElement::HCAL ){
477  hcalBlockRefs.push_back( blockref );
478  singleEcalOrHcal = true;
479  }
480  if( elements[0].type() == reco::PFBlockElement::HO ){
481  // Single HO elements are likely to be noise. Not considered for now.
482  hoBlockRefs.push_back( blockref );
483  singleEcalOrHcal = true;
484  }
485  }
486 
487  if(!singleEcalOrHcal) {
488  otherBlockRefs.push_back( blockref );
489  }
490  }//loop blocks
491 
492  if( debug_ ){
493  cout<<"# Ecal blocks: "<<ecalBlockRefs.size()
494  <<", # Hcal blocks: "<<hcalBlockRefs.size()
495  <<", # HO blocks: "<<hoBlockRefs.size()
496  <<", # Other blocks: "<<otherBlockRefs.size()<<endl;
497  }
498 
499 
500  // loop on blocks that are not single ecal,
501  // and not single hcal.
502 
503  unsigned nblcks = 0;
504  for( IBR io = otherBlockRefs.begin(); io!=otherBlockRefs.end(); ++io) {
505  if ( debug_ ) std::cout << "Block number " << nblcks++ << std::endl;
506  processBlock( *io, hcalBlockRefs, ecalBlockRefs );
507  }
508 
509  std::list< reco::PFBlockRef > empty;
510 
511  unsigned hblcks = 0;
512  // process remaining single hcal blocks
513  for( IBR ih = hcalBlockRefs.begin(); ih!=hcalBlockRefs.end(); ++ih) {
514  if ( debug_ ) std::cout << "HCAL block number " << hblcks++ << std::endl;
515  processBlock( *ih, empty, empty );
516  }
517 
518  unsigned eblcks = 0;
519  // process remaining single ecal blocks
520  for( IBR ie = ecalBlockRefs.begin(); ie!=ecalBlockRefs.end(); ++ie) {
521  if ( debug_ ) std::cout << "ECAL block number " << eblcks++ << std::endl;
522  processBlock( *ie, empty, empty );
523  }
524 
525  // Post HF Cleaning
526  postCleaning();
527 
528  //Muon post cleaning
529  pfmu_->postClean(pfCandidates_.get());
530 
531  //Add Missing muons
532  if( muonHandle_.isValid())
534 }
535 
536 
538  std::list<reco::PFBlockRef>& hcalBlockRefs,
539  std::list<reco::PFBlockRef>& ecalBlockRefs ) {
540 
541  // debug_ = false;
542  assert(!blockref.isNull() );
543  const reco::PFBlock& block = *blockref;
544 
545  typedef std::multimap<double, unsigned>::iterator IE;
546  typedef std::multimap<double, std::pair<unsigned,::math::XYZVector> >::iterator IS;
547  typedef std::multimap<double, std::pair<unsigned,bool> >::iterator IT;
548  typedef std::multimap< unsigned, std::pair<double, unsigned> >::iterator II;
549 
550  if(debug_) {
551  cout<<"#########################################################"<<endl;
552  cout<<"##### Process Block: #####"<<endl;
553  cout<<"#########################################################"<<endl;
554  cout<<block<<endl;
555  }
556 
557 
558  const edm::OwnVector< reco::PFBlockElement >& elements = block.elements();
559  // make a copy of the link data, which will be edited.
560  PFBlock::LinkData linkData = block.linkData();
561 
562  // keep track of the elements which are still active.
563  vector<bool> active( elements.size(), true );
564 
565 
566  // //PFElectrons:
567  // usePFElectrons_ external configurable parameter to set the usage of pf electron
568  std::vector<reco::PFCandidate> tempElectronCandidates;
569  tempElectronCandidates.clear();
570  if (usePFElectrons_) {
571  if (pfele_->isElectronValidCandidate(blockref,active, primaryVertex_ )){
572  // if there is at least a valid candidate is get the vector of pfcandidates
573  const std::vector<reco::PFCandidate> PFElectCandidates_(pfele_->getElectronCandidates());
574  for ( std::vector<reco::PFCandidate>::const_iterator ec=PFElectCandidates_.begin(); ec != PFElectCandidates_.end(); ++ec )tempElectronCandidates.push_back(*ec);
575 
576  // (***) We're filling the ElectronCandidates into the PFCandiate collection
577  // ..... Once we let PFPhotonAlgo over-write electron-decision, we need to move this to
578  // ..... after the PhotonAlgo has run (Fabian)
579  }
580  // The vector active is automatically changed (it is passed by ref) in PFElectronAlgo
581  // for all the electron candidate
583  pfele_->getAllElectronCandidates().begin(),
584  pfele_->getAllElectronCandidates().end());
585 
586  pfElectronExtra_.insert(pfElectronExtra_.end(),
587  pfele_->getElectronExtra().begin(),
588  pfele_->getElectronExtra().end());
589 
590  }
591  if( /* --- */ usePFPhotons_ /* --- */ ) {
592 
593  if(debug_)
594  cout<<endl<<"--------------- entering PFPhotonAlgo ----------------"<<endl;
595  vector<PFCandidatePhotonExtra> pfPhotonExtraCand;
596  if ( pfpho_->isPhotonValidCandidate(blockref, // passing the reference to the PFBlock
597  active, // std::vector<bool> containing information about acitivity
598  pfPhotonCandidates_, // pointer to candidate vector, to be filled by the routine
599  pfPhotonExtraCand, // candidate extra vector, to be filled by the routine
600  tempElectronCandidates
601  //pfElectronCandidates_ // pointer to some auziliary UNTOUCHED FOR NOW
602  ) ) {
603  if(debug_)
604  std::cout<< " In this PFBlock we found "<<pfPhotonCandidates_->size()<<" Photon Candidates."<<std::endl;
605 
606  // CAUTION: In case we want to allow the PhotonAlgo to 'over-write' what the ElectronAlgo did above
607  // ........ we should NOT fill the PFCandidate-vector with the electrons above (***)
608 
609  // Here we need to add all the photon cands to the pfCandidate list
610  unsigned int extracand =0;
611  PFCandidateCollection::const_iterator cand = pfPhotonCandidates_->begin();
612  for( ; cand != pfPhotonCandidates_->end(); ++cand, ++extracand) {
613  pfCandidates_->push_back(*cand);
614  pfPhotonExtra_.push_back(pfPhotonExtraCand[extracand]);
615  }
616 
617  } // end of 'if' in case photons are found
618  pfPhotonExtraCand.clear();
619  pfPhotonCandidates_->clear();
620  } // end of Photon algo
621 
622  if (usePFElectrons_) {
623  for ( std::vector<reco::PFCandidate>::const_iterator ec=tempElectronCandidates.begin(); ec != tempElectronCandidates.end(); ++ec ){
624  pfCandidates_->push_back(*ec);
625  }
626  tempElectronCandidates.clear();
627  }
628 
629 
630  // New EGamma Reconstruction 10/10/2013
631  if(useEGammaFilters_) {
632 
633  // const edm::ValueMap<reco::GsfElectronRef> & myGedElectronValMap(*valueMapGedElectrons_);
634  bool egmLocalDebug = false;
635  bool egmLocalBlockDebug = false;
636 
637  unsigned int negmcandidates = pfEgammaCandidates_->size();
638  for(unsigned int ieg=0 ; ieg < negmcandidates; ++ieg) {
639  // const reco::PFCandidate & egmcand((*pfEgammaCandidates_)[ieg]);
641 
642  const PFCandidate::ElementsInBlocks& theElements = (*pfEgmRef).elementsInBlocks();
643  PFCandidate::ElementsInBlocks::const_iterator iegfirst = theElements.begin();
644  bool sameBlock = false;
645  bool isGoodElectron = false;
646  bool isGoodPhoton = false;
647  bool isPrimaryElectron = false;
648  if(iegfirst->first == blockref)
649  sameBlock = true;
650  if(sameBlock) {
651 
652  if(egmLocalDebug)
653  cout << " I am in looping on EGamma Candidates: pt " << (*pfEgmRef).pt()
654  << " eta,phi " << (*pfEgmRef).eta() << ", " << (*pfEgmRef).phi()
655  << " charge " << (*pfEgmRef).charge() << endl;
656 
657  if((*pfEgmRef).gsfTrackRef().isNonnull()) {
658 
659  reco::GsfElectronRef gedEleRef = (*valueMapGedElectrons_)[pfEgmRef];
660  if(gedEleRef.isNonnull()) {
661  isGoodElectron = pfegamma_->passElectronSelection(*gedEleRef,*pfEgmRef,nVtx_);
662  isPrimaryElectron = pfegamma_->isElectron(*gedEleRef);
663  if(egmLocalDebug){
664  if(isGoodElectron)
665  cout << "** Good Electron, pt " << gedEleRef->pt()
666  << " eta, phi " << gedEleRef->eta() << ", " << gedEleRef->phi()
667  << " charge " << gedEleRef->charge()
668  << " isPrimary " << isPrimaryElectron << endl;
669  }
670 
671 
672  }
673  }
674  if((*pfEgmRef).superClusterRef().isNonnull()) {
675 
676  reco::PhotonRef gedPhoRef = (*valueMapGedPhotons_)[pfEgmRef];
677  if(gedPhoRef.isNonnull()) {
678  isGoodPhoton = pfegamma_->passPhotonSelection(*gedPhoRef);
679  if(egmLocalDebug) {
680  if(isGoodPhoton)
681  cout << "** Good Photon, pt " << gedPhoRef->pt()
682  << " eta, phi " << gedPhoRef->eta() << ", " << gedPhoRef->phi() << endl;
683  }
684  }
685  }
686  } // end same block
687 
688  if(isGoodElectron && isGoodPhoton) {
689  if(isPrimaryElectron)
690  isGoodPhoton = false;
691  else
692  isGoodElectron = false;
693  }
694 
695  // isElectron
696  if(isGoodElectron) {
697  reco::GsfElectronRef gedEleRef = (*valueMapGedElectrons_)[pfEgmRef];
698  reco::PFCandidate myPFElectron = *pfEgmRef;
699  // run protections
700  bool lockTracks = false;
701  bool isSafe = true;
703  lockTracks = true;
704  isSafe = pfegamma_->isElectronSafeForJetMET(*gedEleRef,myPFElectron,primaryVertex_,lockTracks);
705  }
706 
707  if(isSafe) {
709  myPFElectron.setParticleType(particleType);
710  myPFElectron.setCharge(gedEleRef->charge());
711  myPFElectron.setP4(gedEleRef->p4());
712  myPFElectron.set_mva_e_pi(gedEleRef->mva_e_pi());
713  myPFElectron.set_mva_Isolated(gedEleRef->mva_Isolated());
714 
715  if(egmLocalDebug) {
716  cout << " PFAlgo: found an electron with NEW EGamma code " << endl;
717  cout << " myPFElectron: pt " << myPFElectron.pt()
718  << " eta,phi " << myPFElectron.eta() << ", " <<myPFElectron.phi()
719  << " mva " << myPFElectron.mva_e_pi()
720  << " charge " << myPFElectron.charge() << endl;
721  }
722 
723 
724  // Lock all the elements
725  if(egmLocalBlockDebug)
726  cout << " THE BLOCK " << *blockref << endl;
727  for (PFCandidate::ElementsInBlocks::const_iterator ieb = theElements.begin();
728  ieb<theElements.end(); ++ieb) {
729  active[ieb->second] = false;
730  if(egmLocalBlockDebug)
731  cout << " Elements used " << ieb->second << endl;
732  }
733 
734  // The electron is considered safe for JetMET and the additional tracks pointing to it are locked
735  if(lockTracks) {
736  const PFCandidate::ElementsInBlocks& extraTracks = myPFElectron.egammaExtraRef()->extraNonConvTracks();
737  for (PFCandidate::ElementsInBlocks::const_iterator itrk = extraTracks.begin();
738  itrk<extraTracks.end(); ++itrk) {
739  active[itrk->second] = false;
740  }
741  }
742 
743  pfCandidates_->push_back(myPFElectron);
744 
745  }
746  else {
747  if(egmLocalDebug)
748  cout << "PFAlgo: Electron DISCARDED, NOT SAFE FOR JETMET " << endl;
749  }
750  }
751  if(isGoodPhoton) {
752  reco::PhotonRef gedPhoRef = (*valueMapGedPhotons_)[pfEgmRef];
753  reco::PFCandidate myPFPhoton = *pfEgmRef;
754  bool isSafe = true;
756  isSafe = pfegamma_->isPhotonSafeForJetMET(*gedPhoRef,myPFPhoton);
757  }
758 
759 
760 
761  if(isSafe) {
763  myPFPhoton.setParticleType(particleType);
764  myPFPhoton.setCharge(0);
765  myPFPhoton.set_mva_nothing_gamma(1.);
767  myPFPhoton.setVertex( v );
768  myPFPhoton.setP4(gedPhoRef->p4());
769  if(egmLocalDebug) {
770  cout << " PFAlgo: found a photon with NEW EGamma code " << endl;
771  cout << " myPFPhoton: pt " << myPFPhoton.pt()
772  << " eta,phi " << myPFPhoton.eta() << ", " <<myPFPhoton.phi()
773  << " charge " << myPFPhoton.charge() << endl;
774  }
775 
776  // Lock all the elements
777  if(egmLocalBlockDebug)
778  cout << " THE BLOCK " << *blockref << endl;
779  for (PFCandidate::ElementsInBlocks::const_iterator ieb = theElements.begin();
780  ieb<theElements.end(); ++ieb) {
781  active[ieb->second] = false;
782  if(egmLocalBlockDebug)
783  cout << " Elements used " << ieb->second << endl;
784  }
785  pfCandidates_->push_back(myPFPhoton);
786 
787  } // end isSafe
788  } // end isGoodPhoton
789  } // end loop on EGM candidates
790  } // end if use EGammaFilters
791 
792 
793 
794  //Lock extra conversion tracks not used by Photon Algo
795  if (usePFConversions_ )
796  {
797  for(unsigned iEle=0; iEle<elements.size(); iEle++) {
798  PFBlockElement::Type type = elements[iEle].type();
799  if(type==PFBlockElement::TRACK)
800  {
801  if(elements[iEle].trackRef()->algo() == 12) // should not be reco::TrackBase::conversionStep ?
802  active[iEle]=false;
803  if(elements[iEle].trackRef()->quality(reco::TrackBase::highPurity))continue;
804  const reco::PFBlockElementTrack * trackRef = dynamic_cast<const reco::PFBlockElementTrack*>((&elements[iEle]));
805  if(!(trackRef->trackType(reco::PFBlockElement::T_FROM_GAMMACONV)))continue;
806  if(elements[iEle].convRefs().size())active[iEle]=false;
807  }
808  }
809  }
810 
811 
812 
813 
814 
815  if(debug_)
816  cout<<endl<<"--------------- loop 1 ------------------"<<endl;
817 
818  //COLINFEB16
819  // In loop 1, we loop on all elements.
820 
821  // The primary goal is to deal with tracks that are:
822  // - not associated to an HCAL cluster
823  // - not identified as an electron.
824  // Those tracks should be predominantly relatively low energy charged
825  // hadrons which are not detected in the ECAL.
826 
827  // The secondary goal is to prepare for the next loops
828  // - The ecal and hcal elements are sorted in separate vectors
829  // which will be used as a base for the corresponding loops.
830  // - For tracks which are connected to more than one HCAL cluster,
831  // the links between the track and the cluster are cut for all clusters
832  // but the closest one.
833  // - HF only blocks ( HFEM, HFHAD, HFEM+HFAD) are identified
834 
835  // obsolete comments?
836  // loop1:
837  // - sort ecal and hcal elements in separate vectors
838  // - for tracks:
839  // - lock closest ecal cluster
840  // - cut link to farthest hcal cluster, if more than 1.
841 
842  // vectors to store indices to ho, hcal and ecal elements
843  vector<unsigned> hcalIs;
844  vector<unsigned> hoIs;
845  vector<unsigned> ecalIs;
846  vector<unsigned> trackIs;
847  vector<unsigned> ps1Is;
848  vector<unsigned> ps2Is;
849 
850  vector<unsigned> hfEmIs;
851  vector<unsigned> hfHadIs;
852 
853 
854  for(unsigned iEle=0; iEle<elements.size(); iEle++) {
855  PFBlockElement::Type type = elements[iEle].type();
856 
857  if(debug_ && type != PFBlockElement::BREM ) cout<<endl<<elements[iEle];
858 
859  switch( type ) {
860  case PFBlockElement::TRACK:
861  if ( active[iEle] ) {
862  trackIs.push_back( iEle );
863  if(debug_) cout<<"TRACK, stored index, continue"<<endl;
864  }
865  break;
866  case PFBlockElement::ECAL:
867  if ( active[iEle] ) {
868  ecalIs.push_back( iEle );
869  if(debug_) cout<<"ECAL, stored index, continue"<<endl;
870  }
871  continue;
873  if ( active[iEle] ) {
874  hcalIs.push_back( iEle );
875  if(debug_) cout<<"HCAL, stored index, continue"<<endl;
876  }
877  continue;
878  case PFBlockElement::HO:
879  if (useHO_) {
880  if ( active[iEle] ) {
881  hoIs.push_back( iEle );
882  if(debug_) cout<<"HO, stored index, continue"<<endl;
883  }
884  }
885  continue;
886  case PFBlockElement::HFEM:
887  if ( active[iEle] ) {
888  hfEmIs.push_back( iEle );
889  if(debug_) cout<<"HFEM, stored index, continue"<<endl;
890  }
891  continue;
892  case PFBlockElement::HFHAD:
893  if ( active[iEle] ) {
894  hfHadIs.push_back( iEle );
895  if(debug_) cout<<"HFHAD, stored index, continue"<<endl;
896  }
897  continue;
898  default:
899  continue;
900  }
901 
902  // we're now dealing with a track
903  unsigned iTrack = iEle;
904  reco::MuonRef muonRef = elements[iTrack].muonRef();
905 
906  //Check if the track is a primary track of a secondary interaction
907  //If that is the case reconstruct a charged hadron noly using that
908  //track
909  if (active[iTrack] && isFromSecInt(elements[iEle], "primary")){
910  bool isPrimaryTrack = elements[iEle].displacedVertexRef(PFBlockElement::T_TO_DISP)->displacedVertexRef()->isTherePrimaryTracks();
911  if (isPrimaryTrack) {
912  if (debug_) cout << "Primary Track reconstructed alone" << endl;
913 
914  unsigned tmpi = reconstructTrack(elements[iEle]);
915  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEle );
916  active[iTrack] = false;
917  }
918  }
919 
920 
921  if(debug_) {
922  if ( !active[iTrack] )
923  cout << "Already used by electrons, muons, conversions" << endl;
924  }
925 
926  // Track already used as electron, muon, conversion?
927  // Added a check on the activated element
928  if ( ! active[iTrack] ) continue;
929 
930  reco::TrackRef trackRef = elements[iTrack].trackRef();
931  assert( !trackRef.isNull() );
932 
933  if (debug_ ) {
934  cout <<"PFAlgo:processBlock "<<" "<<trackIs.size()<<" "<<ecalIs.size()<<" "<<hcalIs.size()<<" "<<hoIs.size()<<endl;
935  }
936 
937  // look for associated elements of all types
938  //COLINFEB16
939  // all types of links are considered.
940  // the elements are sorted by increasing distance
941  std::multimap<double, unsigned> ecalElems;
942  block.associatedElements( iTrack, linkData,
943  ecalElems ,
946 
947  std::multimap<double, unsigned> hcalElems;
948  block.associatedElements( iTrack, linkData,
949  hcalElems,
952 
953  // When a track has no HCAL cluster linked, but another track is linked to the same
954  // ECAL cluster and an HCAL cluster, link the track to the HCAL cluster for
955  // later analysis
956  if ( hcalElems.empty() && !ecalElems.empty() ) {
957  // debug_ = true;
958  unsigned ntt = 1;
959  unsigned index = ecalElems.begin()->second;
960  std::multimap<double, unsigned> sortedTracks;
961  block.associatedElements( index, linkData,
962  sortedTracks,
965  // std::cout << "The ECAL is linked to " << sortedTracks.size() << std::endl;
966 
967  // Loop over all tracks
968  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
969  unsigned jTrack = ie->second;
970  // std::cout << "Track " << jTrack << std::endl;
971  // Track must be active
972  if ( !active[jTrack] ) continue;
973  //std::cout << "Active " << std::endl;
974 
975  // The loop is on the other tracks !
976  if ( jTrack == iTrack ) continue;
977  //std::cout << "A different track ! " << std::endl;
978 
979  // Check if the ECAL closest to this track is the current ECAL
980  // Otherwise ignore this track in the neutral energy determination
981  std::multimap<double, unsigned> sortedECAL;
982  block.associatedElements( jTrack, linkData,
983  sortedECAL,
986  if ( sortedECAL.begin()->second != index ) continue;
987  //std::cout << "With closest ECAL identical " << std::endl;
988 
989 
990  // Check if this track is also linked to an HCAL
991  std::multimap<double, unsigned> sortedHCAL;
992  block.associatedElements( jTrack, linkData,
993  sortedHCAL,
996  if ( !sortedHCAL.size() ) continue;
997  //std::cout << "With an HCAL cluster " << sortedHCAL.begin()->first << std::endl;
998  ntt++;
999 
1000  // In that case establish a link with the first track
1001  block.setLink( iTrack,
1002  sortedHCAL.begin()->second,
1003  sortedECAL.begin()->first,
1004  linkData,
1005  PFBlock::LINKTEST_RECHIT );
1006 
1007  } // End other tracks
1008 
1009  // Redefine HCAL elements
1010  block.associatedElements( iTrack, linkData,
1011  hcalElems,
1014 
1015  if ( debug_ && hcalElems.size() )
1016  std::cout << "Track linked back to HCAL due to ECAL sharing with other tracks" << std::endl;
1017  }
1018 
1019  //MICHELE
1020  //TEMPORARY SOLUTION FOR ELECTRON REJECTION IN PFTAU
1021  //COLINFEB16
1022  // in case particle flow electrons are not reconstructed,
1023  // the mva_e_pi of the charged hadron will be set to 1
1024  // if a GSF element is associated to the current TRACK element
1025  // This information will be used in the electron rejection for tau ID.
1026  std::multimap<double,unsigned> gsfElems;
1027  if (usePFElectrons_ == false) {
1028  block.associatedElements( iTrack, linkData,
1029  gsfElems ,
1031  }
1032  //
1033 
1034  if(hcalElems.empty() && debug_) {
1035  cout<<"no hcal element connected to track "<<iTrack<<endl;
1036  }
1037 
1038  // will now loop on associated elements ...
1039  // typedef std::multimap<double, unsigned>::iterator IE;
1040 
1041  bool hcalFound = false;
1042 
1043  if(debug_)
1044  cout<<"now looping on elements associated to the track"<<endl;
1045 
1046  // ... first on associated ECAL elements
1047  // Check if there is still a free ECAL for this track
1048  for(IE ie = ecalElems.begin(); ie != ecalElems.end(); ++ie ) {
1049 
1050  unsigned index = ie->second;
1051  // Sanity checks and optional printout
1052  PFBlockElement::Type type = elements[index].type();
1053  if(debug_) {
1054  double dist = ie->first;
1055  cout<<"\telement "<<elements[index]<<" linked with distance = "<< dist <<endl;
1056  if ( ! active[index] ) cout << "This ECAL is already used - skip it" << endl;
1057  }
1058  assert( type == PFBlockElement::ECAL );
1059 
1060  // This ECAL is not free (taken by an electron?) - just skip it
1061  if ( ! active[index] ) continue;
1062 
1063  // Flag ECAL clusters for which the corresponding track is not linked to an HCAL cluster
1064 
1065  //reco::PFClusterRef clusterRef = elements[index].clusterRef();
1066  //assert( !clusterRef.isNull() );
1067  if( !hcalElems.empty() && debug_)
1068  cout<<"\t\tat least one hcal element connected to the track."
1069  <<" Sparing Ecal cluster for the hcal loop"<<endl;
1070 
1071  } //loop print ecal elements
1072 
1073 
1074  // tracks which are not linked to an HCAL
1075  // are reconstructed now.
1076 
1077  if( hcalElems.empty() ) {
1078 
1079  if ( debug_ )
1080  std::cout << "Now deals with tracks linked to no HCAL clusters" << std::endl;
1081  // vector<unsigned> elementIndices;
1082  // elementIndices.push_back(iTrack);
1083 
1084  // The track momentum
1085  double trackMomentum = elements[iTrack].trackRef()->p();
1086  if ( debug_ )
1087  std::cout << elements[iTrack] << std::endl;
1088 
1089  // Is it a "tight" muon ? In that case assume no
1090  //Track momentum corresponds to the calorimeter
1091  //energy for now
1092  bool thisIsAMuon = PFMuonAlgo::isMuon(elements[iTrack]);
1093  if ( thisIsAMuon ) trackMomentum = 0.;
1094 
1095  // If it is not a muon check if Is it a fake track ?
1096  //Michalis: I wonder if we should convert this to dpt/pt?
1097  bool rejectFake = false;
1098  if ( !thisIsAMuon && elements[iTrack].trackRef()->ptError() > ptError_ ) {
1099 
1100  double deficit = trackMomentum;
1101  double resol = neutralHadronEnergyResolution(trackMomentum,
1102  elements[iTrack].trackRef()->eta());
1103  resol *= trackMomentum;
1104 
1105  if ( !ecalElems.empty() ) {
1106  unsigned thisEcal = ecalElems.begin()->second;
1107  reco::PFClusterRef clusterRef = elements[thisEcal].clusterRef();
1108  deficit -= clusterRef->energy();
1109  resol = neutralHadronEnergyResolution(trackMomentum,
1110  clusterRef->positionREP().Eta());
1111  resol *= trackMomentum;
1112  }
1113 
1114  bool isPrimary = isFromSecInt(elements[iTrack], "primary");
1115 
1116  if ( deficit > nSigmaTRACK_*resol && !isPrimary) {
1117  rejectFake = true;
1118  active[iTrack] = false;
1119  if ( debug_ )
1120  std::cout << elements[iTrack] << std::endl
1121  << "is probably a fake (1) --> lock the track"
1122  << std::endl;
1123  }
1124  }
1125 
1126  if ( rejectFake ) continue;
1127 
1128  // Create a track candidate
1129  // unsigned tmpi = reconstructTrack( elements[iTrack] );
1130  //active[iTrack] = false;
1131  std::vector<unsigned> tmpi;
1132  std::vector<unsigned> kTrack;
1133 
1134  // Some cleaning : secondary tracks without calo's and large momentum must be fake
1135  double Dpt = trackRef->ptError();
1136 
1137  if ( rejectTracks_Step45_ && ecalElems.empty() &&
1138  trackMomentum > 30. && Dpt > 0.5 &&
1139  ( trackRef->algo() == TrackBase::mixedTripletStep ||
1140  trackRef->algo() == TrackBase::pixelLessStep ||
1141  trackRef->algo() == TrackBase::tobTecStep ) ) {
1142 
1143  double dptRel = Dpt/trackRef->pt()*100;
1144  bool isPrimaryOrSecondary = isFromSecInt(elements[iTrack], "all");
1145 
1146  if ( isPrimaryOrSecondary && dptRel < dptRel_DispVtx_) continue;
1147  unsigned nHits = elements[iTrack].trackRef()->hitPattern().trackerLayersWithMeasurement();
1148  unsigned int NLostHit = trackRef->hitPattern().trackerLayersWithoutMeasurement(HitPattern::TRACK_HITS);
1149 
1150  if ( debug_ )
1151  std::cout << "A track (algo = " << trackRef->algo() << ") with momentum " << trackMomentum
1152  << " / " << elements[iTrack].trackRef()->pt() << " +/- " << Dpt
1153  << " / " << elements[iTrack].trackRef()->eta()
1154  << " without any link to ECAL/HCAL and with " << nHits << " (" << NLostHit
1155  << ") hits (lost hits) has been cleaned" << std::endl;
1156  active[iTrack] = false;
1157  continue;
1158  }
1159 
1160 
1161  tmpi.push_back(reconstructTrack( elements[iTrack]));
1162 
1163  kTrack.push_back(iTrack);
1164  active[iTrack] = false;
1165 
1166  // No ECAL cluster either ... continue...
1167  if ( ecalElems.empty() ) {
1168  (*pfCandidates_)[tmpi[0]].setEcalEnergy( 0., 0. );
1169  (*pfCandidates_)[tmpi[0]].setHcalEnergy( 0., 0. );
1170  (*pfCandidates_)[tmpi[0]].setHoEnergy( 0., 0. );
1171  (*pfCandidates_)[tmpi[0]].setPs1Energy( 0 );
1172  (*pfCandidates_)[tmpi[0]].setPs2Energy( 0 );
1173  (*pfCandidates_)[tmpi[0]].addElementInBlock( blockref, kTrack[0] );
1174  continue;
1175  }
1176 
1177  // Look for closest ECAL cluster
1178  unsigned thisEcal = ecalElems.begin()->second;
1179  reco::PFClusterRef clusterRef = elements[thisEcal].clusterRef();
1180  if ( debug_ ) std::cout << " is associated to " << elements[thisEcal] << std::endl;
1181 
1182 
1183  // Set ECAL energy for muons
1184  if ( thisIsAMuon ) {
1185  (*pfCandidates_)[tmpi[0]].setEcalEnergy( clusterRef->energy(),
1186  std::min(clusterRef->energy(), muonECAL_[0]) );
1187  (*pfCandidates_)[tmpi[0]].setHcalEnergy( 0., 0. );
1188  (*pfCandidates_)[tmpi[0]].setHoEnergy( 0., 0. );
1189  (*pfCandidates_)[tmpi[0]].setPs1Energy( 0 );
1190  (*pfCandidates_)[tmpi[0]].setPs2Energy( 0 );
1191  (*pfCandidates_)[tmpi[0]].addElementInBlock( blockref, kTrack[0] );
1192  }
1193 
1194  double slopeEcal = 1.;
1195  bool connectedToEcal = false;
1196  unsigned iEcal = 99999;
1197  double calibEcal = 0.;
1198  double calibHcal = 0.;
1199  double totalEcal = thisIsAMuon ? -muonECAL_[0] : 0.;
1200 
1201  // Consider charged particles closest to the same ECAL cluster
1202  std::multimap<double, unsigned> sortedTracks;
1203  block.associatedElements( thisEcal, linkData,
1204  sortedTracks,
1207 
1208  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
1209  unsigned jTrack = ie->second;
1210 
1211  // Don't consider already used tracks
1212  if ( !active[jTrack] ) continue;
1213 
1214  // The loop is on the other tracks !
1215  if ( jTrack == iTrack ) continue;
1216 
1217  // Check if the ECAL cluster closest to this track is
1218  // indeed the current ECAL cluster. Only tracks not
1219  // linked to an HCAL cluster are considered here
1220  std::multimap<double, unsigned> sortedECAL;
1221  block.associatedElements( jTrack, linkData,
1222  sortedECAL,
1225  if ( sortedECAL.begin()->second != thisEcal ) continue;
1226 
1227  // Check if this track is a muon
1228  bool thatIsAMuon = PFMuonAlgo::isMuon(elements[jTrack]);
1229 
1230 
1231  // Check if this track is not a fake
1232  bool rejectFake = false;
1233  reco::TrackRef trackRef = elements[jTrack].trackRef();
1234  if ( !thatIsAMuon && trackRef->ptError() > ptError_) {
1235  double deficit = trackMomentum + trackRef->p() - clusterRef->energy();
1236  double resol = nSigmaTRACK_*neutralHadronEnergyResolution(trackMomentum+trackRef->p(),
1237  clusterRef->positionREP().Eta());
1238  resol *= (trackMomentum+trackRef->p());
1239  if ( deficit > nSigmaTRACK_*resol ) {
1240  rejectFake = true;
1241  kTrack.push_back(jTrack);
1242  active[jTrack] = false;
1243  if ( debug_ )
1244  std::cout << elements[jTrack] << std::endl
1245  << "is probably a fake (2) --> lock the track"
1246  << std::endl;
1247  }
1248  }
1249  if ( rejectFake ) continue;
1250 
1251 
1252  // Otherwise, add this track momentum to the total track momentum
1253  /* */
1254  // reco::TrackRef trackRef = elements[jTrack].trackRef();
1255  if ( !thatIsAMuon ) {
1256  if ( debug_ )
1257  std::cout << "Track momentum increased from " << trackMomentum << " GeV ";
1258  trackMomentum += trackRef->p();
1259  if ( debug_ ) {
1260  std::cout << "to " << trackMomentum << " GeV." << std::endl;
1261  std::cout << "with " << elements[jTrack] << std::endl;
1262  }
1263  } else {
1264  totalEcal -= muonECAL_[0];
1265  totalEcal = std::max(totalEcal, 0.);
1266  }
1267 
1268  // And create a charged particle candidate !
1269 
1270  tmpi.push_back(reconstructTrack( elements[jTrack] ));
1271 
1272 
1273  kTrack.push_back(jTrack);
1274  active[jTrack] = false;
1275 
1276  if ( thatIsAMuon ) {
1277  (*pfCandidates_)[tmpi.back()].setEcalEnergy(clusterRef->energy(),
1278  std::min(clusterRef->energy(),muonECAL_[0]));
1279  (*pfCandidates_)[tmpi.back()].setHcalEnergy( 0., 0. );
1280  (*pfCandidates_)[tmpi.back()].setHoEnergy( 0., 0. );
1281  (*pfCandidates_)[tmpi.back()].setPs1Energy( 0 );
1282  (*pfCandidates_)[tmpi.back()].setPs2Energy( 0 );
1283  (*pfCandidates_)[tmpi.back()].addElementInBlock( blockref, kTrack.back() );
1284  }
1285  }
1286 
1287 
1288  if ( debug_ ) std::cout << "Loop over all associated ECAL clusters" << std::endl;
1289  // Loop over all ECAL linked clusters ordered by increasing distance.
1290  for(IE ie = ecalElems.begin(); ie != ecalElems.end(); ++ie ) {
1291 
1292  unsigned index = ie->second;
1293  PFBlockElement::Type type = elements[index].type();
1294  assert( type == PFBlockElement::ECAL );
1295  if ( debug_ ) std::cout << elements[index] << std::endl;
1296 
1297  // Just skip clusters already taken
1298  if ( debug_ && ! active[index] ) std::cout << "is not active - ignore " << std::endl;
1299  if ( ! active[index] ) continue;
1300 
1301  // Just skip this cluster if it's closer to another track
1302  /* */
1303  block.associatedElements( index, linkData,
1304  sortedTracks,
1307  bool skip = true;
1308  for (unsigned ic=0; ic<kTrack.size();++ic) {
1309  if ( sortedTracks.begin()->second == kTrack[ic] ) {
1310  skip = false;
1311  break;
1312  }
1313  }
1314  if ( debug_ && skip ) std::cout << "is closer to another track - ignore " << std::endl;
1315  if ( skip ) continue;
1316  /* */
1317 
1318  // The corresponding PFCluster and energy
1319  reco::PFClusterRef clusterRef = elements[index].clusterRef();
1320  assert( !clusterRef.isNull() );
1321 
1322  if ( debug_ ) {
1323  double dist = ie->first;
1324  std::cout <<"Ecal cluster with raw energy = " << clusterRef->energy()
1325  <<" linked with distance = " << dist << std::endl;
1326  }
1327  /*
1328  double dist = ie->first;
1329  if ( !connectedToEcal && dist > 0.1 ) {
1330  std::cout << "Warning - first ECAL cluster at a distance of " << dist << "from the closest track!" << std::endl;
1331  cout<<"\telement "<<elements[index]<<" linked with distance = "<< dist <<endl;
1332  cout<<"\telement "<<elements[iTrack]<<" linked with distance = "<< dist <<endl;
1333  }
1334  */
1335 
1336  // Check the presence of preshower clusters in the vicinity
1337  // Preshower cluster closer to another ECAL cluster are ignored.
1338  //JOSH: This should use the association map already produced by the cluster corrector for consistency,
1339  //but should be ok for now
1340  vector<double> ps1Ene(1,static_cast<double>(0.));
1341  associatePSClusters(index, reco::PFBlockElement::PS1, block, elements, linkData, active, ps1Ene);
1342  vector<double> ps2Ene(1,static_cast<double>(0.));
1343  associatePSClusters(index, reco::PFBlockElement::PS2, block, elements, linkData, active, ps2Ene);
1344 
1345  double ecalEnergy = clusterRef->correctedEnergy();
1346  if ( debug_ )
1347  std::cout << "Corrected ECAL(+PS) energy = " << ecalEnergy << std::endl;
1348 
1349  // Since the electrons were found beforehand, this track must be a hadron. Calibrate
1350  // the energy under the hadron hypothesis.
1351  totalEcal += ecalEnergy;
1352  double previousCalibEcal = calibEcal;
1353  double previousSlopeEcal = slopeEcal;
1354  calibEcal = std::max(totalEcal,0.);
1355  calibHcal = 0.;
1356  calibration_->energyEmHad(trackMomentum,calibEcal,calibHcal,
1357  clusterRef->positionREP().Eta(),
1358  clusterRef->positionREP().Phi());
1359  if ( totalEcal > 0.) slopeEcal = calibEcal/totalEcal;
1360 
1361  if ( debug_ )
1362  std::cout << "The total calibrated energy so far amounts to = " << calibEcal << std::endl;
1363 
1364 
1365  // Stop the loop when adding more ECAL clusters ruins the compatibility
1366  if ( connectedToEcal && calibEcal - trackMomentum >= 0. ) {
1367  // if ( connectedToEcal && calibEcal - trackMomentum >=
1368  // nSigmaECAL_*neutralHadronEnergyResolution(trackMomentum,clusterRef->positionREP().Eta()) ) {
1369  calibEcal = previousCalibEcal;
1370  slopeEcal = previousSlopeEcal;
1371  totalEcal = calibEcal/slopeEcal;
1372 
1373  // Turn this last cluster in a photon
1374  // (The PS clusters are already locked in "associatePSClusters")
1375  active[index] = false;
1376 
1377  // Find the associated tracks
1378  std::multimap<double, unsigned> assTracks;
1379  block.associatedElements( index, linkData,
1380  assTracks,
1383 
1384 
1385  unsigned tmpe = reconstructCluster( *clusterRef, ecalEnergy );
1386  (*pfCandidates_)[tmpe].setEcalEnergy( clusterRef->energy(), ecalEnergy );
1387  (*pfCandidates_)[tmpe].setHcalEnergy( 0., 0. );
1388  (*pfCandidates_)[tmpe].setHoEnergy( 0., 0. );
1389  (*pfCandidates_)[tmpe].setPs1Energy( ps1Ene[0] );
1390  (*pfCandidates_)[tmpe].setPs2Energy( ps2Ene[0] );
1391  (*pfCandidates_)[tmpe].addElementInBlock( blockref, index );
1392  // Check that there is at least one track
1393  if(assTracks.size()) {
1394  (*pfCandidates_)[tmpe].addElementInBlock( blockref, assTracks.begin()->second );
1395 
1396  // Assign the position of the track at the ECAL entrance
1397  const ::math::XYZPointF& chargedPosition =
1398  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[assTracks.begin()->second])->positionAtECALEntrance();
1399  (*pfCandidates_)[tmpe].setPositionAtECALEntrance(chargedPosition);
1400  }
1401  break;
1402  }
1403 
1404  // Lock used clusters.
1405  connectedToEcal = true;
1406  iEcal = index;
1407  active[index] = false;
1408  for (unsigned ic=0; ic<tmpi.size();++ic)
1409  (*pfCandidates_)[tmpi[ic]].addElementInBlock( blockref, iEcal );
1410 
1411 
1412  } // Loop ecal elements
1413 
1414  bool bNeutralProduced = false;
1415 
1416  // Create a photon if the ecal energy is too large
1417  if( connectedToEcal ) {
1418  reco::PFClusterRef pivotalRef = elements[iEcal].clusterRef();
1419 
1420  double neutralEnergy = calibEcal - trackMomentum;
1421 
1422  /*
1423  // Check if there are other tracks linked to that ECAL
1424  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end() && neutralEnergy > 0; ++ie ) {
1425  unsigned jTrack = ie->second;
1426 
1427  // The loop is on the other tracks !
1428  if ( jTrack == iTrack ) continue;
1429 
1430  // Check if the ECAL closest to this track is the current ECAL
1431  // Otherwise ignore this track in the neutral energy determination
1432  std::multimap<double, unsigned> sortedECAL;
1433  block.associatedElements( jTrack, linkData,
1434  sortedECAL,
1435  reco::PFBlockElement::ECAL,
1436  reco::PFBlock::LINKTEST_ALL );
1437  if ( sortedECAL.begin()->second != iEcal ) continue;
1438 
1439  // Check if this track is also linked to an HCAL
1440  // (in which case it goes to the next loop and is ignored here)
1441  std::multimap<double, unsigned> sortedHCAL;
1442  block.associatedElements( jTrack, linkData,
1443  sortedHCAL,
1444  reco::PFBlockElement::HCAL,
1445  reco::PFBlock::LINKTEST_ALL );
1446  if ( sortedHCAL.size() ) continue;
1447 
1448  // Otherwise, subtract this track momentum from the ECAL energy
1449  reco::TrackRef trackRef = elements[jTrack].trackRef();
1450  neutralEnergy -= trackRef->p();
1451 
1452  } // End other tracks
1453  */
1454 
1455  // Add a photon is the energy excess is large enough
1456  double resol = neutralHadronEnergyResolution(trackMomentum,pivotalRef->positionREP().Eta());
1457  resol *= trackMomentum;
1458  if ( neutralEnergy > std::max(0.5,nSigmaECAL_*resol) ) {
1459  neutralEnergy /= slopeEcal;
1460  unsigned tmpj = reconstructCluster( *pivotalRef, neutralEnergy );
1461  (*pfCandidates_)[tmpj].setEcalEnergy( pivotalRef->energy(), neutralEnergy );
1462  (*pfCandidates_)[tmpj].setHcalEnergy( 0., 0. );
1463  (*pfCandidates_)[tmpj].setHoEnergy( 0., 0. );
1464  (*pfCandidates_)[tmpj].setPs1Energy( 0. );
1465  (*pfCandidates_)[tmpj].setPs2Energy( 0. );
1466  (*pfCandidates_)[tmpj].addElementInBlock(blockref, iEcal);
1467  bNeutralProduced = true;
1468  for (unsigned ic=0; ic<kTrack.size();++ic)
1469  (*pfCandidates_)[tmpj].addElementInBlock( blockref, kTrack[ic] );
1470  } // End neutral energy
1471 
1472  // Set elements in blocks and ECAL energies to all tracks
1473  for (unsigned ic=0; ic<tmpi.size();++ic) {
1474 
1475  // Skip muons
1476  if ( (*pfCandidates_)[tmpi[ic]].particleId() == reco::PFCandidate::mu ) continue;
1477 
1478  double fraction = (*pfCandidates_)[tmpi[ic]].trackRef()->p()/trackMomentum;
1479  double ecalCal = bNeutralProduced ?
1480  (calibEcal-neutralEnergy*slopeEcal)*fraction : calibEcal*fraction;
1481  double ecalRaw = totalEcal*fraction;
1482 
1483  if (debug_) cout << "The fraction after photon supression is " << fraction << " calibrated ecal = " << ecalCal << endl;
1484 
1485  (*pfCandidates_)[tmpi[ic]].setEcalEnergy( ecalRaw, ecalCal );
1486  (*pfCandidates_)[tmpi[ic]].setHcalEnergy( 0., 0. );
1487  (*pfCandidates_)[tmpi[ic]].setHoEnergy( 0., 0. );
1488  (*pfCandidates_)[tmpi[ic]].setPs1Energy( 0 );
1489  (*pfCandidates_)[tmpi[ic]].setPs2Energy( 0 );
1490  (*pfCandidates_)[tmpi[ic]].addElementInBlock( blockref, kTrack[ic] );
1491  }
1492 
1493  } // End connected ECAL
1494 
1495  // Fill the element_in_block for tracks that are eventually linked to no ECAL clusters at all.
1496  for (unsigned ic=0; ic<tmpi.size();++ic) {
1497  const PFCandidate& pfc = (*pfCandidates_)[tmpi[ic]];
1498  const PFCandidate::ElementsInBlocks& eleInBlocks = pfc.elementsInBlocks();
1499  if ( eleInBlocks.size() == 0 ) {
1500  if ( debug_ )std::cout << "Single track / Fill element in block! " << std::endl;
1501  (*pfCandidates_)[tmpi[ic]].addElementInBlock( blockref, kTrack[ic] );
1502  }
1503  }
1504 
1505  }
1506 
1507 
1508  // In case several HCAL elements are linked to this track,
1509  // unlinking all of them except the closest.
1510  for(IE ie = hcalElems.begin(); ie != hcalElems.end(); ++ie ) {
1511 
1512  unsigned index = ie->second;
1513 
1514  PFBlockElement::Type type = elements[index].type();
1515 
1516  if(debug_) {
1517  double dist = block.dist(iTrack,index,linkData,reco::PFBlock::LINKTEST_ALL);
1518  cout<<"\telement "<<elements[index]<<" linked with distance "<< dist <<endl;
1519  }
1520 
1521  assert( type == PFBlockElement::HCAL );
1522 
1523  // all hcal clusters except the closest
1524  // will be unlinked from the track
1525  if( !hcalFound ) { // closest hcal
1526  if(debug_)
1527  cout<<"\t\tclosest hcal cluster, doing nothing"<<endl;
1528 
1529  hcalFound = true;
1530 
1531  // active[index] = false;
1532  // hcalUsed.push_back( index );
1533  }
1534  else { // other associated hcal
1535  // unlink from the track
1536  if(debug_)
1537  cout<<"\t\tsecondary hcal cluster. unlinking"<<endl;
1538  block.setLink( iTrack, index, -1., linkData,
1539  PFBlock::LINKTEST_RECHIT );
1540  }
1541  } //loop hcal elements
1542  } // end of loop 1 on elements iEle of any type
1543 
1544 
1545 
1546  // deal with HF.
1547  if( !(hfEmIs.empty() && hfHadIs.empty() ) ) {
1548  // there is at least one HF element in this block.
1549  // so all elements must be HF.
1550  assert( hfEmIs.size() + hfHadIs.size() == elements.size() );
1551 
1552  if( elements.size() == 1 ) {
1553  //Auguste: HAD-only calibration here
1554  reco::PFClusterRef clusterRef = elements[0].clusterRef();
1555  double energyHF = 0.;
1556  double uncalibratedenergyHF = 0.;
1557  unsigned tmpi = 0;
1558  switch( clusterRef->layer() ) {
1559  case PFLayer::HF_EM:
1560  // do EM-only calibration here
1561  energyHF = clusterRef->energy();
1562  uncalibratedenergyHF = energyHF;
1563  if(thepfEnergyCalibrationHF_->getcalibHF_use()==true){
1564  energyHF = thepfEnergyCalibrationHF_->energyEm(uncalibratedenergyHF,
1565  clusterRef->positionREP().Eta(),
1566  clusterRef->positionREP().Phi());
1567  }
1568  tmpi = reconstructCluster( *clusterRef, energyHF );
1569  (*pfCandidates_)[tmpi].setEcalEnergy( uncalibratedenergyHF, energyHF );
1570  (*pfCandidates_)[tmpi].setHcalEnergy( 0., 0.);
1571  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0.);
1572  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
1573  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
1574  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfEmIs[0] );
1575  //std::cout << "HF EM alone ! " << energyHF << std::endl;
1576  break;
1577  case PFLayer::HF_HAD:
1578  // do HAD-only calibration here
1579  energyHF = clusterRef->energy();
1580  uncalibratedenergyHF = energyHF;
1581  if(thepfEnergyCalibrationHF_->getcalibHF_use()==true){
1582  energyHF = thepfEnergyCalibrationHF_->energyHad(uncalibratedenergyHF,
1583  clusterRef->positionREP().Eta(),
1584  clusterRef->positionREP().Phi());
1585  }
1586  tmpi = reconstructCluster( *clusterRef, energyHF );
1587  (*pfCandidates_)[tmpi].setHcalEnergy( uncalibratedenergyHF, energyHF );
1588  (*pfCandidates_)[tmpi].setEcalEnergy( 0., 0.);
1589  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0.);
1590  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
1591  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
1592  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfHadIs[0] );
1593  //std::cout << "HF Had alone ! " << energyHF << std::endl;
1594  break;
1595  default:
1596  assert(0);
1597  }
1598  }
1599  else if( elements.size() == 2 ) {
1600  //Auguste: EM + HAD calibration here
1601  reco::PFClusterRef c0 = elements[0].clusterRef();
1602  reco::PFClusterRef c1 = elements[1].clusterRef();
1603  // 2 HF elements. Must be in each layer.
1604  reco::PFClusterRef cem = ( c0->layer() == PFLayer::HF_EM ? c0 : c1 );
1605  reco::PFClusterRef chad = ( c1->layer() == PFLayer::HF_HAD ? c1 : c0 );
1606 
1607  if( cem->layer() != PFLayer::HF_EM || chad->layer() != PFLayer::HF_HAD ) {
1608  cerr<<"Error: 2 elements, but not 1 HFEM and 1 HFHAD"<<endl;
1609  cerr<<block<<endl;
1610  assert(0);
1611 // assert( c1->layer()== PFLayer::HF_EM &&
1612 // c0->layer()== PFLayer::HF_HAD );
1613  }
1614  // do EM+HAD calibration here
1615  double energyHfEm = cem->energy();
1616  double energyHfHad = chad->energy();
1617  double uncalibratedenergyHFEm = energyHfEm;
1618  double uncalibratedenergyHFHad = energyHfHad;
1619  if(thepfEnergyCalibrationHF_->getcalibHF_use()==true){
1620 
1621  energyHfEm = thepfEnergyCalibrationHF_->energyEmHad(uncalibratedenergyHFEm,
1622  0.0,
1623  c0->positionREP().Eta(),
1624  c0->positionREP().Phi());
1625  energyHfHad = thepfEnergyCalibrationHF_->energyEmHad(0.0,
1626  uncalibratedenergyHFHad,
1627  c1->positionREP().Eta(),
1628  c1->positionREP().Phi());
1629  }
1630  unsigned tmpi = reconstructCluster( *chad, energyHfEm+energyHfHad );
1631  (*pfCandidates_)[tmpi].setEcalEnergy( uncalibratedenergyHFEm, energyHfEm );
1632  (*pfCandidates_)[tmpi].setHcalEnergy( uncalibratedenergyHFHad, energyHfHad);
1633  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0.);
1634  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
1635  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
1636  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfEmIs[0] );
1637  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hfHadIs[0] );
1638  //std::cout << "HF EM+HAD found ! " << energyHfEm << " " << energyHfHad << std::endl;
1639  }
1640  else {
1641  // 1 HF element in the block,
1642  // but number of elements not equal to 1 or 2
1643  cerr<<"Warning: HF, but n elem different from 1 or 2"<<endl;
1644  cerr<<block<<endl;
1645 // assert(0);
1646 // cerr<<"not ready for navigation in the HF!"<<endl;
1647  }
1648  }
1649 
1650 
1651 
1652  if(debug_) {
1653  cout<<endl;
1654  cout<<endl<<"--------------- loop hcal ---------------------"<<endl;
1655  }
1656 
1657  // track information:
1658  // trackRef
1659  // ecal energy
1660  // hcal energy
1661  // rescale
1662 
1663  for(unsigned i=0; i<hcalIs.size(); i++) {
1664 
1665  unsigned iHcal= hcalIs[i];
1666  PFBlockElement::Type type = elements[iHcal].type();
1667 
1668  assert( type == PFBlockElement::HCAL );
1669 
1670  if(debug_) cout<<endl<<elements[iHcal]<<endl;
1671 
1672  // vector<unsigned> elementIndices;
1673  // elementIndices.push_back(iHcal);
1674 
1675  // associated tracks
1676  std::multimap<double, unsigned> sortedTracks;
1677  block.associatedElements( iHcal, linkData,
1678  sortedTracks,
1681 
1682  std::multimap< unsigned, std::pair<double, unsigned> > associatedEcals;
1683 
1684  std::map< unsigned, std::pair<double, double> > associatedPSs;
1685 
1686  std::multimap<double, std::pair<unsigned,bool> > associatedTracks;
1687 
1688  // A temporary maps for ECAL satellite clusters
1689  std::multimap<double,std::pair<unsigned,::math::XYZVector> > ecalSatellites;
1690  std::pair<unsigned,::math::XYZVector> fakeSatellite = make_pair(iHcal,::math::XYZVector(0.,0.,0.));
1691  ecalSatellites.insert( make_pair(-1., fakeSatellite) );
1692 
1693  std::multimap< unsigned, std::pair<double, unsigned> > associatedHOs;
1694 
1695  PFClusterRef hclusterref = elements[iHcal].clusterRef();
1696  assert(!hclusterref.isNull() );
1697 
1698 
1699  //if there is no track attached to that HCAL, then do not
1700  //reconstruct an HCAL alone, check if it can be recovered
1701  //first
1702 
1703  // if no associated tracks, create a neutral hadron
1704  //if(sortedTracks.empty() ) {
1705 
1706  if( sortedTracks.empty() ) {
1707  if(debug_)
1708  cout<<"\tno associated tracks, keep for later"<<endl;
1709  continue;
1710  }
1711 
1712  // Lock the HCAL cluster
1713  active[iHcal] = false;
1714 
1715 
1716  // in the following, tracks are associated to this hcal cluster.
1717  // will look for an excess of energy in the calorimeters w/r to
1718  // the charged energy, and turn this excess into a neutral hadron or
1719  // a photon.
1720 
1721  if(debug_) cout<<"\t"<<sortedTracks.size()<<" associated tracks:"<<endl;
1722 
1723  double totalChargedMomentum = 0;
1724  double sumpError2 = 0.;
1725  double totalHO = 0.;
1726  double totalEcal = 0.;
1727  double totalHcal = hclusterref->energy();
1728  vector<double> hcalP;
1729  vector<double> hcalDP;
1730  vector<unsigned> tkIs;
1731  double maxDPovP = -9999.;
1732 
1733  //Keep track of how much energy is assigned to calorimeter-vs-track energy/momentum excess
1734  vector< unsigned > chargedHadronsIndices;
1735  vector< unsigned > chargedHadronsInBlock;
1736  double mergedNeutralHadronEnergy = 0;
1737  double mergedPhotonEnergy = 0;
1738  double muonHCALEnergy = 0.;
1739  double muonECALEnergy = 0.;
1740  double muonHCALError = 0.;
1741  double muonECALError = 0.;
1742  unsigned nMuons = 0;
1743 
1744 
1745  ::math::XYZVector photonAtECAL(0.,0.,0.);
1746  std::vector<std::pair<unsigned,::math::XYZVector> > ecalClusters;
1747  double sumEcalClusters=0;
1748  ::math::XYZVector hadronDirection(hclusterref->position().X(),
1749  hclusterref->position().Y(),
1750  hclusterref->position().Z());
1751  hadronDirection = hadronDirection.Unit();
1752  ::math::XYZVector hadronAtECAL = totalHcal * hadronDirection;
1753 
1754  // Loop over all tracks associated to this HCAL cluster
1755  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
1756 
1757  unsigned iTrack = ie->second;
1758 
1759  // Check the track has not already been used (e.g., in electrons, conversions...)
1760  if ( !active[iTrack] ) continue;
1761  // Sanity check 1
1762  PFBlockElement::Type type = elements[iTrack].type();
1764  // Sanity check 2
1765  reco::TrackRef trackRef = elements[iTrack].trackRef();
1766  assert( !trackRef.isNull() );
1767 
1768  // The direction at ECAL entrance
1769  const ::math::XYZPointF& chargedPosition =
1770  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[iTrack])->positionAtECALEntrance();
1771  ::math::XYZVector chargedDirection(chargedPosition.X(),chargedPosition.Y(),chargedPosition.Z());
1772  chargedDirection = chargedDirection.Unit();
1773 
1774  // look for ECAL elements associated to iTrack (associated to iHcal)
1775  std::multimap<double, unsigned> sortedEcals;
1776  block.associatedElements( iTrack, linkData,
1777  sortedEcals,
1780 
1781  if(debug_) cout<<"\t\t\tnumber of Ecal elements linked to this track: "
1782  <<sortedEcals.size()<<endl;
1783 
1784  // look for HO elements associated to iTrack (associated to iHcal)
1785  std::multimap<double, unsigned> sortedHOs;
1786  if (useHO_) {
1787  block.associatedElements( iTrack, linkData,
1788  sortedHOs,
1791 
1792  }
1793  if(debug_)
1794  cout<<"PFAlgo : number of HO elements linked to this track: "
1795  <<sortedHOs.size()<<endl;
1796 
1797  // Create a PF Candidate right away if the track is a tight muon
1798  reco::MuonRef muonRef = elements[iTrack].muonRef();
1799 
1800 
1801  bool thisIsAMuon = PFMuonAlgo::isMuon(elements[iTrack]);
1802  bool thisIsAnIsolatedMuon = PFMuonAlgo::isIsolatedMuon(elements[iTrack]);
1803  bool thisIsALooseMuon = false;
1804 
1805 
1806  if(!thisIsAMuon ) {
1807  thisIsALooseMuon = PFMuonAlgo::isLooseMuon(elements[iTrack]);
1808  }
1809 
1810 
1811  if ( thisIsAMuon ) {
1812  if ( debug_ ) {
1813  std::cout << "\t\tThis track is identified as a muon - remove it from the stack" << std::endl;
1814  std::cout << "\t\t" << elements[iTrack] << std::endl;
1815  }
1816 
1817  // Create a muon.
1818 
1819  unsigned tmpi = reconstructTrack( elements[iTrack] );
1820 
1821 
1822  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
1823  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
1824  double muonHcal = std::min(muonHCAL_[0]+muonHCAL_[1],totalHcal);
1825 
1826  // if muon is isolated and muon momentum exceeds the calo energy, absorb the calo energy
1827  // rationale : there has been a EM showering by the muon in the calorimeter - or the coil -
1828  // and we don't want to double count the energy
1829  bool letMuonEatCaloEnergy = false;
1830 
1831  if(thisIsAnIsolatedMuon){
1832  // The factor 1.3 is the e/pi factor in HCAL...
1833  double totalCaloEnergy = totalHcal / 1.30;
1834  unsigned iEcal = 0;
1835  if( !sortedEcals.empty() ) {
1836  iEcal = sortedEcals.begin()->second;
1837  PFClusterRef eclusterref = elements[iEcal].clusterRef();
1838  totalCaloEnergy += eclusterref->energy();
1839  }
1840 
1841  if (useHO_) {
1842  // The factor 1.3 is assumed to be the e/pi factor in HO, too.
1843  unsigned iHO = 0;
1844  if( !sortedHOs.empty() ) {
1845  iHO = sortedHOs.begin()->second;
1846  PFClusterRef eclusterref = elements[iHO].clusterRef();
1847  totalCaloEnergy += eclusterref->energy() / 1.30;
1848  }
1849  }
1850 
1851  // std::cout << "muon p / total calo = " << muonRef->p() << " " << (pfCandidates_->back()).p() << " " << totalCaloEnergy << std::endl;
1852  //if(muonRef->p() > totalCaloEnergy ) letMuonEatCaloEnergy = true;
1853  if( (pfCandidates_->back()).p() > totalCaloEnergy ) letMuonEatCaloEnergy = true;
1854  }
1855 
1856  if(letMuonEatCaloEnergy) muonHcal = totalHcal;
1857  double muonEcal =0.;
1858  unsigned iEcal = 0;
1859  if( !sortedEcals.empty() ) {
1860  iEcal = sortedEcals.begin()->second;
1861  PFClusterRef eclusterref = elements[iEcal].clusterRef();
1862  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal);
1863  muonEcal = std::min(muonECAL_[0]+muonECAL_[1],eclusterref->energy());
1864  if(letMuonEatCaloEnergy) muonEcal = eclusterref->energy();
1865  // If the muon expected energy accounts for the whole ecal cluster energy, lock the ecal cluster
1866  if ( eclusterref->energy() - muonEcal < 0.2 ) active[iEcal] = false;
1867  (*pfCandidates_)[tmpi].setEcalEnergy(eclusterref->energy(), muonEcal);
1868  }
1869  unsigned iHO = 0;
1870  double muonHO =0.;
1871  if (useHO_) {
1872  if( !sortedHOs.empty() ) {
1873  iHO = sortedHOs.begin()->second;
1874  PFClusterRef hoclusterref = elements[iHO].clusterRef();
1875  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHO);
1876  muonHO = std::min(muonHO_[0]+muonHO_[1],hoclusterref->energy());
1877  if(letMuonEatCaloEnergy) muonHO = hoclusterref->energy();
1878  // If the muon expected energy accounts for the whole HO cluster energy, lock the HO cluster
1879  if ( hoclusterref->energy() - muonHO < 0.2 ) active[iHO] = false;
1880  (*pfCandidates_)[tmpi].setHcalEnergy(totalHcal, muonHcal);
1881  (*pfCandidates_)[tmpi].setHoEnergy(hoclusterref->energy(), muonHO);
1882  }
1883  } else {
1884  (*pfCandidates_)[tmpi].setHcalEnergy(totalHcal, muonHcal);
1885  }
1886 
1887  if(letMuonEatCaloEnergy){
1888  muonHCALEnergy += totalHcal;
1889  if (useHO_) muonHCALEnergy +=muonHO;
1890  muonHCALError += 0.;
1891  muonECALEnergy += muonEcal;
1892  muonECALError += 0.;
1893  photonAtECAL -= muonEcal*chargedDirection;
1894  hadronAtECAL -= totalHcal*chargedDirection;
1895  if ( !sortedEcals.empty() ) active[iEcal] = false;
1896  active[iHcal] = false;
1897  if (useHO_ && !sortedHOs.empty() ) active[iHO] = false;
1898  }
1899  else{
1900  // Estimate of the energy deposit & resolution in the calorimeters
1901  muonHCALEnergy += muonHCAL_[0];
1902  muonHCALError += muonHCAL_[1]*muonHCAL_[1];
1903  if ( muonHO > 0. ) {
1904  muonHCALEnergy += muonHO_[0];
1905  muonHCALError += muonHO_[1]*muonHO_[1];
1906  }
1907  muonECALEnergy += muonECAL_[0];
1908  muonECALError += muonECAL_[1]*muonECAL_[1];
1909  // ... as well as the equivalent "momentum" at ECAL entrance
1910  photonAtECAL -= muonECAL_[0]*chargedDirection;
1911  hadronAtECAL -= muonHCAL_[0]*chargedDirection;
1912  }
1913 
1914  // Remove it from the stack
1915  active[iTrack] = false;
1916  // Go to next track
1917  continue;
1918  }
1919 
1920  //
1921 
1922  if(debug_) cout<<"\t\t"<<elements[iTrack]<<endl;
1923 
1924  // introduce tracking errors
1925  double trackMomentum = trackRef->p();
1926  totalChargedMomentum += trackMomentum;
1927 
1928  // If the track is not a tight muon, but still resembles a muon
1929  // keep it for later for blocks with too large a charged energy
1930  if ( thisIsALooseMuon && !thisIsAMuon ) nMuons += 1;
1931 
1932  // ... and keep anyway the pt error for possible fake rejection
1933  // ... blow up errors of 5th anf 4th iteration, to reject those
1934  // ... tracks first (in case it's needed)
1935  double Dpt = trackRef->ptError();
1936  double blowError = 1.;
1937  switch (trackRef->algo()) {
1938  case TrackBase::ctf:
1940  case TrackBase::lowPtTripletStep:
1941  case TrackBase::pixelPairStep:
1944  case TrackBase::jetCoreRegionalStep:
1945  case TrackBase::muonSeededStepInOut:
1946  case TrackBase::muonSeededStepOutIn:
1947  blowError = 1.;
1948  break;
1950  blowError = factors45_[0];
1951  break;
1952  case TrackBase::tobTecStep:
1953  blowError = factors45_[1];
1954  break;
1959  blowError = 1.;
1960  break;
1962  blowError = factors45_[0];
1963  break;
1965  blowError = 1.;
1966  break;
1967  default:
1968  blowError = 1E9;
1969  break;
1970  }
1971  // except if it is from an interaction
1972  bool isPrimaryOrSecondary = isFromSecInt(elements[iTrack], "all");
1973 
1974  if ( isPrimaryOrSecondary ) blowError = 1.;
1975 
1976  std::pair<unsigned,bool> tkmuon = make_pair(iTrack,thisIsALooseMuon);
1977  associatedTracks.insert( make_pair(-Dpt*blowError, tkmuon) );
1978 
1979  // Also keep the total track momentum error for comparison with the calo energy
1980  double Dp = trackRef->qoverpError()*trackMomentum*trackMomentum;
1981  sumpError2 += Dp*Dp;
1982 
1983  bool connectedToEcal = false; // Will become true if there is at least one ECAL cluster connected
1984  if( !sortedEcals.empty() )
1985  { // start case: at least one ecal element associated to iTrack
1986 
1987  // Loop over all connected ECAL clusters
1988  for ( IE iec=sortedEcals.begin();
1989  iec!=sortedEcals.end(); ++iec ) {
1990 
1991  unsigned iEcal = iec->second;
1992  double dist = iec->first;
1993 
1994  // Ignore ECAL cluters already used
1995  if( !active[iEcal] ) {
1996  if(debug_) cout<<"\t\tcluster locked"<<endl;
1997  continue;
1998  }
1999 
2000  // Sanity checks
2001  PFBlockElement::Type type = elements[ iEcal ].type();
2002  assert( type == PFBlockElement::ECAL );
2003  PFClusterRef eclusterref = elements[iEcal].clusterRef();
2004  assert(!eclusterref.isNull() );
2005 
2006  // Check if this ECAL is not closer to another track - ignore it in that case
2007  std::multimap<double, unsigned> sortedTracksEcal;
2008  block.associatedElements( iEcal, linkData,
2009  sortedTracksEcal,
2012  unsigned jTrack = sortedTracksEcal.begin()->second;
2013  if ( jTrack != iTrack ) continue;
2014 
2015  // double chi2Ecal = block.chi2(jTrack,iEcal,linkData,
2016  // reco::PFBlock::LINKTEST_ALL);
2017  double distEcal = block.dist(jTrack,iEcal,linkData,
2019 
2020  // totalEcal += eclusterref->energy();
2021  // float ecalEnergyUnCalibrated = eclusterref->energy();
2022  //std::cout << "Ecal Uncalibrated " << ecalEnergyUnCalibrated << std::endl;
2023 
2024  float ecalEnergyCalibrated = eclusterref->correctedEnergy();
2025  ::math::XYZVector photonDirection(eclusterref->position().X(),
2026  eclusterref->position().Y(),
2027  eclusterref->position().Z());
2028  photonDirection = photonDirection.Unit();
2029 
2030  if ( !connectedToEcal ) { // This is the closest ECAL cluster - will add its energy later
2031 
2032  if(debug_) cout<<"\t\t\tclosest: "
2033  <<elements[iEcal]<<endl;
2034 
2035  connectedToEcal = true;
2036  // PJ 1st-April-09 : To be done somewhere !!! (Had to comment it, but it is needed)
2037  // currentChargedHadron.addElementInBlock( blockref, iEcal );
2038 
2039  std::pair<unsigned,::math::XYZVector> satellite =
2040  make_pair(iEcal,ecalEnergyCalibrated*photonDirection);
2041  ecalSatellites.insert( make_pair(-1., satellite) );
2042 
2043  } else { // Keep satellite clusters for later
2044 
2045  std::pair<unsigned,::math::XYZVector> satellite =
2046  make_pair(iEcal,ecalEnergyCalibrated*photonDirection);
2047  ecalSatellites.insert( make_pair(dist, satellite) );
2048 
2049  }
2050 
2051  std::pair<double, unsigned> associatedEcal
2052  = make_pair( distEcal, iEcal );
2053  associatedEcals.insert( make_pair(iTrack, associatedEcal) );
2054 
2055  } // End loop ecal associated to iTrack
2056  } // end case: at least one ecal element associated to iTrack
2057 
2058  if( useHO_ && !sortedHOs.empty() )
2059  { // start case: at least one ho element associated to iTrack
2060 
2061  // Loop over all connected HO clusters
2062  for ( IE ieho=sortedHOs.begin(); ieho!=sortedHOs.end(); ++ieho ) {
2063 
2064  unsigned iHO = ieho->second;
2065  double distHO = ieho->first;
2066 
2067  // Ignore HO cluters already used
2068  if( !active[iHO] ) {
2069  if(debug_) cout<<"\t\tcluster locked"<<endl;
2070  continue;
2071  }
2072 
2073  // Sanity checks
2074  PFBlockElement::Type type = elements[ iHO ].type();
2075  assert( type == PFBlockElement::HO );
2076  PFClusterRef hoclusterref = elements[iHO].clusterRef();
2077  assert(!hoclusterref.isNull() );
2078 
2079  // Check if this HO is not closer to another track - ignore it in that case
2080  std::multimap<double, unsigned> sortedTracksHO;
2081  block.associatedElements( iHO, linkData,
2082  sortedTracksHO,
2085  unsigned jTrack = sortedTracksHO.begin()->second;
2086  if ( jTrack != iTrack ) continue;
2087 
2088  // double chi2HO = block.chi2(jTrack,iHO,linkData,
2089  // reco::PFBlock::LINKTEST_ALL);
2090  //double distHO = block.dist(jTrack,iHO,linkData,
2091  // reco::PFBlock::LINKTEST_ALL);
2092 
2093  // Increment the total energy by the energy of this HO cluster
2094  totalHO += hoclusterref->energy();
2095  active[iHO] = false;
2096  // Keep track for later reference in the PFCandidate.
2097  std::pair<double, unsigned> associatedHO
2098  = make_pair( distHO, iHO );
2099  associatedHOs.insert( make_pair(iTrack, associatedHO) );
2100 
2101  } // End loop ho associated to iTrack
2102  } // end case: at least one ho element associated to iTrack
2103 
2104 
2105  } // end loop on tracks associated to hcal element iHcal
2106 
2107  // Include totalHO in totalHCAL for the time being (it will be calibrated as HCAL energy)
2108  totalHcal += totalHO;
2109 
2110  // test compatibility between calo and tracker. //////////////
2111 
2112  double caloEnergy = 0.;
2113  double slopeEcal = 1.0;
2114  double calibEcal = 0.;
2115  double calibHcal = 0.;
2116  hadronDirection = hadronAtECAL.Unit();
2117 
2118  // Determine the expected calo resolution from the total charged momentum
2119  double Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2120  Caloresolution *= totalChargedMomentum;
2121  // Account for muons
2122  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2123  totalEcal -= std::min(totalEcal,muonECALEnergy);
2124  totalHcal -= std::min(totalHcal,muonHCALEnergy);
2125  if ( totalEcal < 1E-9 ) photonAtECAL = ::math::XYZVector(0.,0.,0.);
2126  if ( totalHcal < 1E-9 ) hadronAtECAL = ::math::XYZVector(0.,0.,0.);
2127 
2128  // Loop over all ECAL satellites, starting for the closest to the various tracks
2129  // and adding other satellites until saturation of the total track momentum
2130  // Note : for code simplicity, the first element of the loop is the HCAL cluster
2131  // with 0 energy in the ECAL
2132  for ( IS is = ecalSatellites.begin(); is != ecalSatellites.end(); ++is ) {
2133 
2134  // Add the energy of this ECAL cluster
2135  double previousCalibEcal = calibEcal;
2136  double previousCalibHcal = calibHcal;
2137  double previousCaloEnergy = caloEnergy;
2138  double previousSlopeEcal = slopeEcal;
2139  ::math::XYZVector previousHadronAtECAL = hadronAtECAL;
2140  //
2141  totalEcal += sqrt(is->second.second.Mag2());
2142  photonAtECAL += is->second.second;
2143  calibEcal = std::max(0.,totalEcal);
2144  calibHcal = std::max(0.,totalHcal);
2145  hadronAtECAL = calibHcal * hadronDirection;
2146  // Calibrate ECAL and HCAL energy under the hadron hypothesis.
2147  calibration_->energyEmHad(totalChargedMomentum,calibEcal,calibHcal,
2148  hclusterref->positionREP().Eta(),
2149  hclusterref->positionREP().Phi());
2150  caloEnergy = calibEcal+calibHcal;
2151  if ( totalEcal > 0.) slopeEcal = calibEcal/totalEcal;
2152 
2153  hadronAtECAL = calibHcal * hadronDirection;
2154 
2155  // Continue looping until all closest clusters are exhausted and as long as
2156  // the calorimetric energy does not saturate the total momentum.
2157  if ( is->first < 0. || caloEnergy - totalChargedMomentum <= 0. ) {
2158  if(debug_) cout<<"\t\t\tactive, adding "<<is->second.second
2159  <<" to ECAL energy, and locking"<<endl;
2160  active[is->second.first] = false;
2161  double clusterEnergy=sqrt(is->second.second.Mag2());
2162  if(clusterEnergy>50) {
2163  ecalClusters.push_back(is->second);
2164  sumEcalClusters+=clusterEnergy;
2165  }
2166  continue;
2167  }
2168 
2169  // Otherwise, do not consider the last cluster examined and exit.
2170  // active[is->second.first] = true;
2171  totalEcal -= sqrt(is->second.second.Mag2());
2172  photonAtECAL -= is->second.second;
2173  calibEcal = previousCalibEcal;
2174  calibHcal = previousCalibHcal;
2175  hadronAtECAL = previousHadronAtECAL;
2176  slopeEcal = previousSlopeEcal;
2177  caloEnergy = previousCaloEnergy;
2178 
2179  break;
2180 
2181  }
2182 
2183  // Sanity check !
2184  assert(caloEnergy>=0);
2185 
2186 
2187  // And now check for hadronic energy excess...
2188 
2189  //colin: resolution should be measured on the ecal+hcal case.
2190  // however, the result will be close.
2191  // double Caloresolution = neutralHadronEnergyResolution( caloEnergy );
2192  // Caloresolution *= caloEnergy;
2193  // PJ The resolution is on the expected charged calo energy !
2194  //double Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2195  //Caloresolution *= totalChargedMomentum;
2196  // that of the charged particles linked to the cluster!
2197 
2198  /* */
2200  if ( totalChargedMomentum - caloEnergy > nSigmaTRACK_*Caloresolution ) {
2201 
2202  /*
2203  cout<<"\tCompare Calo Energy to total charged momentum "<<endl;
2204  cout<<"\t\tsum p = "<<totalChargedMomentum<<" +- "<<sqrt(sumpError2)<<endl;
2205  cout<<"\t\tsum ecal = "<<totalEcal<<endl;
2206  cout<<"\t\tsum hcal = "<<totalHcal<<endl;
2207  cout<<"\t\t => Calo Energy = "<<caloEnergy<<" +- "<<Caloresolution<<endl;
2208  cout<<"\t\t => Calo Energy- total charged momentum = "
2209  <<caloEnergy-totalChargedMomentum<<" +- "<<TotalError<<endl;
2210  cout<<endl;
2211  cout << "\t\tNumber/momentum of muons found in the block : " << nMuons << std::endl;
2212  */
2213  // First consider loose muons
2214  if ( nMuons > 0 ) {
2215  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2216  unsigned iTrack = it->second.first;
2217  // Only active tracks
2218  if ( !active[iTrack] ) continue;
2219  // Only muons
2220  if ( !it->second.second ) continue;
2221 
2222  double trackMomentum = elements[it->second.first].trackRef()->p();
2223 
2224  // look for ECAL elements associated to iTrack (associated to iHcal)
2225  std::multimap<double, unsigned> sortedEcals;
2226  block.associatedElements( iTrack, linkData,
2227  sortedEcals,
2230  std::multimap<double, unsigned> sortedHOs;
2231  block.associatedElements( iTrack, linkData,
2232  sortedHOs,
2235 
2236  //Here allow for loose muons!
2237  unsigned tmpi = reconstructTrack( elements[iTrack],true);
2238 
2239  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
2240  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
2241  double muonHcal = std::min(muonHCAL_[0]+muonHCAL_[1],totalHcal-totalHO);
2242  double muonHO = 0.;
2243  (*pfCandidates_)[tmpi].setHcalEnergy(totalHcal,muonHcal);
2244  if( !sortedEcals.empty() ) {
2245  unsigned iEcal = sortedEcals.begin()->second;
2246  PFClusterRef eclusterref = elements[iEcal].clusterRef();
2247  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal);
2248  double muonEcal = std::min(muonECAL_[0]+muonECAL_[1],eclusterref->energy());
2249  (*pfCandidates_)[tmpi].setEcalEnergy(eclusterref->energy(),muonEcal);
2250  }
2251  if( useHO_ && !sortedHOs.empty() ) {
2252  unsigned iHO = sortedHOs.begin()->second;
2253  PFClusterRef hoclusterref = elements[iHO].clusterRef();
2254  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHO);
2255  muonHO = std::min(muonHO_[0]+muonHO_[1],hoclusterref->energy());
2256  (*pfCandidates_)[tmpi].setHcalEnergy(max(totalHcal-totalHO,0.0),muonHcal);
2257  (*pfCandidates_)[tmpi].setHoEnergy(hoclusterref->energy(),muonHO);
2258  }
2259  // Remove it from the block
2260  const ::math::XYZPointF& chargedPosition =
2261  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[it->second.first])->positionAtECALEntrance();
2262  ::math::XYZVector chargedDirection(chargedPosition.X(), chargedPosition.Y(), chargedPosition.Z());
2263  chargedDirection = chargedDirection.Unit();
2264  totalChargedMomentum -= trackMomentum;
2265  // Update the calo energies
2266  if ( totalEcal > 0. )
2267  calibEcal -= std::min(calibEcal,muonECAL_[0]*calibEcal/totalEcal);
2268  if ( totalHcal > 0. )
2269  calibHcal -= std::min(calibHcal,muonHCAL_[0]*calibHcal/totalHcal);
2270  totalEcal -= std::min(totalEcal,muonECAL_[0]);
2271  totalHcal -= std::min(totalHcal,muonHCAL_[0]);
2272  if ( totalEcal > muonECAL_[0] ) photonAtECAL -= muonECAL_[0] * chargedDirection;
2273  if ( totalHcal > muonHCAL_[0] ) hadronAtECAL -= muonHCAL_[0]*calibHcal/totalHcal * chargedDirection;
2274  caloEnergy = calibEcal+calibHcal;
2275  muonHCALEnergy += muonHCAL_[0];
2276  muonHCALError += muonHCAL_[1]*muonHCAL_[1];
2277  if ( muonHO > 0. ) {
2278  muonHCALEnergy += muonHO_[0];
2279  muonHCALError += muonHO_[1]*muonHO_[1];
2280  if ( totalHcal > 0. ) {
2281  calibHcal -= std::min(calibHcal,muonHO_[0]*calibHcal/totalHcal);
2282  totalHcal -= std::min(totalHcal,muonHO_[0]);
2283  }
2284  }
2285  muonECALEnergy += muonECAL_[0];
2286  muonECALError += muonECAL_[1]*muonECAL_[1];
2287  active[iTrack] = false;
2288  // Stop the loop whenever enough muons are removed
2289  //Commented out: Keep looking for muons since they often come in pairs -Matt
2290  //if ( totalChargedMomentum < caloEnergy ) break;
2291  }
2292  // New calo resolution.
2293  Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2294  Caloresolution *= totalChargedMomentum;
2295  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2296  }
2297  }
2298  /*
2299  if(debug_){
2300  cout<<"\tBefore Cleaning "<<endl;
2301  cout<<"\tCompare Calo Energy to total charged momentum "<<endl;
2302  cout<<"\t\tsum p = "<<totalChargedMomentum<<" +- "<<sqrt(sumpError2)<<endl;
2303  cout<<"\t\tsum ecal = "<<totalEcal<<endl;
2304  cout<<"\t\tsum hcal = "<<totalHcal<<endl;
2305  cout<<"\t\t => Calo Energy = "<<caloEnergy<<" +- "<<Caloresolution<<endl;
2306  cout<<"\t\t => Calo Energy- total charged momentum = "
2307  <<caloEnergy-totalChargedMomentum<<" +- "<<TotalError<<endl;
2308  cout<<endl;
2309  }
2310  */
2311 
2312  // Second consider bad tracks (if still needed after muon removal)
2313  unsigned corrTrack = 10000000;
2314  double corrFact = 1.;
2315 
2316  if (rejectTracks_Bad_ &&
2317  totalChargedMomentum - caloEnergy > nSigmaTRACK_*Caloresolution) {
2318 
2319  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2320  unsigned iTrack = it->second.first;
2321  // Only active tracks
2322  if ( !active[iTrack] ) continue;
2323  const reco::TrackRef& trackref = elements[it->second.first].trackRef();
2324 
2325  double dptRel = fabs(it->first)/trackref->pt()*100;
2326  bool isSecondary = isFromSecInt(elements[iTrack], "secondary");
2327  bool isPrimary = isFromSecInt(elements[iTrack], "primary");
2328 
2329  if ( isSecondary && dptRel < dptRel_DispVtx_ ) continue;
2330  // Consider only bad tracks
2331  if ( fabs(it->first) < ptError_ ) break;
2332  // What would become the block charged momentum if this track were removed
2333  double wouldBeTotalChargedMomentum =
2334  totalChargedMomentum - trackref->p();
2335  // Reject worst tracks, as long as the total charged momentum
2336  // is larger than the calo energy
2337 
2338  if ( wouldBeTotalChargedMomentum > caloEnergy ) {
2339 
2340  if (debug_ && isSecondary) {
2341  cout << "In bad track rejection step dptRel = " << dptRel << " dptRel_DispVtx_ = " << dptRel_DispVtx_ << endl;
2342  cout << "The calo energy would be still smaller even without this track but it is attached to a NI"<< endl;
2343  }
2344 
2345 
2346  if(isPrimary || (isSecondary && dptRel < dptRel_DispVtx_)) continue;
2347  active[iTrack] = false;
2348  totalChargedMomentum = wouldBeTotalChargedMomentum;
2349  if ( debug_ )
2350  std::cout << "\tElement " << elements[iTrack]
2351  << " rejected (Dpt = " << -it->first
2352  << " GeV/c, algo = " << trackref->algo() << ")" << std::endl;
2353  // Just rescale the nth worst track momentum to equalize the calo energy
2354  } else {
2355  if(isPrimary) break;
2356  corrTrack = iTrack;
2357  corrFact = (caloEnergy - wouldBeTotalChargedMomentum)/elements[it->second.first].trackRef()->p();
2358  if ( trackref->p()*corrFact < 0.05 ) {
2359  corrFact = 0.;
2360  active[iTrack] = false;
2361  }
2362  totalChargedMomentum -= trackref->p()*(1.-corrFact);
2363  if ( debug_ )
2364  std::cout << "\tElement " << elements[iTrack]
2365  << " (Dpt = " << -it->first
2366  << " GeV/c, algo = " << trackref->algo()
2367  << ") rescaled by " << corrFact
2368  << " Now the total charged momentum is " << totalChargedMomentum << endl;
2369  break;
2370  }
2371  }
2372  }
2373 
2374  // New determination of the calo and track resolution avec track deletion/rescaling.
2375  Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2376  Caloresolution *= totalChargedMomentum;
2377  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2378 
2379  // Check if the charged momentum is still very inconsistent with the calo measurement.
2380  // In this case, just drop all tracks from 4th and 5th iteration linked to this block
2381 
2382  if ( rejectTracks_Step45_ &&
2383  sortedTracks.size() > 1 &&
2384  totalChargedMomentum - caloEnergy > nSigmaTRACK_*Caloresolution ) {
2385  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2386  unsigned iTrack = it->second.first;
2387  reco::TrackRef trackref = elements[iTrack].trackRef();
2388  if ( !active[iTrack] ) continue;
2389 
2390  double dptRel = fabs(it->first)/trackref->pt()*100;
2391  bool isPrimaryOrSecondary = isFromSecInt(elements[iTrack], "all");
2392 
2393 
2394 
2395 
2396  if (isPrimaryOrSecondary && dptRel < dptRel_DispVtx_) continue;
2397 
2398  switch (trackref->algo()) {
2399  case TrackBase::ctf:
2401  case TrackBase::lowPtTripletStep:
2402  case TrackBase::pixelPairStep:
2405  case TrackBase::jetCoreRegionalStep:
2406  case TrackBase::muonSeededStepInOut:
2407  case TrackBase::muonSeededStepOutIn:
2408  break;
2410  case TrackBase::tobTecStep:
2411  active[iTrack] = false;
2412  totalChargedMomentum -= trackref->p();
2413 
2414  if ( debug_ )
2415  std::cout << "\tElement " << elements[iTrack]
2416  << " rejected (Dpt = " << -it->first
2417  << " GeV/c, algo = " << trackref->algo() << ")" << std::endl;
2418  break;
2425  break;
2426  default:
2427  break;
2428  }
2429  }
2430  }
2431 
2432  // New determination of the calo and track resolution avec track deletion/rescaling.
2433  Caloresolution = neutralHadronEnergyResolution( totalChargedMomentum, hclusterref->positionREP().Eta());
2434  Caloresolution *= totalChargedMomentum;
2435  Caloresolution = std::sqrt(Caloresolution*Caloresolution + muonHCALError + muonECALError);
2436 
2437  // Make PF candidates with the remaining tracks in the block
2438  sumpError2 = 0.;
2439  for ( IT it = associatedTracks.begin(); it != associatedTracks.end(); ++it ) {
2440  unsigned iTrack = it->second.first;
2441  if ( !active[iTrack] ) continue;
2442  reco::TrackRef trackRef = elements[iTrack].trackRef();
2443  double trackMomentum = trackRef->p();
2444  double Dp = trackRef->qoverpError()*trackMomentum*trackMomentum;
2445  unsigned tmpi = reconstructTrack( elements[iTrack] );
2446 
2447 
2448  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
2449  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
2450  std::pair<II,II> myEcals = associatedEcals.equal_range(iTrack);
2451  for (II ii=myEcals.first; ii!=myEcals.second; ++ii ) {
2452  unsigned iEcal = ii->second.second;
2453  if ( active[iEcal] ) continue;
2454  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
2455  }
2456 
2457  if (useHO_) {
2458  std::pair<II,II> myHOs = associatedHOs.equal_range(iTrack);
2459  for (II ii=myHOs.first; ii!=myHOs.second; ++ii ) {
2460  unsigned iHO = ii->second.second;
2461  if ( active[iHO] ) continue;
2462  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHO );
2463  }
2464  }
2465 
2466  if ( iTrack == corrTrack ) {
2467  (*pfCandidates_)[tmpi].rescaleMomentum(corrFact);
2468  trackMomentum *= corrFact;
2469  }
2470  chargedHadronsIndices.push_back( tmpi );
2471  chargedHadronsInBlock.push_back( iTrack );
2472  active[iTrack] = false;
2473  hcalP.push_back(trackMomentum);
2474  hcalDP.push_back(Dp);
2475  if (Dp/trackMomentum > maxDPovP) maxDPovP = Dp/trackMomentum;
2476  sumpError2 += Dp*Dp;
2477  }
2478 
2479  // The total uncertainty of the difference Calo-Track
2480  double TotalError = sqrt(sumpError2 + Caloresolution*Caloresolution);
2481 
2482  if ( debug_ ) {
2483  cout<<"\tCompare Calo Energy to total charged momentum "<<endl;
2484  cout<<"\t\tsum p = "<<totalChargedMomentum<<" +- "<<sqrt(sumpError2)<<endl;
2485  cout<<"\t\tsum ecal = "<<totalEcal<<endl;
2486  cout<<"\t\tsum hcal = "<<totalHcal<<endl;
2487  cout<<"\t\t => Calo Energy = "<<caloEnergy<<" +- "<<Caloresolution<<endl;
2488  cout<<"\t\t => Calo Energy- total charged momentum = "
2489  <<caloEnergy-totalChargedMomentum<<" +- "<<TotalError<<endl;
2490  cout<<endl;
2491  }
2492 
2493  /* */
2494 
2496  double nsigma = nSigmaHCAL(totalChargedMomentum,hclusterref->positionREP().Eta());
2497  //double nsigma = nSigmaHCAL(caloEnergy,hclusterref->positionREP().Eta());
2498  if ( abs(totalChargedMomentum-caloEnergy)<nsigma*TotalError ) {
2499 
2500  // deposited caloEnergy compatible with total charged momentum
2501  // if tracking errors are large take weighted average
2502 
2503  if(debug_) {
2504  cout<<"\t\tcase 1: COMPATIBLE "
2505  <<"|Calo Energy- total charged momentum| = "
2506  <<abs(caloEnergy-totalChargedMomentum)
2507  <<" < "<<nsigma<<" x "<<TotalError<<endl;
2508  if (maxDPovP < 0.1 )
2509  cout<<"\t\t\tmax DP/P = "<< maxDPovP
2510  <<" less than 0.1: do nothing "<<endl;
2511  else
2512  cout<<"\t\t\tmax DP/P = "<< maxDPovP
2513  <<" > 0.1: take weighted averages "<<endl;
2514  }
2515 
2516  // if max DP/P < 10% do nothing
2517  if (maxDPovP > 0.1) {
2518 
2519  // for each track associated to hcal
2520  // int nrows = tkIs.size();
2521  int nrows = chargedHadronsIndices.size();
2522  TMatrixTSym<double> a (nrows);
2523  TVectorD b (nrows);
2524  TVectorD check(nrows);
2525  double sigma2E = Caloresolution*Caloresolution;
2526  for(int i=0; i<nrows; i++) {
2527  double sigma2i = hcalDP[i]*hcalDP[i];
2528  if (debug_){
2529  cout<<"\t\t\ttrack associated to hcal "<<i
2530  <<" P = "<<hcalP[i]<<" +- "
2531  <<hcalDP[i]<<endl;
2532  }
2533  a(i,i) = 1./sigma2i + 1./sigma2E;
2534  b(i) = hcalP[i]/sigma2i + caloEnergy/sigma2E;
2535  for(int j=0; j<nrows; j++) {
2536  if (i==j) continue;
2537  a(i,j) = 1./sigma2E;
2538  } // end loop on j
2539  } // end loop on i
2540 
2541  // solve ax = b
2542  //if (debug_){// debug1
2543  //cout<<" matrix a(i,j) "<<endl;
2544  //a.Print();
2545  //cout<<" vector b(i) "<<endl;
2546  //b.Print();
2547  //} // debug1
2548  TDecompChol decomp(a);
2549  bool ok = false;
2550  TVectorD x = decomp.Solve(b, ok);
2551  // for each track create a PFCandidate track
2552  // with a momentum rescaled to weighted average
2553  if (ok) {
2554  for (int i=0; i<nrows; i++){
2555  // unsigned iTrack = trackInfos[i].index;
2556  unsigned ich = chargedHadronsIndices[i];
2557  double rescaleFactor = x(i)/hcalP[i];
2558  (*pfCandidates_)[ich].rescaleMomentum( rescaleFactor );
2559 
2560  if(debug_){
2561  cout<<"\t\t\told p "<<hcalP[i]
2562  <<" new p "<<x(i)
2563  <<" rescale "<<rescaleFactor<<endl;
2564  }
2565  }
2566  }
2567  else {
2568  cerr<<"not ok!"<<endl;
2569  assert(0);
2570  }
2571  }
2572  }
2573 
2575  else if( caloEnergy > totalChargedMomentum ) {
2576 
2577  //case 2: caloEnergy > totalChargedMomentum + nsigma*TotalError
2578  //there is an excess of energy in the calos
2579  //create a neutral hadron or a photon
2580 
2581  /*
2582  //If it's isolated don't create neutrals since the energy deposit is always coming from a showering muon
2583  bool thisIsAnIsolatedMuon = false;
2584  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
2585  unsigned iTrack = ie->second;
2586  if(PFMuonAlgo::isIsolatedMuon(elements[iTrack].muonRef())) thisIsAnIsolatedMuon = true;
2587  }
2588 
2589  if(thisIsAnIsolatedMuon){
2590  if(debug_)cout<<" Not looking for neutral b/c this is an isolated muon "<<endl;
2591  break;
2592  }
2593  */
2594  double eNeutralHadron = caloEnergy - totalChargedMomentum;
2595  double ePhoton = (caloEnergy - totalChargedMomentum) / slopeEcal;
2596 
2597  if(debug_) {
2598  if(!sortedTracks.empty() ){
2599  cout<<"\t\tcase 2: NEUTRAL DETECTION "
2600  <<caloEnergy<<" > "<<nsigma<<"x"<<TotalError
2601  <<" + "<<totalChargedMomentum<<endl;
2602  cout<<"\t\tneutral activity detected: "<<endl
2603  <<"\t\t\t photon = "<<ePhoton<<endl
2604  <<"\t\t\tor neutral hadron = "<<eNeutralHadron<<endl;
2605 
2606  cout<<"\t\tphoton or hadron ?"<<endl;}
2607 
2608  if(sortedTracks.empty() )
2609  cout<<"\t\tno track -> hadron "<<endl;
2610  else
2611  cout<<"\t\t"<<sortedTracks.size()
2612  <<"tracks -> check if the excess is photonic or hadronic"<<endl;
2613  }
2614 
2615 
2616  double ratioMax = 0.;
2617  reco::PFClusterRef maxEcalRef;
2618  unsigned maxiEcal= 9999;
2619 
2620  // for each track associated to hcal: iterator IE ie :
2621 
2622  for(IE ie = sortedTracks.begin(); ie != sortedTracks.end(); ++ie ) {
2623 
2624  unsigned iTrack = ie->second;
2625 
2626  PFBlockElement::Type type = elements[iTrack].type();
2628 
2629  reco::TrackRef trackRef = elements[iTrack].trackRef();
2630  assert( !trackRef.isNull() );
2631 
2632  II iae = associatedEcals.find(iTrack);
2633 
2634  if( iae == associatedEcals.end() ) continue;
2635 
2636  // double distECAL = iae->second.first;
2637  unsigned iEcal = iae->second.second;
2638 
2639  PFBlockElement::Type typeEcal = elements[iEcal].type();
2640  assert(typeEcal == reco::PFBlockElement::ECAL);
2641 
2642  reco::PFClusterRef clusterRef = elements[iEcal].clusterRef();
2643  assert( !clusterRef.isNull() );
2644 
2645  double pTrack = trackRef->p();
2646  double eECAL = clusterRef->energy();
2647  double eECALOverpTrack = eECAL / pTrack;
2648 
2649  if ( eECALOverpTrack > ratioMax ) {
2650  ratioMax = eECALOverpTrack;
2651  maxEcalRef = clusterRef;
2652  maxiEcal = iEcal;
2653  }
2654 
2655  } // end loop on tracks associated to hcal: iterator IE ie
2656 
2657  std::vector<reco::PFClusterRef> pivotalClusterRef;
2658  std::vector<unsigned> iPivotal;
2659  std::vector<double> particleEnergy, ecalEnergy, hcalEnergy, rawecalEnergy, rawhcalEnergy;
2660  std::vector<::math::XYZVector> particleDirection;
2661 
2662  // If the excess is smaller than the ecal energy, assign the whole
2663  // excess to photons
2664  if ( ePhoton < totalEcal || eNeutralHadron-calibEcal < 1E-10 ) {
2665  if ( !maxEcalRef.isNull() ) {
2666  // So the merged photon energy is,
2667  mergedPhotonEnergy = ePhoton;
2668  }
2669  } else {
2670  // Otherwise assign the whole ECAL energy to the photons
2671  if ( !maxEcalRef.isNull() ) {
2672  // So the merged photon energy is,
2673  mergedPhotonEnergy = totalEcal;
2674  }
2675  // ... and assign the remaining excess to neutral hadrons using the direction of ecal clusters
2676  mergedNeutralHadronEnergy = eNeutralHadron-calibEcal;
2677  }
2678 
2679  if ( mergedPhotonEnergy > 0 ) {
2680  // Split merged photon into photons for each energetic ecal cluster (necessary for jet substructure reconstruction)
2681  // make only one merged photon if less than 2 ecal clusters
2682  if ( ecalClusters.size()<=1 ) {
2683  ecalClusters.clear();
2684  ecalClusters.push_back(make_pair(maxiEcal, photonAtECAL));
2685  sumEcalClusters=sqrt(photonAtECAL.Mag2());
2686  }
2687  for(std::vector<std::pair<unsigned,::math::XYZVector> >::const_iterator pae = ecalClusters.begin(); pae != ecalClusters.end(); ++pae ) {
2688  double clusterEnergy=sqrt(pae->second.Mag2());
2689  particleEnergy.push_back(mergedPhotonEnergy*clusterEnergy/sumEcalClusters);
2690  particleDirection.push_back(pae->second);
2691  ecalEnergy.push_back(mergedPhotonEnergy*clusterEnergy/sumEcalClusters);
2692  hcalEnergy.push_back(0.);
2693  rawecalEnergy.push_back(totalEcal);
2694  rawhcalEnergy.push_back(totalHcal);
2695  pivotalClusterRef.push_back(elements[pae->first].clusterRef());
2696  iPivotal.push_back(pae->first);
2697  }
2698  }
2699 
2700  if ( mergedNeutralHadronEnergy > 1.0 ) {
2701  // Split merged neutral hadrons according to directions of energetic ecal clusters (necessary for jet substructure reconstruction)
2702  // make only one merged neutral hadron if less than 2 ecal clusters
2703  if ( ecalClusters.size()<=1 ) {
2704  ecalClusters.clear();
2705  ecalClusters.push_back(make_pair(iHcal, hadronAtECAL));
2706  sumEcalClusters=sqrt(hadronAtECAL.Mag2());
2707  }
2708  for(std::vector<std::pair<unsigned,::math::XYZVector> >::const_iterator pae = ecalClusters.begin(); pae != ecalClusters.end(); ++pae ) {
2709  double clusterEnergy=sqrt(pae->second.Mag2());
2710  particleEnergy.push_back(mergedNeutralHadronEnergy*clusterEnergy/sumEcalClusters);
2711  particleDirection.push_back(pae->second);
2712  ecalEnergy.push_back(0.);
2713  hcalEnergy.push_back(mergedNeutralHadronEnergy*clusterEnergy/sumEcalClusters);
2714  rawecalEnergy.push_back(totalEcal);
2715  rawhcalEnergy.push_back(totalHcal);
2716  pivotalClusterRef.push_back(hclusterref);
2717  iPivotal.push_back(iHcal);
2718  }
2719  }
2720 
2721  // reconstructing a merged neutral
2722  // the type of PFCandidate is known from the
2723  // reference to the pivotal cluster.
2724 
2725  for ( unsigned iPivot=0; iPivot<iPivotal.size(); ++iPivot ) {
2726 
2727  if ( particleEnergy[iPivot] < 0. )
2728  std::cout << "ALARM = Negative energy ! "
2729  << particleEnergy[iPivot] << std::endl;
2730 
2731  bool useDirection = true;
2732  unsigned tmpi = reconstructCluster( *pivotalClusterRef[iPivot],
2733  particleEnergy[iPivot],
2734  useDirection,
2735  particleDirection[iPivot].X(),
2736  particleDirection[iPivot].Y(),
2737  particleDirection[iPivot].Z());
2738 
2739 
2740  (*pfCandidates_)[tmpi].setEcalEnergy( rawecalEnergy[iPivot],ecalEnergy[iPivot] );
2741  if ( !useHO_ ) {
2742  (*pfCandidates_)[tmpi].setHcalEnergy( rawhcalEnergy[iPivot],hcalEnergy[iPivot] );
2743  (*pfCandidates_)[tmpi].setHoEnergy(0., 0.);
2744  } else {
2745  (*pfCandidates_)[tmpi].setHcalEnergy( max(rawhcalEnergy[iPivot]-totalHO,0.0),hcalEnergy[iPivot]*(1.-totalHO/rawhcalEnergy[iPivot]));
2746  (*pfCandidates_)[tmpi].setHoEnergy(totalHO, totalHO * hcalEnergy[iPivot]/rawhcalEnergy[iPivot]);
2747  }
2748  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
2749  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
2750  (*pfCandidates_)[tmpi].set_mva_nothing_gamma( -1. );
2751  // (*pfCandidates_)[tmpi].addElement(&elements[iPivotal]);
2752  // (*pfCandidates_)[tmpi].addElementInBlock(blockref, iPivotal[iPivot]);
2753  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
2754  for ( unsigned ich=0; ich<chargedHadronsInBlock.size(); ++ich) {
2755  unsigned iTrack = chargedHadronsInBlock[ich];
2756  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iTrack );
2757  // Assign the position of the track at the ECAL entrance
2758  const ::math::XYZPointF& chargedPosition =
2759  dynamic_cast<const reco::PFBlockElementTrack*>(&elements[iTrack])->positionAtECALEntrance();
2760  (*pfCandidates_)[tmpi].setPositionAtECALEntrance(chargedPosition);
2761 
2762  std::pair<II,II> myEcals = associatedEcals.equal_range(iTrack);
2763  for (II ii=myEcals.first; ii!=myEcals.second; ++ii ) {
2764  unsigned iEcal = ii->second.second;
2765  if ( active[iEcal] ) continue;
2766  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
2767  }
2768  }
2769 
2770  }
2771 
2772  } // excess of energy
2773 
2774 
2775  // will now share the hcal energy between the various charged hadron
2776  // candidates, taking into account the potential neutral hadrons
2777 
2778  double totalHcalEnergyCalibrated = calibHcal;
2779  double totalEcalEnergyCalibrated = calibEcal;
2780  //JB: The question is: we've resolved the merged photons cleanly, but how should
2781  //the remaining hadrons be assigned the remaining ecal energy?
2782  //*Temporary solution*: follow HCAL example with fractions...
2783 
2784  /*
2785  if(totalEcal>0) {
2786  // removing ecal energy from abc calibration
2787  totalHcalEnergyCalibrated -= calibEcal;
2788  // totalHcalEnergyCalibrated -= calibration_->paramECALplusHCAL_slopeECAL() * totalEcal;
2789  }
2790  */
2791  // else caloEnergy = hcal only calibrated energy -> ok.
2792 
2793  // remove the energy of the potential neutral hadron
2794  totalHcalEnergyCalibrated -= mergedNeutralHadronEnergy;
2795  // similarly for the merged photons
2796  totalEcalEnergyCalibrated -= mergedPhotonEnergy;
2797  // share between the charged hadrons
2798 
2799  //COLIN can compute this before
2800  // not exactly equal to sum p, this is sum E
2801  double chargedHadronsTotalEnergy = 0;
2802  for( unsigned ich=0; ich<chargedHadronsIndices.size(); ++ich ) {
2803  unsigned index = chargedHadronsIndices[ich];
2804  reco::PFCandidate& chargedHadron = (*pfCandidates_)[index];
2805  chargedHadronsTotalEnergy += chargedHadron.energy();
2806  }
2807 
2808  for( unsigned ich=0; ich<chargedHadronsIndices.size(); ++ich ) {
2809  unsigned index = chargedHadronsIndices[ich];
2810  reco::PFCandidate& chargedHadron = (*pfCandidates_)[index];
2811  float fraction = chargedHadron.energy()/chargedHadronsTotalEnergy;
2812 
2813  if ( !useHO_ ) {
2814  chargedHadron.setHcalEnergy( fraction * totalHcal, fraction * totalHcalEnergyCalibrated );
2815  chargedHadron.setHoEnergy( 0., 0. );
2816  } else {
2817  chargedHadron.setHcalEnergy( fraction * max(totalHcal-totalHO,0.0), fraction * totalHcalEnergyCalibrated * (1.-totalHO/totalHcal) );
2818  chargedHadron.setHoEnergy( fraction * totalHO, fraction * totalHO * totalHcalEnergyCalibrated / totalHcal );
2819  }
2820  //JB: fixing up (previously omitted) setting of ECAL energy gouzevit
2821  chargedHadron.setEcalEnergy( fraction * totalEcal, fraction * totalEcalEnergyCalibrated );
2822  }
2823 
2824  // Finally treat unused ecal satellites as photons.
2825  for ( IS is = ecalSatellites.begin(); is != ecalSatellites.end(); ++is ) {
2826 
2827  // Ignore satellites already taken
2828  unsigned iEcal = is->second.first;
2829  if ( !active[iEcal] ) continue;
2830 
2831  // Sanity checks again (well not useful, this time!)
2832  PFBlockElement::Type type = elements[ iEcal ].type();
2833  assert( type == PFBlockElement::ECAL );
2834  PFClusterRef eclusterref = elements[iEcal].clusterRef();
2835  assert(!eclusterref.isNull() );
2836 
2837  // Lock the cluster
2838  active[iEcal] = false;
2839 
2840  // Find the associated tracks
2841  std::multimap<double, unsigned> assTracks;
2842  block.associatedElements( iEcal, linkData,
2843  assTracks,
2846 
2847  // Create a photon
2848  unsigned tmpi = reconstructCluster( *eclusterref, sqrt(is->second.second.Mag2()) );
2849  (*pfCandidates_)[tmpi].setEcalEnergy( eclusterref->energy(),sqrt(is->second.second.Mag2()) );
2850  (*pfCandidates_)[tmpi].setHcalEnergy( 0., 0. );
2851  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0. );
2852  (*pfCandidates_)[tmpi].setPs1Energy( associatedPSs[iEcal].first );
2853  (*pfCandidates_)[tmpi].setPs2Energy( associatedPSs[iEcal].second );
2854  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
2855  (*pfCandidates_)[tmpi].addElementInBlock( blockref, sortedTracks.begin()->second) ;
2856  }
2857 
2858 
2859  }
2860 
2861  // end loop on hcal element iHcal= hcalIs[i]
2862 
2863 
2864  // Processing the remaining HCAL clusters
2865  if(debug_) {
2866  cout<<endl;
2867  if(debug_)
2868  cout<<endl
2869  <<"---- loop remaining hcal ------- "<<endl;
2870  }
2871 
2872 
2873  //COLINFEB16
2874  // now dealing with the HCAL elements that are not linked to any track
2875  for(unsigned ihcluster=0; ihcluster<hcalIs.size(); ihcluster++) {
2876  unsigned iHcal = hcalIs[ihcluster];
2877 
2878  // Keep ECAL and HO elements for reference in the PFCandidate
2879  std::vector<unsigned> ecalRefs;
2880  std::vector<unsigned> hoRefs;
2881 
2882  if(debug_)
2883  cout<<endl<<elements[iHcal]<<" ";
2884 
2885 
2886  if( !active[iHcal] ) {
2887  if(debug_)
2888  cout<<"not active"<<endl;
2889  continue;
2890  }
2891 
2892  // Find the ECAL elements linked to it
2893  std::multimap<double, unsigned> ecalElems;
2894  block.associatedElements( iHcal, linkData,
2895  ecalElems ,
2898 
2899  // Loop on these ECAL elements
2900  float totalEcal = 0.;
2901  float ecalMax = 0.;
2902  reco::PFClusterRef eClusterRef;
2903  for(IE ie = ecalElems.begin(); ie != ecalElems.end(); ++ie ) {
2904 
2905  unsigned iEcal = ie->second;
2906  double dist = ie->first;
2907  PFBlockElement::Type type = elements[iEcal].type();
2908  assert( type == PFBlockElement::ECAL );
2909 
2910  // Check if already used
2911  if( !active[iEcal] ) continue;
2912 
2913  // Check the distance (one HCALPlusECAL tower, roughly)
2914  // if ( dist > 0.15 ) continue;
2915 
2916  //COLINFEB16
2917  // what could be done is to
2918  // - link by rechit.
2919  // - take in the neutral hadron all the ECAL clusters
2920  // which are within the same CaloTower, according to the distance,
2921  // except the ones which are closer to another HCAL cluster.
2922  // - all the other ECAL linked to this HCAL are photons.
2923  //
2924  // about the closest HCAL cluster.
2925  // it could maybe be easier to loop on the ECAL clusters first
2926  // to cut the links to all HCAL clusters except the closest, as is
2927  // done in the first track loop. But maybe not!
2928  // or add an helper function to the PFAlgo class to ask
2929  // if a given element is the closest of a given type to another one?
2930 
2931  // Check if not closer from another free HCAL
2932  std::multimap<double, unsigned> hcalElems;
2933  block.associatedElements( iEcal, linkData,
2934  hcalElems ,
2937 
2938  bool isClosest = true;
2939  for(IE ih = hcalElems.begin(); ih != hcalElems.end(); ++ih ) {
2940 
2941  unsigned jHcal = ih->second;
2942  double distH = ih->first;
2943 
2944  if ( !active[jHcal] ) continue;
2945 
2946  if ( distH < dist ) {
2947  isClosest = false;
2948  break;
2949  }
2950 
2951  }
2952 
2953  if (!isClosest) continue;
2954 
2955 
2956  if(debug_) {
2957  cout<<"\telement "<<elements[iEcal]<<" linked with dist "<< dist<<endl;
2958  cout<<"Added to HCAL cluster to form a neutral hadron"<<endl;
2959  }
2960 
2961  reco::PFClusterRef eclusterRef = elements[iEcal].clusterRef();
2962  assert( !eclusterRef.isNull() );
2963 
2964  double ecalEnergy = eclusterRef->correctedEnergy();
2965 
2966  //std::cout << "EcalEnergy, ps1, ps2 = " << ecalEnergy
2967  // << ", " << ps1Ene[0] << ", " << ps2Ene[0] << std::endl;
2968  totalEcal += ecalEnergy;
2969  if ( ecalEnergy > ecalMax ) {
2970  ecalMax = ecalEnergy;
2971  eClusterRef = eclusterRef;
2972  }
2973 
2974  ecalRefs.push_back(iEcal);
2975  active[iEcal] = false;
2976 
2977 
2978  }// End loop ECAL
2979 
2980  // Now find the HO clusters linked to the HCAL cluster
2981  double totalHO = 0.;
2982  double hoMax = 0.;
2983  //unsigned jHO = 0;
2984  if (useHO_) {
2985  std::multimap<double, unsigned> hoElems;
2986  block.associatedElements( iHcal, linkData,
2987  hoElems ,
2990 
2991  // Loop on these HO elements
2992  // double totalHO = 0.;
2993  // double hoMax = 0.;
2994  // unsigned jHO = 0;
2995  reco::PFClusterRef hoClusterRef;
2996  for(IE ie = hoElems.begin(); ie != hoElems.end(); ++ie ) {
2997 
2998  unsigned iHO = ie->second;
2999  double dist = ie->first;
3000  PFBlockElement::Type type = elements[iHO].type();
3001  assert( type == PFBlockElement::HO );
3002 
3003  // Check if already used
3004  if( !active[iHO] ) continue;
3005 
3006  // Check the distance (one HCALPlusHO tower, roughly)
3007  // if ( dist > 0.15 ) continue;
3008 
3009  // Check if not closer from another free HCAL
3010  std::multimap<double, unsigned> hcalElems;
3011  block.associatedElements( iHO, linkData,
3012  hcalElems ,
3015 
3016  bool isClosest = true;
3017  for(IE ih = hcalElems.begin(); ih != hcalElems.end(); ++ih ) {
3018 
3019  unsigned jHcal = ih->second;
3020  double distH = ih->first;
3021 
3022  if ( !active[jHcal] ) continue;
3023 
3024  if ( distH < dist ) {
3025  isClosest = false;
3026  break;
3027  }
3028 
3029  }
3030 
3031  if (!isClosest) continue;
3032 
3033  if(debug_ && useHO_) {
3034  cout<<"\telement "<<elements[iHO]<<" linked with dist "<< dist<<endl;
3035  cout<<"Added to HCAL cluster to form a neutral hadron"<<endl;
3036  }
3037 
3038  reco::PFClusterRef hoclusterRef = elements[iHO].clusterRef();
3039  assert( !hoclusterRef.isNull() );
3040 
3041  double hoEnergy = hoclusterRef->energy(); // calibration_->energyEm(*hoclusterRef,ps1Ene,ps2Ene,crackCorrection);
3042 
3043  totalHO += hoEnergy;
3044  if ( hoEnergy > hoMax ) {
3045  hoMax = hoEnergy;
3046  hoClusterRef = hoclusterRef;
3047  //jHO = iHO;
3048  }
3049 
3050  hoRefs.push_back(iHO);
3051  active[iHO] = false;
3052 
3053  }// End loop HO
3054  }
3055 
3056  PFClusterRef hclusterRef
3057  = elements[iHcal].clusterRef();
3058  assert( !hclusterRef.isNull() );
3059 
3060  // HCAL energy
3061  double totalHcal = hclusterRef->energy();
3062  // Include the HO energy
3063  if ( useHO_ ) totalHcal += totalHO;
3064 
3065  // std::cout << "Hcal Energy,eta : " << totalHcal
3066  // << ", " << hclusterRef->positionREP().Eta()
3067  // << std::endl;
3068  // Calibration
3069  //double caloEnergy = totalHcal;
3070  // double slopeEcal = 1.0;
3071  double calibEcal = totalEcal > 0. ? totalEcal : 0.;
3072  double calibHcal = std::max(0.,totalHcal);
3073  if ( hclusterRef->layer() == PFLayer::HF_HAD ||
3074  hclusterRef->layer() == PFLayer::HF_EM ) {
3075  //caloEnergy = totalHcal/0.7;
3076  calibEcal = totalEcal;
3077  } else {
3078  calibration_->energyEmHad(-1.,calibEcal,calibHcal,
3079  hclusterRef->positionREP().Eta(),
3080  hclusterRef->positionREP().Phi());
3081  //caloEnergy = calibEcal+calibHcal;
3082  }
3083 
3084  // std::cout << "CalibEcal,HCal = " << calibEcal << ", " << calibHcal << std::endl;
3085  // std::cout << "-------------------------------------------------------------------" << std::endl;
3086  // ECAL energy : calibration
3087 
3088  // double particleEnergy = caloEnergy;
3089  // double particleEnergy = totalEcal + calibHcal;
3090  // particleEnergy /= (1.-0.724/sqrt(particleEnergy)-0.0226/particleEnergy);
3091 
3092  unsigned tmpi = reconstructCluster( *hclusterRef,
3093  calibEcal+calibHcal );
3094 
3095 
3096  (*pfCandidates_)[tmpi].setEcalEnergy( totalEcal, calibEcal );
3097  if ( !useHO_ ) {
3098  (*pfCandidates_)[tmpi].setHcalEnergy( totalHcal, calibHcal );
3099  (*pfCandidates_)[tmpi].setHoEnergy(0.,0.);
3100  } else {
3101  (*pfCandidates_)[tmpi].setHcalEnergy( max(totalHcal-totalHO,0.0), calibHcal*(1.-totalHO/totalHcal));
3102  (*pfCandidates_)[tmpi].setHoEnergy(totalHO,totalHO*calibHcal/totalHcal);
3103  }
3104  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
3105  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
3106  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iHcal );
3107  for (unsigned iec=0; iec<ecalRefs.size(); ++iec)
3108  (*pfCandidates_)[tmpi].addElementInBlock( blockref, ecalRefs[iec] );
3109  for (unsigned iho=0; iho<hoRefs.size(); ++iho)
3110  (*pfCandidates_)[tmpi].addElementInBlock( blockref, hoRefs[iho] );
3111 
3112  }//loop hcal elements
3113 
3114 
3115 
3116 
3117  if(debug_) {
3118  cout<<endl;
3119  if(debug_) cout<<endl<<"---- loop ecal------- "<<endl;
3120  }
3121 
3122  // for each ecal element iEcal = ecalIs[i] in turn:
3123 
3124  for(unsigned i=0; i<ecalIs.size(); i++) {
3125  unsigned iEcal = ecalIs[i];
3126 
3127  if(debug_)
3128  cout<<endl<<elements[iEcal]<<" ";
3129 
3130  if( ! active[iEcal] ) {
3131  if(debug_)
3132  cout<<"not active"<<endl;
3133  continue;
3134  }
3135 
3136  PFBlockElement::Type type = elements[ iEcal ].type();
3137  assert( type == PFBlockElement::ECAL );
3138 
3139  PFClusterRef clusterref = elements[iEcal].clusterRef();
3140  assert(!clusterref.isNull() );
3141 
3142  active[iEcal] = false;
3143 
3144  float ecalEnergy = clusterref->correctedEnergy();
3145  // float ecalEnergy = calibration_->energyEm( clusterref->energy() );
3146  double particleEnergy = ecalEnergy;
3147 
3148  unsigned tmpi = reconstructCluster( *clusterref,
3149  particleEnergy );
3150 
3151  (*pfCandidates_)[tmpi].setEcalEnergy( clusterref->energy(),ecalEnergy );
3152  (*pfCandidates_)[tmpi].setHcalEnergy( 0., 0. );
3153  (*pfCandidates_)[tmpi].setHoEnergy( 0., 0. );
3154  (*pfCandidates_)[tmpi].setPs1Energy( 0. );
3155  (*pfCandidates_)[tmpi].setPs2Energy( 0. );
3156  (*pfCandidates_)[tmpi].addElementInBlock( blockref, iEcal );
3157 
3158 
3159  } // end loop on ecal elements iEcal = ecalIs[i]
3160 
3161 } // end processBlock
3162 
3164 unsigned PFAlgo::reconstructTrack( const reco::PFBlockElement& elt, bool allowLoose) {
3165 
3166  const reco::PFBlockElementTrack* eltTrack
3167  = dynamic_cast<const reco::PFBlockElementTrack*>(&elt);
3168 
3169  reco::TrackRef trackRef = eltTrack->trackRef();
3170  const reco::Track& track = *trackRef;
3171  reco::MuonRef muonRef = eltTrack->muonRef();
3172  int charge = track.charge()>0 ? 1 : -1;
3173 
3174  // Assume this particle is a charged Hadron
3175  double px = track.px();
3176  double py = track.py();
3177  double pz = track.pz();
3178  double energy = sqrt(track.p()*track.p() + 0.13957*0.13957);
3179 
3180  // Create a PF Candidate
3181  ::math::XYZTLorentzVector momentum(px,py,pz,energy);
3184 
3185  // Add it to the stack
3186  pfCandidates_->push_back( PFCandidate( charge,
3187  momentum,
3188  particleType ) );
3189  //Set vertex and stuff like this
3190  pfCandidates_->back().setVertexSource( PFCandidate::kTrkVertex );
3191  pfCandidates_->back().setTrackRef( trackRef );
3192  pfCandidates_->back().setPositionAtECALEntrance( eltTrack->positionAtECALEntrance());
3193  if( muonRef.isNonnull())
3194  pfCandidates_->back().setMuonRef( muonRef );
3195 
3196 
3197 
3198  //OK Now try to reconstruct the particle as a muon
3199  bool isMuon=pfmu_->reconstructMuon(pfCandidates_->back(),muonRef,allowLoose);
3200  bool isFromDisp = isFromSecInt(elt, "secondary");
3201 
3202 
3203  if ((!isMuon) && isFromDisp) {
3204  double Dpt = trackRef->ptError();
3205  double dptRel = Dpt/trackRef->pt()*100;
3206  //If the track is ill measured it is better to not refit it, since the track information probably would not be used.
3207  //In the PFAlgo we use the trackref information. If the track error is too big the refitted information might be very different
3208  // from the not refitted one.
3209  if (dptRel < dptRel_DispVtx_){
3210  if (debug_)
3211  cout << "Not refitted px = " << px << " py = " << py << " pz = " << pz << " energy = " << energy << endl;
3212  //reco::TrackRef trackRef = eltTrack->trackRef();
3214  reco::Track trackRefit = vRef->refittedTrack(trackRef);
3215  //change the momentum with the refitted track
3216  ::math::XYZTLorentzVector momentum(trackRefit.px(),
3217  trackRefit.py(),
3218  trackRefit.pz(),
3219  sqrt(trackRefit.p()*trackRefit.p() + 0.13957*0.13957));
3220  if (debug_)
3221  cout << "Refitted px = " << px << " py = " << py << " pz = " << pz << " energy = " << energy << endl;
3222  }
3223  pfCandidates_->back().setFlag( reco::PFCandidate::T_FROM_DISP, true);
3224  pfCandidates_->back().setDisplacedVertexRef( eltTrack->displacedVertexRef(reco::PFBlockElement::T_FROM_DISP)->displacedVertexRef(), reco::PFCandidate::T_FROM_DISP);
3225  }
3226 
3227  // do not label as primary a track which would be recognised as a muon. A muon cannot produce NI. It is with high probability a fake
3228  if(isFromSecInt(elt, "primary") && !isMuon) {
3229  pfCandidates_->back().setFlag( reco::PFCandidate::T_TO_DISP, true);
3230  pfCandidates_->back().setDisplacedVertexRef( eltTrack->displacedVertexRef(reco::PFBlockElement::T_TO_DISP)->displacedVertexRef(), reco::PFCandidate::T_TO_DISP);
3231  }
3232  // returns index to the newly created PFCandidate
3233  return pfCandidates_->size()-1;
3234 }
3235 
3236 
3237 unsigned
3239  double particleEnergy,
3240  bool useDirection,
3241  double particleX,
3242  double particleY,
3243  double particleZ) {
3244 
3246 
3247  // need to convert the ::math::XYZPoint data member of the PFCluster class=
3248  // to a displacement vector:
3249 
3250  // Transform particleX,Y,Z to a position at ECAL/HCAL entrance
3251  double factor = 1.;
3252  if ( useDirection ) {
3253  switch( cluster.layer() ) {
3254  case PFLayer::ECAL_BARREL:
3255  case PFLayer::HCAL_BARREL1:
3256  factor = std::sqrt(cluster.position().Perp2()/(particleX*particleX+particleY*particleY));
3257  break;
3258  case PFLayer::ECAL_ENDCAP:
3259  case PFLayer::HCAL_ENDCAP:
3260  case PFLayer::HF_HAD:
3261  case PFLayer::HF_EM:
3262  factor = cluster.position().Z()/particleZ;
3263  break;
3264  default:
3265  assert(0);
3266  }
3267  }
3268  //MIKE First of all let's check if we have vertex.
3269  ::math::XYZPoint vertexPos;
3270  if(useVertices_)
3272  else
3273  vertexPos = ::math::XYZPoint(0.0,0.0,0.0);
3274 
3275 
3276  ::math::XYZVector clusterPos( cluster.position().X()-vertexPos.X(),
3277  cluster.position().Y()-vertexPos.Y(),
3278  cluster.position().Z()-vertexPos.Z());
3279  ::math::XYZVector particleDirection ( particleX*factor-vertexPos.X(),
3280  particleY*factor-vertexPos.Y(),
3281  particleZ*factor-vertexPos.Z() );
3282 
3283  //::math::XYZVector clusterPos( cluster.position().X(), cluster.position().Y(),cluster.position().Z() );
3284  //::math::XYZVector particleDirection ( particleX, particleY, particleZ );
3285 
3286  clusterPos = useDirection ? particleDirection.Unit() : clusterPos.Unit();
3287  clusterPos *= particleEnergy;
3288 
3289  // clusterPos is now a vector along the cluster direction,
3290  // with a magnitude equal to the cluster energy.
3291 
3292  double mass = 0;
3293  ROOT::Math::LorentzVector<ROOT::Math::PxPyPzM4D<double> >
3294  momentum( clusterPos.X(), clusterPos.Y(), clusterPos.Z(), mass);
3295  // mathcore is a piece of #$%
3297  // implicit constructor not allowed
3298  tmp = momentum;
3299 
3300  // Charge
3301  int charge = 0;
3302 
3303  // Type
3304  switch( cluster.layer() ) {
3305  case PFLayer::ECAL_BARREL:
3306  case PFLayer::ECAL_ENDCAP:
3307  particleType = PFCandidate::gamma;
3308  break;
3309  case PFLayer::HCAL_BARREL1:
3310  case PFLayer::HCAL_ENDCAP:
3311  particleType = PFCandidate::h0;
3312  break;
3313  case PFLayer::HF_HAD:
3314  particleType = PFCandidate::h_HF;
3315  break;
3316  case PFLayer::HF_EM:
3317  particleType = PFCandidate::egamma_HF;
3318  break;
3319  default:
3320  assert(0);
3321  }
3322 
3323  // The pf candidate
3324  pfCandidates_->push_back( PFCandidate( charge,
3325  tmp,
3326  particleType ) );
3327 
3328  // The position at ECAL entrance (well: watch out, it is not true
3329  // for HCAL clusters... to be fixed)
3330  pfCandidates_->back().
3331  setPositionAtECALEntrance(::math::XYZPointF(cluster.position().X(),
3332  cluster.position().Y(),
3333  cluster.position().Z()));
3334 
3335  //Set the cnadidate Vertex
3336  pfCandidates_->back().setVertex(vertexPos);
3337 
3338  if(debug_)
3339  cout<<"** candidate: "<<pfCandidates_->back()<<endl;
3340 
3341  // returns index to the newly created PFCandidate
3342  return pfCandidates_->size()-1;
3343 
3344 }
3345 
3346 
3347 //GMA need the followign two for HO also
3348 
3349 double
3350 PFAlgo::neutralHadronEnergyResolution(double clusterEnergyHCAL, double eta) const {
3351 
3352  // Add a protection
3353  if ( clusterEnergyHCAL < 1. ) clusterEnergyHCAL = 1.;
3354 
3355  double resol = fabs(eta) < 1.48 ?
3356  sqrt (1.02*1.02/clusterEnergyHCAL + 0.065*0.065)
3357  :
3358  sqrt (1.20*1.20/clusterEnergyHCAL + 0.028*0.028);
3359 
3360  return resol;
3361 
3362 }
3363 
3364 double
3365 PFAlgo::nSigmaHCAL(double clusterEnergyHCAL, double eta) const {
3366  double nS = fabs(eta) < 1.48 ?
3367  nSigmaHCAL_ * (1. + exp(-clusterEnergyHCAL/100.))
3368  :
3369  nSigmaHCAL_ * (1. + exp(-clusterEnergyHCAL/100.));
3370 
3371  return nS;
3372 }
3373 
3374 
3375 ostream& operator<<(ostream& out, const PFAlgo& algo) {
3376  if(!out ) return out;
3377 
3378  out<<"====== Particle Flow Algorithm ======= ";
3379  out<<endl;
3380  out<<"nSigmaECAL_ "<<algo.nSigmaECAL_<<endl;
3381  out<<"nSigmaHCAL_ "<<algo.nSigmaHCAL_<<endl;
3382  out<<endl;
3383  out<<(*(algo.calibration_))<<endl;
3384  out<<endl;
3385  out<<"reconstructed particles: "<<endl;
3386 
3387  const std::auto_ptr< reco::PFCandidateCollection >&
3388  candidates = algo.pfCandidates();
3389 
3390  if(!candidates.get() ) {
3391  out<<"candidates already transfered"<<endl;
3392  return out;
3393  }
3394  for(PFCandidateConstIterator ic=algo.pfCandidates_->begin();
3395  ic != algo.pfCandidates_->end(); ic++) {
3396  out<<(*ic)<<endl;
3397  }
3398 
3399  return out;
3400 }
3401 
3404  unsigned bi ) {
3405 
3406  if( blockHandle_.isValid() ) {
3407  return reco::PFBlockRef( blockHandle_, bi );
3408  }
3409  else {
3410  return reco::PFBlockRef( &blocks, bi );
3411  }
3412 }
3413 
3414 void
3416  reco::PFBlockElement::Type psElementType,
3417  const reco::PFBlock& block,
3419  const reco::PFBlock::LinkData& linkData,
3420  std::vector<bool>& active,
3421  std::vector<double>& psEne) {
3422 
3423  // Find all PS clusters with type psElement associated to ECAL cluster iEcal,
3424  // within all PFBlockElement "elements" of a given PFBlock "block"
3425  // psElement can be reco::PFBlockElement::PS1 or reco::PFBlockElement::PS2
3426  // Returns a vector of PS cluster energies, and updates the "active" vector.
3427 
3428  // Find all PS clusters linked to the iEcal cluster
3429  std::multimap<double, unsigned> sortedPS;
3430  typedef std::multimap<double, unsigned>::iterator IE;
3431  block.associatedElements( iEcal, linkData,
3432  sortedPS, psElementType,
3434 
3435  // Loop over these PS clusters
3436  double totalPS = 0.;
3437  for ( IE ips=sortedPS.begin(); ips!=sortedPS.end(); ++ips ) {
3438 
3439  // CLuster index and distance to iEcal
3440  unsigned iPS = ips->second;
3441  // double distPS = ips->first;
3442 
3443  // Ignore clusters already in use
3444  if (!active[iPS]) continue;
3445 
3446  // Check that this cluster is not closer to another ECAL cluster
3447  std::multimap<double, unsigned> sortedECAL;
3448  block.associatedElements( iPS, linkData,
3449  sortedECAL,
3452  unsigned jEcal = sortedECAL.begin()->second;
3453  if ( jEcal != iEcal ) continue;
3454 
3455  // Update PS energy
3456  PFBlockElement::Type pstype = elements[ iPS ].type();
3457  assert( pstype == psElementType );
3458  PFClusterRef psclusterref = elements[iPS].clusterRef();
3459  assert(!psclusterref.isNull() );
3460  totalPS += psclusterref->energy();
3461  psEne[0] += psclusterref->energy();
3462  active[iPS] = false;
3463  }
3464 
3465 
3466 }
3467 
3468 
3469 bool
3470 PFAlgo::isFromSecInt(const reco::PFBlockElement& eTrack, string order) const {
3471 
3474  // reco::PFBlockElement::TrackType T_FROM_GAMMACONV = reco::PFBlockElement::T_FROM_GAMMACONV;
3476 
3477  bool bPrimary = (order.find("primary") != string::npos);
3478  bool bSecondary = (order.find("secondary") != string::npos);
3479  bool bAll = (order.find("all") != string::npos);
3480 
3481  bool isToDisp = usePFNuclearInteractions_ && eTrack.trackType(T_TO_DISP);
3482  bool isFromDisp = usePFNuclearInteractions_ && eTrack.trackType(T_FROM_DISP);
3483 
3484  if (bPrimary && isToDisp) return true;
3485  if (bSecondary && isFromDisp ) return true;
3486  if (bAll && ( isToDisp || isFromDisp ) ) return true;
3487 
3488 // bool isFromConv = usePFConversions_ && eTrack.trackType(T_FROM_GAMMACONV);
3489 
3490 // if ((bAll || bSecondary)&& isFromConv) return true;
3491 
3492  bool isFromDecay = (bAll || bSecondary) && usePFDecays_ && eTrack.trackType(T_FROM_V0);
3493 
3494  return isFromDecay;
3495 
3496 
3497 }
3498 
3499 
3500 void
3503 }
3504 
3505 void
3507 
3508  // Check if the post HF Cleaning was requested - if not, do nothing
3509  if ( !postHFCleaning_ ) return;
3510 
3511  //Compute met and met significance (met/sqrt(SumEt))
3512  double metX = 0.;
3513  double metY = 0.;
3514  double sumet = 0;
3515  std::vector<unsigned int> pfCandidatesToBeRemoved;
3516  for(unsigned i=0; i<pfCandidates_->size(); i++) {
3517  const PFCandidate& pfc = (*pfCandidates_)[i];
3518  metX += pfc.px();
3519  metY += pfc.py();
3520  sumet += pfc.pt();
3521  }
3522  double met2 = metX*metX+metY*metY;
3523  // Select events with large MET significance.
3524  double significance = std::sqrt(met2/sumet);
3525  double significanceCor = significance;
3526  if ( significance > minSignificance_ ) {
3527 
3528  double metXCor = metX;
3529  double metYCor = metY;
3530  double sumetCor = sumet;
3531  double met2Cor = met2;
3532  double deltaPhi = 3.14159;
3533  double deltaPhiPt = 100.;
3534  bool next = true;
3535  unsigned iCor = 1E9;
3536 
3537  // Find the HF candidate with the largest effect on the MET
3538  while ( next ) {
3539 
3540  double metReduc = -1.;
3541  // Loop on the candidates
3542  for(unsigned i=0; i<pfCandidates_->size(); ++i) {
3543  const PFCandidate& pfc = (*pfCandidates_)[i];
3544 
3545  // Check that the pfCandidate is in the HF
3546  if ( pfc.particleId() != reco::PFCandidate::h_HF &&
3547  pfc.particleId() != reco::PFCandidate::egamma_HF ) continue;
3548 
3549  // Check if has meaningful pt
3550  if ( pfc.pt() < minHFCleaningPt_ ) continue;
3551 
3552  // Check that it is not already scheculed to be cleaned
3553  bool skip = false;
3554  for(unsigned j=0; j<pfCandidatesToBeRemoved.size(); ++j) {
3555  if ( i == pfCandidatesToBeRemoved[j] ) skip = true;
3556  if ( skip ) break;
3557  }
3558  if ( skip ) continue;
3559 
3560  // Check that the pt and the MET are aligned
3561  deltaPhi = std::acos((metX*pfc.px()+metY*pfc.py())/(pfc.pt()*std::sqrt(met2)));
3562  deltaPhiPt = deltaPhi*pfc.pt();
3563  if ( deltaPhiPt > maxDeltaPhiPt_ ) continue;
3564 
3565  // Now remove the candidate from the MET
3566  double metXInt = metX - pfc.px();
3567  double metYInt = metY - pfc.py();
3568  double sumetInt = sumet - pfc.pt();
3569  double met2Int = metXInt*metXInt+metYInt*metYInt;
3570  if ( met2Int < met2Cor ) {
3571  metXCor = metXInt;
3572  metYCor = metYInt;
3573  metReduc = (met2-met2Int)/met2Int;
3574  met2Cor = met2Int;
3575  sumetCor = sumetInt;
3576  significanceCor = std::sqrt(met2Cor/sumetCor);
3577  iCor = i;
3578  }
3579  }
3580  //
3581  // If the MET must be significanly reduced, schedule the candidate to be cleaned
3582  if ( metReduc > minDeltaMet_ ) {
3583  pfCandidatesToBeRemoved.push_back(iCor);
3584  metX = metXCor;
3585  metY = metYCor;
3586  sumet = sumetCor;
3587  met2 = met2Cor;
3588  } else {
3589  // Otherwise just stop the loop
3590  next = false;
3591  }
3592  }
3593  //
3594  // The significance must be significantly reduced to indeed clean the candidates
3595  if ( significance - significanceCor > minSignificanceReduction_ &&
3596  significanceCor < maxSignificance_ ) {
3597  std::cout << "Significance reduction = " << significance << " -> "
3598  << significanceCor << " = " << significanceCor - significance
3599  << std::endl;
3600  for(unsigned j=0; j<pfCandidatesToBeRemoved.size(); ++j) {
3601  std::cout << "Removed : " << (*pfCandidates_)[pfCandidatesToBeRemoved[j]] << std::endl;
3602  pfCleanedCandidates_->push_back( (*pfCandidates_)[ pfCandidatesToBeRemoved[j] ] );
3603  (*pfCandidates_)[pfCandidatesToBeRemoved[j]].rescaleMomentum(1E-6);
3604  //reco::PFCandidate::ParticleType unknown = reco::PFCandidate::X;
3605  //(*pfCandidates_)[pfCandidatesToBeRemoved[j]].setParticleType(unknown);
3606  }
3607  }
3608  }
3609 
3610 }
3611 
3612 void
3614 
3615 
3616  // No hits to recover, leave.
3617  if ( !cleanedHits.size() ) return;
3618 
3619  //Compute met and met significance (met/sqrt(SumEt))
3620  double metX = 0.;
3621  double metY = 0.;
3622  double sumet = 0;
3623  std::vector<unsigned int> hitsToBeAdded;
3624  for(unsigned i=0; i<pfCandidates_->size(); i++) {
3625  const PFCandidate& pfc = (*pfCandidates_)[i];
3626  metX += pfc.px();
3627  metY += pfc.py();
3628  sumet += pfc.pt();
3629  }
3630  double met2 = metX*metX+metY*metY;
3631  double met2_Original = met2;
3632  // Select events with large MET significance.
3633  // double significance = std::sqrt(met2/sumet);
3634  // double significanceCor = significance;
3635  double metXCor = metX;
3636  double metYCor = metY;
3637  double sumetCor = sumet;
3638  double met2Cor = met2;
3639  bool next = true;
3640  unsigned iCor = 1E9;
3641 
3642  // Find the cleaned hit with the largest effect on the MET
3643  while ( next ) {
3644 
3645  double metReduc = -1.;
3646  // Loop on the candidates
3647  for(unsigned i=0; i<cleanedHits.size(); ++i) {
3648  const PFRecHit& hit = cleanedHits[i];
3649  double length = std::sqrt(hit.position().Mag2());
3650  double px = hit.energy() * hit.position().x()/length;
3651  double py = hit.energy() * hit.position().y()/length;
3652  double pt = std::sqrt(px*px + py*py);
3653 
3654  // Check that it is not already scheculed to be cleaned
3655  bool skip = false;
3656  for(unsigned j=0; j<hitsToBeAdded.size(); ++j) {
3657  if ( i == hitsToBeAdded[j] ) skip = true;
3658  if ( skip ) break;
3659  }
3660  if ( skip ) continue;
3661 
3662  // Now add the candidate to the MET
3663  double metXInt = metX + px;
3664  double metYInt = metY + py;
3665  double sumetInt = sumet + pt;
3666  double met2Int = metXInt*metXInt+metYInt*metYInt;
3667 
3668  // And check if it could contribute to a MET reduction
3669  if ( met2Int < met2Cor ) {
3670  metXCor = metXInt;
3671  metYCor = metYInt;
3672  metReduc = (met2-met2Int)/met2Int;
3673  met2Cor = met2Int;
3674  sumetCor = sumetInt;
3675  // significanceCor = std::sqrt(met2Cor/sumetCor);
3676  iCor = i;
3677  }
3678  }
3679  //
3680  // If the MET must be significanly reduced, schedule the candidate to be added
3681  //
3682  if ( metReduc > minDeltaMet_ ) {
3683  hitsToBeAdded.push_back(iCor);
3684  metX = metXCor;
3685  metY = metYCor;
3686  sumet = sumetCor;
3687  met2 = met2Cor;
3688  } else {
3689  // Otherwise just stop the loop
3690  next = false;
3691  }
3692  }
3693  //
3694  // At least 10 GeV MET reduction
3695  if ( std::sqrt(met2_Original) - std::sqrt(met2) > 5. ) {
3696  if ( debug_ ) {
3697  std::cout << hitsToBeAdded.size() << " hits were re-added " << std::endl;
3698  std::cout << "MET reduction = " << std::sqrt(met2_Original) << " -> "
3699  << std::sqrt(met2Cor) << " = " << std::sqrt(met2Cor) - std::sqrt(met2_Original)
3700  << std::endl;
3701  std::cout << "Added after cleaning check : " << std::endl;
3702  }
3703  for(unsigned j=0; j<hitsToBeAdded.size(); ++j) {
3704  const PFRecHit& hit = cleanedHits[hitsToBeAdded[j]];
3705  PFCluster cluster(hit.layer(), hit.energy(),
3706  hit.position().x(), hit.position().y(), hit.position().z() );
3707  reconstructCluster(cluster,hit.energy());
3708  if ( debug_ ) {
3709  std::cout << pfCandidates_->back() << ". time = " << hit.time() << std::endl;
3710  }
3711  }
3712  }
3713 
3714 }
3715 
3716 
3717 
3719  if(!usePFElectrons_) return;
3720  // std::cout << " setElectronExtraRef " << std::endl;
3721  unsigned size=pfCandidates_->size();
3722 
3723  for(unsigned ic=0;ic<size;++ic) {
3724  // select the electrons and add the extra
3725  if((*pfCandidates_)[ic].particleId()==PFCandidate::e) {
3726 
3727  PFElectronExtraEqual myExtraEqual((*pfCandidates_)[ic].gsfTrackRef());
3728  std::vector<PFCandidateElectronExtra>::const_iterator it=find_if(pfElectronExtra_.begin(),pfElectronExtra_.end(),myExtraEqual);
3729  if(it!=pfElectronExtra_.end()) {
3730  // std::cout << " Index " << it-pfElectronExtra_.begin() << std::endl;
3731  reco::PFCandidateElectronExtraRef theRef(extrah,it-pfElectronExtra_.begin());
3732  (*pfCandidates_)[ic].setPFElectronExtraRef(theRef);
3733  }
3734  else {
3735  (*pfCandidates_)[ic].setPFElectronExtraRef(PFCandidateElectronExtraRef());
3736  }
3737  }
3738  else // else save the mva and the extra as well !
3739  {
3740  if((*pfCandidates_)[ic].trackRef().isNonnull()) {
3741  PFElectronExtraKfEqual myExtraEqual((*pfCandidates_)[ic].trackRef());
3742  std::vector<PFCandidateElectronExtra>::const_iterator it=find_if(pfElectronExtra_.begin(),pfElectronExtra_.end(),myExtraEqual);
3743  if(it!=pfElectronExtra_.end()) {
3744  (*pfCandidates_)[ic].set_mva_e_pi(it->mvaVariable(PFCandidateElectronExtra::MVA_MVA));
3745  reco::PFCandidateElectronExtraRef theRef(extrah,it-pfElectronExtra_.begin());
3746  (*pfCandidates_)[ic].setPFElectronExtraRef(theRef);
3747  (*pfCandidates_)[ic].setGsfTrackRef(it->gsfTrackRef());
3748  }
3749  }
3750  }
3751 
3752  }
3753 
3754  size=pfElectronCandidates_->size();
3755  for(unsigned ic=0;ic<size;++ic) {
3756  // select the electrons - this test is actually not needed for this collection
3757  if((*pfElectronCandidates_)[ic].particleId()==PFCandidate::e) {
3758  // find the corresponding extra
3759  PFElectronExtraEqual myExtraEqual((*pfElectronCandidates_)[ic].gsfTrackRef());
3760  std::vector<PFCandidateElectronExtra>::const_iterator it=find_if(pfElectronExtra_.begin(),pfElectronExtra_.end(),myExtraEqual);
3761  if(it!=pfElectronExtra_.end()) {
3762  reco::PFCandidateElectronExtraRef theRef(extrah,it-pfElectronExtra_.begin());
3763  (*pfElectronCandidates_)[ic].setPFElectronExtraRef(theRef);
3764 
3765  }
3766  }
3767  }
3768 
3769 }
3771  if(!usePFPhotons_) return;
3772  unsigned int size=pfCandidates_->size();
3773  unsigned int sizePhExtra = pfPhotonExtra_.size();
3774  for(unsigned ic=0;ic<size;++ic) {
3775  // select the electrons and add the extra
3776  if((*pfCandidates_)[ic].particleId()==PFCandidate::gamma && (*pfCandidates_)[ic].mva_nothing_gamma() > 0.99) {
3777  if((*pfCandidates_)[ic].superClusterRef().isNonnull()) {
3778  bool found = false;
3779  for(unsigned pcextra=0;pcextra<sizePhExtra;++pcextra) {
3780  if((*pfCandidates_)[ic].superClusterRef() == pfPhotonExtra_[pcextra].superClusterRef()) {
3781  reco::PFCandidatePhotonExtraRef theRef(ph_extrah,pcextra);
3782  (*pfCandidates_)[ic].setPFPhotonExtraRef(theRef);
3783  found = true;
3784  break;
3785  }
3786  }
3787  if(!found)
3788  (*pfCandidates_)[ic].setPFPhotonExtraRef((PFCandidatePhotonExtraRef())); // null ref
3789  }
3790  else {
3791  (*pfCandidates_)[ic].setPFPhotonExtraRef((PFCandidatePhotonExtraRef())); // null ref
3792  }
3793  }
3794  }
3795 }
PFLayer::Layer layer() const
cluster layer, see PFLayer.h in this directory
Definition: PFCluster.cc:86
const double Z[kNumberCalorimeter]
double p() const
momentum vector magnitude
Definition: TrackBase.h:568
type
Definition: HCALResponse.h:21
T getParameter(std::string const &) const
unsigned int nTrackIsoForEgammaSC_
Definition: PFAlgo.h:354
edm::Ref< PFBlockCollection > PFBlockRef
persistent reference to PFCluster objects
Definition: PFBlockFwd.h:20
Abstract base class for a PFBlock element (track, cluster...)
static bool isIsolatedMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:224
const math::XYZPoint & position() const
cluster centroid position
Definition: CaloCluster.h:126
double ptError_
Definition: PFAlgo.h:395
int i
Definition: DBlmapReader.cc:9
bool isFromSecInt(const reco::PFBlockElement &eTrack, std::string order) const
Definition: PFAlgo.cc:3470
const reco::TrackRef & trackRef() const
bool usePFConversions_
Definition: PFAlgo.h:378
std::vector< double > muonHCAL_
Variables for muons and fakes.
Definition: PFAlgo.h:391
algo_(conf.existsAs< bool >("Correct")?conf.getParameter< bool >("Correct"):true, conf.getParameter< double >("e9e25Cut"), conf.getParameter< double >("intercept2DCut"), conf.existsAs< bool >("intercept2DSlope")?conf.getParameter< double >("intercept2DSlope"):defaultSlope2D_, conf.getParameter< std::vector< double > >("e1e9Cut"), conf.getParameter< std::vector< double > >("eCOREe9Cut"), conf.getParameter< std::vector< double > >("eSeLCut"), hfvars_)
ParticleType
particle types
Definition: PFCandidate.h:44
bool isNonnull() const
Checks for non-null.
Definition: Ref.h:250
double maxDeltaPhiPt_
Definition: PFAlgo.h:405
void setPFMuonAndFakeParameters(const edm::ParameterSet &pset)
Definition: PFAlgo.cc:301
void addMissingMuons(edm::Handle< reco::MuonCollection >, reco::PFCandidateCollection *cands)
Definition: PFMuonAlgo.cc:936
double maxSignificance_
Definition: PFAlgo.h:403
double sumEtEcalIsoForEgammaSC_endcap_
Definition: PFAlgo.h:349
std::auto_ptr< reco::PFCandidateCollection > pfPhotonCandidates_
the unfiltered photon collection
Definition: PFAlgo.h:288
double mvaEleCut_
Definition: PFAlgo.h:341
void set_mva_nothing_gamma(float mva)
set mva for gamma detection
Definition: PFCandidate.h:329
double minHFCleaningPt_
Definition: PFAlgo.h:401
bool isMuon(const Candidate &part)
Definition: pdgIdUtils.h:11
Particle flow cluster, see clustering algorithm in PFClusterAlgo.
Definition: PFCluster.h:47
edm::Ref< PFCandidatePhotonExtraCollection > PFCandidatePhotonExtraRef
persistent reference to a PFCandidatePhotonExtra
double coneEcalIsoForEgammaSC_
Definition: PFAlgo.h:350
static bool isMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:153
double minDeltaMet_
Definition: PFAlgo.h:406
const std::vector< reco::PFCandidate > & getAllElectronCandidates()
double minSignificance_
Definition: PFAlgo.h:402
virtual void setCharge(Charge q)
set electric charge
Definition: LeafCandidate.h:93
unsigned reconstructCluster(const reco::PFCluster &cluster, double particleEnergy, bool useDirection=false, double particleX=0., double particleY=0., double particleZ=0.)
Definition: PFAlgo.cc:3238
void reconstructParticles(const reco::PFBlockHandle &blockHandle)
Definition: PFAlgo.cc:414
double y() const
y coordinate
Definition: Vertex.h:110
bool useProtectionsForJetMET_
Definition: PFAlgo.h:363
double coneTrackIsoForEgammaSC_
Definition: PFAlgo.h:353
void setParameters(const edm::ParameterSet &)
Definition: PFMuonAlgo.cc:29
assert(m_qm.get())
double nSigmaHCAL_
number of sigma to judge energy excess in HCAL
Definition: PFAlgo.h:328
std::map< unsigned int, Link > LinkData
Definition: PFBlock.h:46
bool isElectronSafeForJetMET(const reco::GsfElectron &, const reco::PFCandidate &, const reco::Vertex &, bool lockTracks)
size_type size() const
Definition: OwnVector.h:254
void setnPU(int nVtx)
Definition: PFPhotonAlgo.h:75
virtual void processBlock(const reco::PFBlockRef &blockref, std::list< reco::PFBlockRef > &hcalBlockRefs, std::list< reco::PFBlockRef > &ecalBlockRefs)
Definition: PFAlgo.cc:537
void setMuonHandle(const edm::Handle< reco::MuonCollection > &)
Definition: PFAlgo.cc:330
#define X(str)
Definition: MuonsGrabber.cc:48
math::Error< dimension >::type Error
covariance error matrix (3x3)
Definition: Vertex.h:43
virtual void setP4(const LorentzVector &p4)
set 4-momentum
size_type size() const
list elements
Definition: asciidump.py:414
std::vector< Vertex > VertexCollection
collection of Vertex objects
Definition: VertexFwd.h:9
const edm::OwnVector< reco::PFBlockElement > & elements() const
Definition: PFBlock.h:107
std::vector< PFRecHit > PFRecHitCollection
collection of PFRecHit objects
Definition: PFRecHitFwd.h:9
const edm::ValueMap< reco::PhotonRef > * valueMapGedPhotons_
Definition: PFAlgo.h:366
void checkCleaning(const reco::PFRecHitCollection &cleanedHF)
Check HF Cleaning.
Definition: PFAlgo.cc:3613
edm::Ref< PFCandidateElectronExtraCollection > PFCandidateElectronExtraRef
persistent reference to a PFCandidateElectronExtra
virtual void setVertex(const math::XYZPoint &p)
set vertex
Definition: PFCandidate.h:408
bool passElectronSelection(const reco::GsfElectron &, const reco::PFCandidate &, const int &)
ROOT::Math::PositionVector3D< ROOT::Math::Cartesian3D< float > > XYZPointF
point in space with cartesian internal representation
Definition: Point3D.h:10
double px() const
x coordinate of momentum vector
Definition: TrackBase.h:580
void setDisplacedVerticesParameters(bool rejectTracks_Bad, bool rejectTracks_Step45, bool usePFNuclearInteractions, bool usePFConversions, bool usePFDecays, double dptRel_DispVtx)
Definition: PFAlgo.cc:353
T eta() const
std::ostream & operator<<(std::ostream &out, const ALILine &li)
Definition: ALILine.cc:187
PFCandidateCollection::const_iterator PFCandidateConstIterator
iterator
double sumEtEcalIsoForEgammaSC_barrel_
Definition: PFAlgo.h:348
int ii
Definition: cuy.py:588
PFElectronAlgo * pfele_
Definition: PFAlgo.h:355
std::auto_ptr< reco::PFCandidateCollection > pfCleanedCandidates_
Definition: PFAlgo.h:290
void setPFEleParameters(double mvaEleCut, std::string mvaWeightFileEleID, bool usePFElectrons, const boost::shared_ptr< PFSCEnergyCalibration > &thePFSCEnergyCalibration, const boost::shared_ptr< PFEnergyCalibration > &thePFEnergyCalibration, double sumEtEcalIsoForEgammaSC_barrel, double sumEtEcalIsoForEgammaSC_endcap, double coneEcalIsoForEgammaSC, double sumPtTrackIsoForEgammaSC_barrel, double sumPtTrackIsoForEgammaSC_endcap, unsigned int nTrackIsoForEgammaSC, double coneTrackIsoForEgammaSC, bool applyCrackCorrections=false, bool usePFSCEleCalib=true, bool useEGElectrons=false, bool useEGammaSupercluster=true)
Definition: PFAlgo.cc:98
PFMuonAlgo * pfmu_
Definition: PFAlgo.h:357
void setPFVertexParameters(bool useVertex, const reco::VertexCollection *primaryVertices)
Definition: PFAlgo.cc:371
void setEGElectronCollection(const reco::GsfElectronCollection &egelectrons)
Definition: PFAlgo.cc:3501
std::vector< GsfElectron > GsfElectronCollection
collection of GsfElectron objects
int nVtx_
Definition: PFAlgo.h:384
bool rejectTracks_Step45_
Definition: PFAlgo.h:375
const math::XYZPointF & positionAtECALEntrance() const
virtual double eta() const
momentum pseudorapidity
virtual double pt() const
transverse momentum
std::vector< ElementInBlock > ElementsInBlocks
Definition: PFCandidate.h:386
double minSignificanceReduction_
Definition: PFAlgo.h:404
void setPFPhotonParameters(bool usePFPhoton, std::string mvaWeightFileConvID, double mvaConvCut, bool useReg, std::string X0_Map, const boost::shared_ptr< PFEnergyCalibration > &thePFEnergyCalibration, double sumPtTrackIsoForPhoton, double sumPtTrackIsoSlopeForPhoton)
Definition: PFAlgo.cc:160
std::vector< double > factors45_
Definition: PFAlgo.h:396
bool useHO_
Definition: PFAlgo.h:334
PFLayer::Layer layer() const
rechit layer
Definition: PFRecHit.h:109
RefToBase< value_type > refAt(size_type i) const
bool useEGammaSupercluster_
Definition: PFAlgo.h:347
U second(std::pair< T, U > const &p)
XYZTLorentzVectorD XYZTLorentzVector
Lorentz vector with cylindrical internal representation using pseudorapidity.
Definition: LorentzVector.h:29
bool isElectron(const reco::GsfElectron &)
void set_mva_e_pi(float mvaNI)
Definition: PFCandidate.h:311
void push_back(D *&d)
Definition: OwnVector.h:280
bool usePFNuclearInteractions_
Definition: PFAlgo.h:377
virtual double energy() const
energy
bool postHFCleaning_
Definition: PFAlgo.h:399
void setEGammaCollections(const edm::View< reco::PFCandidate > &pfEgammaCandidates, const edm::ValueMap< reco::GsfElectronRef > &valueMapGedElectrons, const edm::ValueMap< reco::PhotonRef > &valueMapGedPhotons)
Definition: PFAlgo.cc:266
Particle flow rechit (rechit + geometry and topology information). See clustering algorithm in PFClus...
Definition: PFRecHit.h:35
void set_mva_Isolated(float mvaI)
Definition: PFCandidate.h:307
void setParameters(double nSigmaECAL, double nSigmaHCAL, const boost::shared_ptr< PFEnergyCalibration > &calibration, const boost::shared_ptr< PFEnergyCalibrationHF > &thepfEnergyCalibrationHF)
Definition: PFAlgo.cc:78
bool check(const std::string &)
const edm::View< reco::PFCandidate > * pfEgammaCandidates_
Definition: PFAlgo.h:364
bool useEGElectrons_
Definition: PFAlgo.h:346
void associatePSClusters(unsigned iEcal, reco::PFBlockElement::Type psElementType, const reco::PFBlock &block, const edm::OwnVector< reco::PFBlockElement > &elements, const reco::PFBlock::LinkData &linkData, std::vector< bool > &active, std::vector< double > &psEne)
Associate PS clusters to a given ECAL cluster, and return their energy.
Definition: PFAlgo.cc:3415
std::string mvaWeightFileEleID_
Variables for PFElectrons.
Definition: PFAlgo.h:339
void setParticleType(ParticleType type)
set Particle Type
Definition: PFCandidate.cc:256
bool passPhotonSelection(const reco::Photon &)
T sqrt(T t)
Definition: SSEVec.h:48
const std::vector< reco::PFCandidateElectronExtra > & getElectronExtra()
virtual int charge() const
electric charge
Definition: LeafCandidate.h:91
PFPhotonAlgo * pfpho_
Definition: PFAlgo.h:356
void setPFPhotonRegWeights(const GBRForest *LCorrForestEB, const GBRForest *LCorrForestEE, const GBRForest *GCorrForestBarrel, const GBRForest *GCorrForestEndcapHr9, const GBRForest *GCorrForestEndcapLr9, const GBRForest *PFEcalResolution)
Definition: PFAlgo.cc:288
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
int j
Definition: DBlmapReader.cc:9
double z() const
y coordinate
Definition: Vertex.h:112
reco::Vertex primaryVertex_
Definition: PFAlgo.h:410
double nSigmaHCAL(double clusterEnergy, double clusterEta) const
Definition: PFAlgo.cc:3365
edm::Handle< reco::MuonCollection > muonHandle_
Definition: PFAlgo.h:413
bool usePFSCEleCalib_
Definition: PFAlgo.h:345
std::vector< double > muonECAL_
Definition: PFAlgo.h:392
void setPositionAtECALEntrance(float x, float y, float z)
set position at ECAL entrance
math::XYZPoint Point
point in the space
Definition: Vertex.h:39
T min(T a, T b)
Definition: MathUtil.h:58
std::vector< LinkConnSpec >::const_iterator IT
void setPostHFCleaningParameters(bool postHFCleaning, double minHFCleaningPt, double minSignificance, double maxSignificance, double minSignificanceReduction, double maxDeltaPhiPt, double minDeltaMet)
Definition: PFAlgo.cc:336
bool isValid() const
Definition: HandleBase.h:75
std::vector< PFBlock > PFBlockCollection
collection of PFBlock objects
Definition: PFBlockFwd.h:11
PFEGammaFilters * pfegamma_
Definition: PFAlgo.h:362
bool isNull() const
Checks for null.
Definition: Ref.h:247
reco::PFBlockRef createBlockRef(const reco::PFBlockCollection &blocks, unsigned bi)
Definition: PFAlgo.cc:3403
reco::PFCandidatePhotonExtraCollection pfPhotonExtra_
the extra photon collection
Definition: PFAlgo.h:295
double pz() const
z coordinate of momentum vector
Definition: TrackBase.h:592
void setEcalEnergy(float eeRaw, float eeCorr)
set corrected Ecal energy
Definition: PFCandidate.h:217
float mva_e_pi() const
mva for electron-pion discrimination
Definition: PFCandidate.h:313
tuple out
Definition: dbtoconf.py:99
const std::vector< reco::PFCandidate > & getElectronCandidates()
const math::XYZPoint & position() const
rechit cell centre x, y, z
Definition: PFRecHit.h:131
tuple ecalClusters
Definition: RecoEcal_cff.py:22
std::vector< reco::PFCandidate > PFCandidateCollection
collection of PFCandidates
double x() const
x coordinate
Definition: Vertex.h:108
virtual bool trackType(TrackType trType) const
std::list< reco::PFBlockRef >::iterator IBR
Definition: PFAlgo.cc:54
unsigned reconstructTrack(const reco::PFBlockElement &elt, bool allowLoose=false)
Definition: PFAlgo.cc:3164
std::vector< double > muonHO_
Definition: PFAlgo.h:393
bool useVertices_
Definition: PFAlgo.h:411
virtual double px() const
x coordinate of momentum vector
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:30
void setGBRForest(const GBRForest *LCorrForest, const GBRForest *GCorrForest, const GBRForest *ResForest)
Definition: PFPhotonAlgo.h:49
double dptRel_DispVtx_
Definition: PFAlgo.h:383
void associatedElements(unsigned i, const LinkData &linkData, std::multimap< double, unsigned > &sortedAssociates, reco::PFBlockElement::Type type=PFBlockElement::NONE, LinkTest test=LINKTEST_RECHIT) const
Definition: PFBlock.cc:75
static bool isLooseMuon(const reco::PFBlockElement &elt)
Definition: PFMuonAlgo.cc:166
XYZPointD XYZPoint
point in space with cartesian internal representation
Definition: Point3D.h:12
boost::shared_ptr< PFEnergyCalibration > calibration_
Definition: PFAlgo.h:330
list blocks
Definition: gather_cfg.py:90
reco::PFBlockHandle blockHandle_
input block handle (full framework case)
Definition: PFAlgo.h:322
double b
Definition: hdecay.h:120
virtual bool trackType(TrackType trType) const
boost::shared_ptr< PFSCEnergyCalibration > thePFSCEnergyCalibration_
Definition: PFAlgo.h:332
virtual ~PFAlgo()
destructor
Definition: PFAlgo.cc:70
void setHoEnergy(float eoRaw, float eoCorr)
set corrected Hcal energy
Definition: PFCandidate.h:237
std::vector< std::vector< double > > tmp
Definition: MVATrainer.cc:100
math::XYZVector XYZPoint
bool isElectronValidCandidate(const reco::PFBlockRef &blockRef, std::vector< bool > &active, const reco::Vertex &primaryVertex)
Particle reconstructed by the particle flow algorithm.
Definition: PFCandidate.h:39
double energy() const
rechit energy
Definition: PFRecHit.h:112
tuple muons
Definition: patZpeak.py:38
boost::shared_ptr< PFEnergyCalibrationHF > thepfEnergyCalibrationHF_
Definition: PFAlgo.h:331
double a
Definition: hdecay.h:121
reco::PFCandidateEGammaExtraRef egammaExtraRef() const
return a reference to the EGamma extra
Definition: PFCandidate.cc:596
bool rejectTracks_Bad_
Definition: PFAlgo.h:374
PFAlgo()
constructor
Definition: PFAlgo.cc:58
std::auto_ptr< reco::PFCandidateCollection > pfCandidates_
Definition: PFAlgo.h:284
const PFDisplacedTrackerVertexRef & displacedVertexRef(TrackType trType) const
PFMuonAlgo * getPFMuonAlgo()
Definition: PFAlgo.cc:92
bool useEGammaFilters_
Variables for NEW EGAMMA selection.
Definition: PFAlgo.h:361
bool debug_
Definition: PFAlgo.h:336
void setPhotonExtraRef(const edm::OrphanHandle< reco::PFCandidatePhotonExtraCollection > &pf_extrah)
Definition: PFAlgo.cc:3770
tuple cout
Definition: gather_cfg.py:121
bool applyCrackCorrectionsElectrons_
Definition: PFAlgo.h:344
int charge() const
track electric charge
Definition: TrackBase.h:520
double sumPtTrackIsoForEgammaSC_endcap_
Definition: PFAlgo.h:352
void setPhotonPrimaryVtx(const reco::Vertex &primary)
Definition: PFPhotonAlgo.h:78
volatile std::atomic< bool > shutdown_flag false
const reco::MuonRef & muonRef() const
Definition: DDAxes.h:10
double nSigmaTRACK_
Definition: PFAlgo.h:394
virtual ParticleType particleId() const
Definition: PFCandidate.h:373
std::auto_ptr< reco::PFCandidateCollection > pfElectronCandidates_
the unfiltered electron collection
Definition: PFAlgo.h:286
double time() const
timing for cleaned hits
Definition: PFRecHit.h:116
double neutralHadronEnergyResolution(double clusterEnergy, double clusterEta) const
todo: use PFClusterTools for this
Definition: PFAlgo.cc:3350
void postCleaning()
Definition: PFAlgo.cc:3506
void postClean(reco::PFCandidateCollection *)
Definition: PFMuonAlgo.cc:825
Definition: PFAlgo.h:52
reco::PFCandidateElectronExtraCollection pfElectronExtra_
the unfiltered electron collection
Definition: PFAlgo.h:293
bool usePFPhotons_
Definition: PFAlgo.h:343
const ElementsInBlocks & elementsInBlocks() const
Definition: PFCandidate.cc:682
bool usePFDecays_
Definition: PFAlgo.h:379
bool isPhotonValidCandidate(const reco::PFBlockRef &blockRef, std::vector< bool > &active, std::auto_ptr< reco::PFCandidateCollection > &pfPhotonCandidates, std::vector< reco::PFCandidatePhotonExtra > &pfPhotonExtraCandidates, std::vector< reco::PFCandidate > &tempElectronCandidates)
Definition: PFPhotonAlgo.h:82
void setInputsForCleaning(const reco::VertexCollection *)
Definition: PFMuonAlgo.cc:1151
virtual double phi() const
momentum azimuthal angle
bool isPhotonSafeForJetMET(const reco::Photon &, const reco::PFCandidate &)
tuple size
Write out results.
double sumPtTrackIsoForEgammaSC_barrel_
Definition: PFAlgo.h:351
virtual double py() const
y coordinate of momentum vector
const std::auto_ptr< reco::PFCandidateCollection > & pfCandidates() const
Definition: PFAlgo.h:196
void setHcalEnergy(float ehRaw, float ehCorr)
set corrected Hcal energy
Definition: PFCandidate.h:227
double py() const
y coordinate of momentum vector
Definition: TrackBase.h:586
void setEGammaParameters(bool use_EGammaFilters, std::string ele_iso_path_mvaWeightFile, double ele_iso_pt, double ele_iso_mva_barrel, double ele_iso_mva_endcap, double ele_iso_combIso_barrel, double ele_iso_combIso_endcap, double ele_noniso_mva, unsigned int ele_missinghits, bool useProtectionsForJetMET, const edm::ParameterSet &ele_protectionsForJetMET, double ph_MinEt, double ph_combIso, double ph_HoE, double ph_sietaieta_eb, double ph_sietaieta_ee, const edm::ParameterSet &ph_protectionsForJetMET)
Definition: PFAlgo.cc:211
const edm::ValueMap< reco::GsfElectronRef > * valueMapGedElectrons_
Definition: PFAlgo.h:365
void setElectronExtraRef(const edm::OrphanHandle< reco::PFCandidateElectronExtraCollection > &extrah)
Definition: PFAlgo.cc:3718
void setEGElectronCollection(const reco::GsfElectronCollection &egelectrons)
bool reconstructMuon(reco::PFCandidate &, const reco::MuonRef &, bool allowLoose=false)
Definition: PFMuonAlgo.cc:699
double nSigmaECAL_
number of sigma to judge energy excess in ECAL
Definition: PFAlgo.h:325
Block of elements.
Definition: PFBlock.h:30
bool usePFElectrons_
Definition: PFAlgo.h:342