CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
VMatrix.cc
Go to the documentation of this file.
1 /*
2  * VMatrix.cpp
3  *
4  * Created on: Feb 15, 2012
5  * Author: kleinwrt
6  */
7 
9 
11 namespace gbl {
12 
13 /*********** simple Matrix based on std::vector<double> **********/
14 
15 VMatrix::VMatrix(const unsigned int nRows, const unsigned int nCols) :
16  numRows(nRows), numCols(nCols), theVec(nRows * nCols) {
17 }
18 
19 VMatrix::VMatrix(const VMatrix &aMatrix) :
20  numRows(aMatrix.numRows), numCols(aMatrix.numCols), theVec(
21  aMatrix.theVec) {
22 
23 }
24 
26 }
27 
29 
33 void VMatrix::resize(const unsigned int nRows, const unsigned int nCols) {
34  numRows = nRows;
35  numCols = nCols;
36  theVec.resize(nRows * nCols);
37 }
38 
40 
44  VMatrix aResult(numCols, numRows);
45  for (unsigned int i = 0; i < numRows; ++i) {
46  for (unsigned int j = 0; j < numCols; ++j) {
47  aResult(j, i) = theVec[numCols * i + j];
48  }
49  }
50  return aResult;
51 }
52 
54 
57 unsigned int VMatrix::getNumRows() const {
58  return numRows;
59 }
60 
62 
65 unsigned int VMatrix::getNumCols() const {
66  return numCols;
67 }
68 
70 void VMatrix::print() const {
71  std::cout << " VMatrix: " << numRows << "*" << numCols << std::endl;
72  for (unsigned int i = 0; i < numRows; ++i) {
73  for (unsigned int j = 0; j < numCols; ++j) {
74  if (j % 5 == 0) {
75  std::cout << std::endl << std::setw(4) << i << ","
76  << std::setw(4) << j << "-" << std::setw(4)
77  << std::min(j + 4, numCols) << ":";
78  }
79  std::cout << std::setw(13) << theVec[numCols * i + j];
80  }
81  }
82  std::cout << std::endl << std::endl;
83 }
84 
86 VVector VMatrix::operator*(const VVector &aVector) const {
87  VVector aResult(numRows);
88  for (unsigned int i = 0; i < this->numRows; ++i) {
89  double sum = 0.0;
90  for (unsigned int j = 0; j < this->numCols; ++j) {
91  sum += theVec[numCols * i + j] * aVector(j);
92  }
93  aResult(i) = sum;
94  }
95  return aResult;
96 }
97 
99 VMatrix VMatrix::operator*(const VMatrix &aMatrix) const {
100 
101  VMatrix aResult(numRows, aMatrix.numCols);
102  for (unsigned int i = 0; i < numRows; ++i) {
103  for (unsigned int j = 0; j < aMatrix.numCols; ++j) {
104  double sum = 0.0;
105  for (unsigned int k = 0; k < numCols; ++k) {
106  sum += theVec[numCols * i + k] * aMatrix(k, j);
107  }
108  aResult(i, j) = sum;
109  }
110  }
111  return aResult;
112 }
113 
115 VMatrix VMatrix::operator+(const VMatrix &aMatrix) const {
116  VMatrix aResult(numRows, numCols);
117  for (unsigned int i = 0; i < numRows; ++i) {
118  for (unsigned int j = 0; j < numCols; ++j) {
119  aResult(i, j) = theVec[numCols * i + j] + aMatrix(i, j);
120  }
121  }
122  return aResult;
123 }
124 
127  if (this != &aMatrix) { // Gracefully handle self assignment
128  numRows = aMatrix.getNumRows();
129  numCols = aMatrix.getNumCols();
130  theVec.resize(numRows * numCols);
131  for (unsigned int i = 0; i < numRows; ++i) {
132  for (unsigned int j = 0; j < numCols; ++j) {
133  theVec[numCols * i + j] = aMatrix(i, j);
134  }
135  }
136  }
137  return *this;
138 }
139 
140 /*********** simple symmetric Matrix based on std::vector<double> **********/
141 
142 VSymMatrix::VSymMatrix(const unsigned int nRows) :
143  numRows(nRows), theVec((nRows * nRows + nRows) / 2) {
144 }
145 
147 }
148 
150 
153 void VSymMatrix::resize(const unsigned int nRows) {
154  numRows = nRows;
155  theVec.resize((nRows * nRows + nRows) / 2);
156 }
157 
159 
162 unsigned int VSymMatrix::getNumRows() const {
163  return numRows;
164 }
165 
167 void VSymMatrix::print() const {
168  std::cout << " VSymMatrix: " << numRows << "*" << numRows << std::endl;
169  for (unsigned int i = 0; i < numRows; ++i) {
170  for (unsigned int j = 0; j <= i; ++j) {
171  if (j % 5 == 0) {
172  std::cout << std::endl << std::setw(4) << i << ","
173  << std::setw(4) << j << "-" << std::setw(4)
174  << std::min(j + 4, i) << ":";
175  }
176  std::cout << std::setw(13) << theVec[(i * i + i) / 2 + j];
177  }
178  }
179  std::cout << std::endl << std::endl;
180 }
181 
183 VSymMatrix VSymMatrix::operator-(const VMatrix &aMatrix) const {
184  VSymMatrix aResult(numRows);
185  for (unsigned int i = 0; i < numRows; ++i) {
186  for (unsigned int j = 0; j <= i; ++j) {
187  aResult(i, j) = theVec[(i * i + i) / 2 + j] - aMatrix(i, j);
188  }
189  }
190  return aResult;
191 }
192 
194 VVector VSymMatrix::operator*(const VVector &aVector) const {
195  VVector aResult(numRows);
196  for (unsigned int i = 0; i < numRows; ++i) {
197  aResult(i) = theVec[(i * i + i) / 2 + i] * aVector(i);
198  for (unsigned int j = 0; j < i; ++j) {
199  aResult(j) += theVec[(i * i + i) / 2 + j] * aVector(i);
200  aResult(i) += theVec[(i * i + i) / 2 + j] * aVector(j);
201  }
202  }
203  return aResult;
204 }
205 
207 VMatrix VSymMatrix::operator*(const VMatrix &aMatrix) const {
208  unsigned int nCol = aMatrix.getNumCols();
209  VMatrix aResult(numRows, nCol);
210  for (unsigned int l = 0; l < nCol; ++l) {
211  for (unsigned int i = 0; i < numRows; ++i) {
212  aResult(i, l) = theVec[(i * i + i) / 2 + i] * aMatrix(i, l);
213  for (unsigned int j = 0; j < i; ++j) {
214  aResult(j, l) += theVec[(i * i + i) / 2 + j] * aMatrix(i, l);
215  aResult(i, l) += theVec[(i * i + i) / 2 + j] * aMatrix(j, l);
216  }
217  }
218  }
219  return aResult;
220 }
221 
222 /*********** simple Vector based on std::vector<double> **********/
223 
224 VVector::VVector(const unsigned int nRows) :
225  numRows(nRows), theVec(nRows) {
226 }
227 
228 VVector::VVector(const VVector &aVector) :
229  numRows(aVector.numRows), theVec(aVector.theVec) {
230 
231 }
232 
234 }
235 
237 
240 void VVector::resize(const unsigned int nRows) {
241  numRows = nRows;
242  theVec.resize(nRows);
243 }
244 
246 
251 VVector VVector::getVec(unsigned int len, unsigned int start) const {
252  VVector aResult(len);
253  std::memcpy(&aResult.theVec[0], &theVec[start], sizeof(double) * len);
254  return aResult;
255 }
256 
258 
262 void VVector::putVec(const VVector &aVector, unsigned int start) {
263  std::memcpy(&theVec[start], &aVector.theVec[0],
264  sizeof(double) * aVector.numRows);
265 }
266 
268 
271 unsigned int VVector::getNumRows() const {
272  return numRows;
273 }
274 
276 void VVector::print() const {
277  std::cout << " VVector: " << numRows << std::endl;
278  for (unsigned int i = 0; i < numRows; ++i) {
279 
280  if (i % 5 == 0) {
281  std::cout << std::endl << std::setw(4) << i << "-" << std::setw(4)
282  << std::min(i + 4, numRows) << ":";
283  }
284  std::cout << std::setw(13) << theVec[i];
285  }
286  std::cout << std::endl << std::endl;
287 }
288 
290 VVector VVector::operator-(const VVector &aVector) const {
291  VVector aResult(numRows);
292  for (unsigned int i = 0; i < numRows; ++i) {
293  aResult(i) = theVec[i] - aVector(i);
294  }
295  return aResult;
296 }
297 
300  if (this != &aVector) { // Gracefully handle self assignment
301  numRows = aVector.getNumRows();
302  theVec.resize(numRows);
303  for (unsigned int i = 0; i < numRows; ++i) {
304  theVec[i] = aVector(i);
305  }
306  }
307  return *this;
308 }
309 
310 /*============================================================================
311  from mpnum.F (MillePede-II by V. Blobel, Univ. Hamburg)
312  ============================================================================*/
314 
326 unsigned int VSymMatrix::invert() {
327 
328  const double eps = 1.0E-10;
329  unsigned int aSize = numRows;
330  std::vector<int> next(aSize);
331  std::vector<double> diag(aSize);
332  int nSize = aSize;
333 
334  int first = 1;
335  for (int i = 1; i <= nSize; ++i) {
336  next[i - 1] = i + 1; // set "next" pointer
337  diag[i - 1] = fabs(theVec[(i * i + i) / 2 - 1]); // save abs of diagonal elements
338  }
339  next[aSize - 1] = -1; // end flag
340 
341  unsigned int nrank = 0;
342  for (int i = 1; i <= nSize; ++i) { // start of loop
343  int k = 0;
344  double vkk = 0.0;
345 
346  int j = first;
347  int previous = 0;
348  int last = previous;
349  // look for pivot
350  while (j > 0) {
351  int jj = (j * j + j) / 2 - 1;
352  if (fabs(theVec[jj]) > std::max(fabs(vkk), eps * diag[j - 1])) {
353  vkk = theVec[jj];
354  k = j;
355  last = previous;
356  }
357  previous = j;
358  j = next[j - 1];
359  }
360  // pivot found
361  if (k > 0) {
362  int kk = (k * k + k) / 2 - 1;
363  if (last <= 0) {
364  first = next[k - 1];
365  } else {
366  next[last - 1] = next[k - 1];
367  }
368  next[k - 1] = 0; // index is used, reset
369  nrank++; // increase rank and ...
370 
371  vkk = 1.0 / vkk;
372  theVec[kk] = -vkk;
373  int jk = kk - k;
374  int jl = -1;
375  for (int j = 1; j <= nSize; ++j) { // elimination
376  if (j == k) {
377  jk = kk;
378  jl += j;
379  } else {
380  if (j < k) {
381  ++jk;
382  } else {
383  jk += j - 1;
384  }
385 
386  double vjk = theVec[jk];
387  theVec[jk] = vkk * vjk;
388  int lk = kk - k;
389  if (j >= k) {
390  for (int l = 1; l <= k - 1; ++l) {
391  ++jl;
392  ++lk;
393  theVec[jl] -= theVec[lk] * vjk;
394  }
395  ++jl;
396  lk = kk;
397  for (int l = k + 1; l <= j; ++l) {
398  ++jl;
399  lk += l - 1;
400  theVec[jl] -= theVec[lk] * vjk;
401  }
402  } else {
403  for (int l = 1; l <= j; ++l) {
404  ++jl;
405  ++lk;
406  theVec[jl] -= theVec[lk] * vjk;
407  }
408  }
409  }
410  }
411  } else {
412  for (int k = 1; k <= nSize; ++k) {
413  if (next[k - 1] >= 0) {
414  int kk = (k * k - k) / 2 - 1;
415  for (int j = 1; j <= nSize; ++j) {
416  if (next[j - 1] >= 0) {
417  theVec[kk + j] = 0.0; // clear matrix row/col
418  }
419  }
420  }
421  }
422  throw 1; // singular
423  }
424  }
425  for (int ij = 0; ij < (nSize * nSize + nSize) / 2; ++ij) {
426  theVec[ij] = -theVec[ij]; // finally reverse sign of all matrix elements
427  }
428  return nrank;
429 }
430 }
VVector getVec(unsigned int len, unsigned int start=0) const
Get part of vector.
Definition: VMatrix.cc:251
int i
Definition: DBlmapReader.cc:9
void print() const
Print matrix.
Definition: VMatrix.cc:167
tuple start
Check for commandline option errors.
Definition: dqm_diff.py:58
unsigned int getNumRows() const
Get number of rows.
Definition: VMatrix.cc:57
VVector operator*(const VVector &aVector) const
Multiplication Matrix*Vector.
Definition: VMatrix.cc:86
Simple Matrix based on std::vector&lt;double&gt;
Definition: VMatrix.h:41
VVector(const unsigned int nRows=0)
Definition: VMatrix.cc:224
VVector operator*(const VVector &aVector) const
Multiplication SymMatrix*Vector.
Definition: VMatrix.cc:194
unsigned int invert()
Matrix inversion.
Definition: VMatrix.cc:326
void print() const
Print vector.
Definition: VMatrix.cc:276
void putVec(const VVector &aVector, unsigned int start=0)
Put part of vector.
Definition: VMatrix.cc:262
void resize(const unsigned int nRows, const unsigned int nCols)
Resize Matrix.
Definition: VMatrix.cc:33
unsigned int numCols
Number of columns.
Definition: VMatrix.h:59
VVector operator-(const VVector &aVector) const
Subtraction Vector-Vector.
Definition: VMatrix.cc:290
unsigned int getNumRows() const
Get number of rows.
Definition: VMatrix.cc:271
void resize(const unsigned int nRows)
Resize symmetric matrix.
Definition: VMatrix.cc:153
virtual ~VMatrix()
Definition: VMatrix.cc:25
VMatrix transpose() const
Get transposed matrix.
Definition: VMatrix.cc:43
VSymMatrix(const unsigned int nRows=0)
Definition: VMatrix.cc:142
void resize(const unsigned int nRows)
Resize vector.
Definition: VMatrix.cc:240
unsigned int numRows
Number of rows.
Definition: VMatrix.h:58
int j
Definition: DBlmapReader.cc:9
T min(T a, T b)
Definition: MathUtil.h:58
Simple symmetric Matrix based on std::vector&lt;double&gt;
Definition: VMatrix.h:64
VMatrix & operator=(const VMatrix &aMatrix)
Assignment Matrix=Matrix.
Definition: VMatrix.cc:126
unsigned int numRows
Number of rows.
Definition: VMatrix.h:78
VVector & operator=(const VVector &aVector)
Assignment Vector=Vector.
Definition: VMatrix.cc:299
void print() const
Print matrix.
Definition: VMatrix.cc:70
std::vector< double > theVec
Data (symmetric storage)
Definition: VMatrix.h:79
unsigned int getNumCols() const
Get number of columns.
Definition: VMatrix.cc:65
Simple Vector based on std::vector&lt;double&gt;
Definition: VMatrix.h:21
unsigned int getNumRows() const
Get number of rows (= number of colums).
Definition: VMatrix.cc:162
tuple cout
Definition: gather_cfg.py:121
std::vector< double > theVec
Data.
Definition: VMatrix.h:60
std::vector< double > theVec
Data.
Definition: VMatrix.h:37
VMatrix(const unsigned int nRows=0, const unsigned int nCols=0)
Definition: VMatrix.cc:15
virtual ~VVector()
Definition: VMatrix.cc:233
unsigned int numRows
Number of rows.
Definition: VMatrix.h:36
virtual ~VSymMatrix()
Definition: VMatrix.cc:146
VMatrix operator+(const VMatrix &aMatrix) const
Addition Matrix+Matrix.
Definition: VMatrix.cc:115
VSymMatrix operator-(const VMatrix &aMatrix) const
Subtraction SymMatrix-(sym)Matrix.
Definition: VMatrix.cc:183