CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
FFTJetProducer.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 //
3 // Package: FFTJetProducers
4 // Class: FFTJetProducer
5 //
13 //
14 // Original Author: Igor Volobouev
15 // Created: Sun Jun 20 14:32:36 CDT 2010
16 //
17 //
18 
19 #include <iostream>
20 #include <fstream>
21 #include <functional>
22 #include <algorithm>
23 
24 #include "fftjet/peakEtLifetime.hh"
25 
26 // Header for this class
28 
29 // Framework include files
32 
33 // Data formats
38 
40 
41 // Loader for the lookup tables
43 
44 
45 #define make_param(type, varname) const \
46  type & varname (ps.getParameter< type >( #varname ))
47 
48 #define init_param(type, varname) varname (ps.getParameter< type >( #varname ))
49 
50 // A generic switch statement based on jet type.
51 // Defining it in a single place avoids potential errors
52 // in case another jet type is introduced in the future.
53 //
54 // JPTJet is omitted for now: there is no reco::writeSpecific method
55 // for it (see header JetSpecific.h in the JetProducers package)
56 //
57 #define jet_type_switch(method, arg1, arg2) do {\
58  switch (jetType)\
59  {\
60  case CALOJET:\
61  method <reco::CaloJet> ( arg1 , arg2 );\
62  break;\
63  case PFJET:\
64  method <reco::PFJet> ( arg1 , arg2 );\
65  break;\
66  case GENJET:\
67  method <reco::GenJet> ( arg1 , arg2 );\
68  break;\
69  case TRACKJET:\
70  method <reco::TrackJet> ( arg1 , arg2 );\
71  break;\
72  case BASICJET:\
73  method <reco::BasicJet> ( arg1 , arg2 );\
74  break;\
75  default:\
76  assert(!"ERROR in FFTJetProducer : invalid jet type."\
77  " This is a bug. Please report.");\
78  }\
79 } while(0);
80 
81 namespace {
82  struct LocalSortByPt
83  {
84  template<class Jet>
85  inline bool operator()(const Jet& l, const Jet& r) const
86  {return l.pt() > r.pt();}
87  };
88 }
89 
90 using namespace fftjetcms;
91 
93  const std::string& name)
94 {
95  if (!name.compare("fixed"))
96  return FIXED;
97  else if (!name.compare("maximallyStable"))
98  return MAXIMALLY_STABLE;
99  else if (!name.compare("globallyAdaptive"))
100  return GLOBALLY_ADAPTIVE;
101  else if (!name.compare("locallyAdaptive"))
102  return LOCALLY_ADAPTIVE;
103  else if (!name.compare("fromGenJets"))
104  return FROM_GENJETS;
105  else
106  throw cms::Exception("FFTJetBadConfig")
107  << "Invalid resolution specification \""
108  << name << "\"" << std::endl;
109 }
110 
111 
112 template <typename T>
114  const std::string& alias, const std::string& tag)
115 {
116  produces<std::vector<reco::FFTAnyJet<T> > >(tag).setBranchAlias(alias);
117 }
118 
119 //
120 // constructors and destructor
121 //
123  : FFTJetInterface(ps),
124  myConfiguration(ps),
125  init_param(edm::InputTag, treeLabel),
126  init_param(bool, useGriddedAlgorithm),
127  init_param(bool, reuseExistingGrid),
128  init_param(unsigned, maxIterations),
129  init_param(unsigned, nJetsRequiredToConverge),
130  init_param(double, convergenceDistance),
131  init_param(bool, assignConstituents),
132  init_param(bool, resumConstituents),
133  init_param(bool, calculatePileup),
134  init_param(bool, subtractPileup),
135  init_param(bool, subtractPileupAs4Vec),
136  init_param(edm::InputTag, pileupLabel),
137  init_param(double, fixedScale),
138  init_param(double, minStableScale),
139  init_param(double, maxStableScale),
140  init_param(double, stabilityAlpha),
141  init_param(double, noiseLevel),
142  init_param(unsigned, nClustersRequested),
143  init_param(double, gridScanMaxEta),
144  init_param(std::string, recombinationAlgorithm),
145  init_param(bool, isCrisp),
146  init_param(double, unlikelyBgWeight),
147  init_param(double, recombinationDataCutoff),
148  init_param(edm::InputTag, genJetsLabel),
149  init_param(unsigned, maxInitialPreclusters),
150  resolution(parse_resolution(ps.getParameter<std::string>("resolution"))),
151  init_param(std::string, pileupTableRecord),
152  init_param(std::string, pileupTableName),
153  init_param(std::string, pileupTableCategory),
154  init_param(bool, loadPileupFromDB),
155 
156  minLevel(0),
157  maxLevel(0),
158  usedLevel(0),
159  unused(0.0),
160  iterationsPerformed(1U),
161  constituents(200)
162 {
163  // Check that the settings make sense
165  throw cms::Exception("FFTJetBadConfig")
166  << "Can't resum constituents if they are not assigned"
167  << std::endl;
168 
169  produces<reco::FFTJetProducerSummary>(outputLabel);
171  "alias", outputLabel));
173 
174  // Build the set of pattern recognition scales.
175  // This is needed in order to read the clustering tree
176  // from the event record.
178  ps.getParameter<edm::ParameterSet>("InitialScales"));
179  checkConfig(iniScales, "invalid set of scales");
180  std::sort(iniScales->begin(), iniScales->end(), std::greater<double>());
181 
182  input_recotree_token_ = consumes<reco::PattRecoTree<fftjetcms::Real,reco::PattRecoPeak<fftjetcms::Real> > >(treeLabel);
183  input_genjet_token_ = consumes<std::vector<reco::FFTAnyJet<reco::GenJet> > >(genJetsLabel);
184  input_energyflow_token_ = consumes<reco::DiscretizedEnergyFlow>(treeLabel);
185  input_pusummary_token_ = consumes<reco::FFTJetPileupSummary>(pileupLabel);
186 
187 
188  // Most of the configuration has to be performed inside
189  // the "beginJob" method. This is because chaining of the
190  // parsers between this base class and the derived classes
191  // can not work from the constructor of the base class.
192 }
193 
194 
196 {
197 }
198 
199 //
200 // member functions
201 //
202 template<class Real>
204 {
206 
207  // Get the input
209  iEvent.getByToken(input_recotree_token_, input);
210 
211  if (!input->isSparse())
212  throw cms::Exception("FFTJetBadConfig")
213  << "The stored clustering tree is not sparse" << std::endl;
214 
217  sparseTree.sortNodes();
218  fftjet::updateSplitMergeTimes(sparseTree, sparseTree.minScale(),
219  sparseTree.maxScale());
220 }
221 
222 
224  const SparseTree& /* tree */,
225  edm::Event& iEvent, const edm::EventSetup& /* iSetup */,
226  const fftjet::Functor1<bool,fftjet::Peak>& peakSelect,
227  std::vector<fftjet::Peak>* preclusters)
228 {
229  typedef reco::FFTAnyJet<reco::GenJet> InputJet;
230  typedef std::vector<InputJet> InputCollection;
231 
233  iEvent.getByToken(input_genjet_token_, input);
234 
235  const unsigned sz = input->size();
236  preclusters->reserve(sz);
237  for (unsigned i=0; i<sz; ++i)
238  {
239  const RecoFFTJet& jet(jetFromStorable((*input)[i].getFFTSpecific()));
240  fftjet::Peak p(jet.precluster());
241  const double scale(p.scale());
242  p.setEtaPhi(jet.vec().Eta(), jet.vec().Phi());
243  p.setMagnitude(jet.vec().Pt()/scale/scale);
244  p.setStatus(resolution);
245  if (peakSelect(p))
246  preclusters->push_back(p);
247  }
248 }
249 
250 
252  const SparseTree& tree,
253  const fftjet::Functor1<bool,fftjet::Peak>& peakSelect,
254  std::vector<fftjet::Peak>* preclusters)
255 {
256  nodes.clear();
257  selectTreeNodes(tree, peakSelect, &nodes);
258 
259  // Fill out the vector of preclusters using the tree node ids
260  const unsigned nNodes = nodes.size();
261  const SparseTree::NodeId* pnodes = nNodes ? &nodes[0] : 0;
262  preclusters->reserve(nNodes);
263  for (unsigned i=0; i<nNodes; ++i)
264  preclusters->push_back(
265  sparseTree.uncheckedNode(pnodes[i]).getCluster());
266 
267  // Remember the node id in the precluster and set
268  // the status word to indicate the resolution scheme used
269  fftjet::Peak* clusters = nNodes ? &(*preclusters)[0] : 0;
270  for (unsigned i=0; i<nNodes; ++i)
271  {
272  clusters[i].setCode(pnodes[i]);
273  clusters[i].setStatus(resolution);
274  }
275 }
276 
277 
279  const SparseTree& tree,
280  const fftjet::Functor1<bool,fftjet::Peak>& peakSelect,
281  std::vector<SparseTree::NodeId>* mynodes)
282 {
283  minLevel = maxLevel = usedLevel = 0;
284 
285  // Get the tree nodes which pass the cuts
286  // (according to the selected resolution strategy)
287  switch (resolution)
288  {
289  case FIXED:
290  {
291  usedLevel = tree.getLevel(fixedScale);
292  tree.getPassingNodes(usedLevel, peakSelect, mynodes);
293  }
294  break;
295 
296  case MAXIMALLY_STABLE:
297  {
298  const unsigned minStartingLevel = maxStableScale > 0.0 ?
299  tree.getLevel(maxStableScale) : 0;
300  const unsigned maxStartingLevel = minStableScale > 0.0 ?
301  tree.getLevel(minStableScale) : UINT_MAX;
302 
303  if (tree.stableClusterCount(
304  peakSelect, &minLevel, &maxLevel, stabilityAlpha,
305  minStartingLevel, maxStartingLevel))
306  {
307  usedLevel = (minLevel + maxLevel)/2;
308  tree.getPassingNodes(usedLevel, peakSelect, mynodes);
309  }
310  }
311  break;
312 
313  case GLOBALLY_ADAPTIVE:
314  {
315  const bool stable = tree.clusterCountLevels(
316  nClustersRequested, peakSelect, &minLevel, &maxLevel);
317  if (minLevel || maxLevel)
318  {
319  usedLevel = (minLevel + maxLevel)/2;
320  if (!stable)
321  {
322  const int maxlev = tree.maxStoredLevel();
323  bool levelFound = false;
324  for (int delta=0; delta<=maxlev && !levelFound; ++delta)
325  for (int ifac=1; ifac>-2 && !levelFound; ifac-=2)
326  {
327  const int level = usedLevel + ifac*delta;
328  if (level > 0 && level <= maxlev)
329  if (occupancy[level] == nClustersRequested)
330  {
331  usedLevel = level;
332  levelFound = true;
333  }
334  }
335  assert(levelFound);
336  }
337  }
338  else
339  {
340  // Can't find that exact number of preclusters.
341  // Try to get the next best thing.
342  usedLevel = 1;
343  const unsigned occ1 = occupancy[1];
344  if (nClustersRequested >= occ1)
345  {
346  const unsigned maxlev = tree.maxStoredLevel();
347  if (nClustersRequested > occupancy[maxlev])
348  usedLevel = maxlev;
349  else
350  {
351  // It would be nice to use "lower_bound" here,
352  // but the occupancy is not necessarily monotonous.
353  unsigned bestDelta = nClustersRequested > occ1 ?
354  nClustersRequested - occ1 : occ1 - nClustersRequested;
355  for (unsigned level=2; level<=maxlev; ++level)
356  {
357  const unsigned n = occupancy[level];
358  const unsigned d = nClustersRequested > n ?
359  nClustersRequested - n : n - nClustersRequested;
360  if (d < bestDelta)
361  {
362  bestDelta = d;
363  usedLevel = level;
364  }
365  }
366  }
367  }
368  }
369  tree.getPassingNodes(usedLevel, peakSelect, mynodes);
370  }
371  break;
372 
373  case LOCALLY_ADAPTIVE:
374  {
375  usedLevel = tree.getLevel(fixedScale);
376  tree.getMagS2OptimalNodes(peakSelect, nClustersRequested,
377  usedLevel, mynodes, &thresholds);
378  }
379  break;
380 
381  default:
382  assert(!"ERROR in FFTJetProducer::selectTreeNodes : "
383  "should never get here! This is a bug. Please report.");
384  }
385 }
386 
387 
389 {
390  const unsigned nClus = preclusters.size();
391  if (nClus)
392  {
393  fftjet::Peak* clus = &preclusters[0];
394  fftjet::Functor1<double,fftjet::Peak>&
395  scaleCalc(*recoScaleCalcPeak);
396  fftjet::Functor1<double,fftjet::Peak>&
397  ratioCalc(*recoScaleRatioCalcPeak);
398  fftjet::Functor1<double,fftjet::Peak>&
399  factorCalc(*memberFactorCalcPeak);
400 
401  for (unsigned i=0; i<nClus; ++i)
402  {
403  clus[i].setRecoScale(scaleCalc(clus[i]));
404  clus[i].setRecoScaleRatio(ratioCalc(clus[i]));
405  clus[i].setMembershipFactor(factorCalc(clus[i]));
406  }
407  }
408 }
409 
410 
412 {
413  int minBin = energyFlow->getEtaBin(-gridScanMaxEta);
414  if (minBin < 0)
415  minBin = 0;
416  int maxBin = energyFlow->getEtaBin(gridScanMaxEta) + 1;
417  if (maxBin < 0)
418  maxBin = 0;
419 
420  fftjet::DefaultRecombinationAlgFactory<
421  Real,VectorLike,BgData,VBuilder> factory;
422  if (factory[recombinationAlgorithm] == NULL)
423  throw cms::Exception("FFTJetBadConfig")
424  << "Invalid grid recombination algorithm \""
425  << recombinationAlgorithm << "\"" << std::endl;
426  gridAlg = std::auto_ptr<GridAlg>(
427  factory[recombinationAlgorithm]->create(
428  jetMembershipFunction.get(),
429  bgMembershipFunction.get(),
431  isCrisp, false, assignConstituents, minBin, maxBin));
432 }
433 
434 
436  const edm::Event& iEvent,
437  std::auto_ptr<fftjet::Grid2d<fftjetcms::Real> >& flow)
438 {
440  iEvent.getByToken(input_energyflow_token_, input);
441 
442  // Make sure that the grid is compatible with the stored one
443  bool rebuildGrid = flow.get() == NULL;
444  if (!rebuildGrid)
445  rebuildGrid =
446  !(flow->nEta() == input->nEtaBins() &&
447  flow->nPhi() == input->nPhiBins() &&
448  flow->etaMin() == input->etaMin() &&
449  flow->etaMax() == input->etaMax() &&
450  flow->phiBin0Edge() == input->phiBin0Edge());
451  if (rebuildGrid)
452  {
453  // We should not get here very often...
454  flow = std::auto_ptr<fftjet::Grid2d<Real> >(
455  new fftjet::Grid2d<Real>(
456  input->nEtaBins(), input->etaMin(), input->etaMax(),
457  input->nPhiBins(), input->phiBin0Edge(), input->title()));
458  }
459  flow->blockSet(input->data(), input->nEtaBins(), input->nPhiBins());
460  return rebuildGrid;
461 }
462 
463 
464 bool FFTJetProducer::checkConvergence(const std::vector<RecoFFTJet>& previous,
465  std::vector<RecoFFTJet>& nextSet)
466 {
467  fftjet::Functor2<double,RecoFFTJet,RecoFFTJet>&
468  distanceCalc(*jetDistanceCalc);
469 
470  const unsigned nJets = previous.size();
471  if (nJets != nextSet.size())
472  return false;
473 
474  const RecoFFTJet* prev = &previous[0];
475  RecoFFTJet* next = &nextSet[0];
476 
477  // Calculate convergence distances for all jets
478  bool converged = true;
479  for (unsigned i=0; i<nJets; ++i)
480  {
481  const double d = distanceCalc(prev[i], next[i]);
482  next[i].setConvergenceDistance(d);
483  if (i < nJetsRequiredToConverge && d > convergenceDistance)
484  converged = false;
485  }
486 
487  return converged;
488 }
489 
490 
492 {
493  fftjet::Functor1<double,RecoFFTJet>& scaleCalc(*recoScaleCalcJet);
494  fftjet::Functor1<double,RecoFFTJet>& ratioCalc(*recoScaleRatioCalcJet);
495  fftjet::Functor1<double,RecoFFTJet>& factorCalc(*memberFactorCalcJet);
496 
497  unsigned nJets = recoJets.size();
498  unsigned iterNum = 1U;
499  bool converged = false;
500  for (; iterNum<maxIterations && !converged; ++iterNum)
501  {
502  // Recreate the vector of preclusters using the jets
503  const RecoFFTJet* jets = &recoJets[0];
504  iterPreclusters.clear();
505  iterPreclusters.reserve(nJets);
506  for (unsigned i=0; i<nJets; ++i)
507  {
508  const RecoFFTJet& jet(jets[i]);
509  fftjet::Peak p(jet.precluster());
510  p.setEtaPhi(jet.vec().Eta(), jet.vec().Phi());
511  p.setRecoScale(scaleCalc(jet));
512  p.setRecoScaleRatio(ratioCalc(jet));
513  p.setMembershipFactor(factorCalc(jet));
514  iterPreclusters.push_back(p);
515  }
516 
517  // Run the algorithm
518  int status = 0;
520  status = gridAlg->run(iterPreclusters, *energyFlow,
521  &noiseLevel, 1U, 1U,
523  else
524  status = recoAlg->run(iterPreclusters, eventData, &noiseLevel, 1U,
526  if (status)
527  throw cms::Exception("FFTJetInterface")
528  << "FFTJet algorithm failed" << std::endl;
529 
530  // As it turns out, it is possible, in very rare cases,
531  // to have iterJets.size() != nJets at this point
532 
533  // Figure out if the iterations have converged
534  converged = checkConvergence(recoJets, iterJets);
535 
536  // Prepare for the next cycle
537  iterJets.swap(recoJets);
538  nJets = recoJets.size();
539  }
540 
541  // Check that we have the correct number of preclusters
542  if (preclusters.size() != nJets)
543  {
544  assert(nJets < preclusters.size());
546  assert(preclusters.size() == nJets);
547  }
548 
549  // Plug in the original precluster coordinates into the result
550  RecoFFTJet* jets = &recoJets[0];
551  for (unsigned i=0; i<nJets; ++i)
552  {
553  const fftjet::Peak& oldp(preclusters[i]);
554  jets[i].setPeakEtaPhi(oldp.eta(), oldp.phi());
555  }
556 
557  // If we have converged on the last cycle, the result
558  // would be indistinguishable from no convergence.
559  // Because of this, raise the counter by one to indicate
560  // the case when the convergence is not achieved.
561  if (!converged)
562  ++iterNum;
563 
564  return iterNum;
565 }
566 
567 
569 {
570  const unsigned nJets = recoJets.size();
571  const unsigned* clusterMask = gridAlg->getClusterMask();
572  const int nEta = gridAlg->getLastNEta();
573  const int nPhi = gridAlg->getLastNPhi();
574  const fftjet::Grid2d<Real>& g(*energyFlow);
575 
576  const unsigned nInputs = eventData.size();
577  const VectorLike* inp = nInputs ? &eventData[0] : 0;
578  const unsigned* candIdx = nInputs ? &candidateIndex[0] : 0;
579  for (unsigned i=0; i<nInputs; ++i)
580  {
581  const VectorLike& item(inp[i]);
582  const int iPhi = g.getPhiBin(item.Phi());
583  const int iEta = g.getEtaBin(item.Eta());
584  const unsigned mask = iEta >= 0 && iEta < nEta ?
585  clusterMask[iEta*nPhi + iPhi] : 0;
586  assert(mask <= nJets);
587  constituents[mask].push_back(inputCollection->ptrAt(candIdx[i]));
588  }
589 }
590 
591 
593 {
594  const unsigned nJets = recoJets.size();
595  const unsigned* clusterMask = recoAlg->getClusterMask();
596  const unsigned maskLength = recoAlg->getLastNData();
597  assert(maskLength == eventData.size());
598 
599  const unsigned* candIdx = maskLength ? &candidateIndex[0] : 0;
600  for (unsigned i=0; i<maskLength; ++i)
601  {
602  // In FFTJet, the mask value of 0 corresponds to unclustered
603  // energy. We will do the same here. Jet numbers are therefore
604  // shifted by 1 wrt constituents vector, and constituents[1]
605  // corresponds to jet number 0.
606  const unsigned mask = clusterMask[i];
607  assert(mask <= nJets);
608  constituents[mask].push_back(inputCollection->ptrAt(candIdx[i]));
609  }
610 }
611 
612 
613 // The following code more or less coincides with the similar method
614 // implemented in VirtualJetProducer
615 template <typename T>
617  const edm::EventSetup& iSetup)
618 {
619  using namespace reco;
620 
621  typedef FFTAnyJet<T> OutputJet;
622  typedef std::vector<OutputJet> OutputCollection;
623 
624  // Area of a single eta-phi cell for jet area calculations.
625  // Set it to 0 in case the module configuration does not allow
626  // us to calculate jet areas reliably.
627  double cellArea = useGriddedAlgorithm &&
629  energyFlow->etaBinWidth() * energyFlow->phiBinWidth() : 0.0;
630 
631  if (calculatePileup)
632  cellArea = pileupEnergyFlow->etaBinWidth() *
633  pileupEnergyFlow->phiBinWidth();
634 
635  // allocate output jet collection
636  std::auto_ptr<OutputCollection> jets(new OutputCollection());
637  const unsigned nJets = recoJets.size();
638  jets->reserve(nJets);
639 
640  bool sorted = true;
641  double previousPt = DBL_MAX;
642  for (unsigned ijet=0; ijet<nJets; ++ijet)
643  {
644  RecoFFTJet& myjet(recoJets[ijet]);
645 
646  // Check if we should resum jet constituents
647  VectorLike jet4vec(myjet.vec());
648  if (resumConstituents)
649  {
650  VectorLike sum(0.0, 0.0, 0.0, 0.0);
651  const unsigned nCon = constituents[ijet+1].size();
652  const reco::CandidatePtr* cn = nCon ? &constituents[ijet+1][0] : 0;
653  for (unsigned i=0; i<nCon; ++i)
654  sum += cn[i]->p4();
655  jet4vec = sum;
656  setJetStatusBit(&myjet, CONSTITUENTS_RESUMMED, true);
657  }
658 
659  // Subtract the pile-up
661  {
662  jet4vec = adjustForPileup(jet4vec, pileup[ijet],
666  else
667  setJetStatusBit(&myjet, PILEUP_SUBTRACTED_PT, true);
668  }
669 
670  // Write the specifics to the jet (simultaneously sets 4-vector,
671  // vertex, constituents). These are overridden functions that will
672  // call the appropriate specific code.
673  T jet;
674  writeSpecific(jet, jet4vec, vertexUsed(),
675  constituents[ijet+1], iSetup);
676 
677  // calcuate the jet area
678  double ncells = myjet.ncells();
679  if (calculatePileup)
680  {
681  ncells = cellCountsVec[ijet];
682  setJetStatusBit(&myjet, PILEUP_CALCULATED, true);
683  }
684  jet.setJetArea(cellArea*ncells);
685 
686  // add jet to the list
687  FFTJet<float> fj(jetToStorable<float>(myjet));
688  fj.setFourVec(jet4vec);
689  if (calculatePileup)
690  {
691  fj.setPileup(pileup[ijet]);
692  fj.setNCells(ncells);
693  }
694  jets->push_back(OutputJet(jet, fj));
695 
696  // Check whether the sequence remains sorted by pt
697  const double pt = jet.pt();
698  if (pt > previousPt)
699  sorted = false;
700  previousPt = pt;
701  }
702 
703  // Sort the collection
704  if (!sorted)
705  std::sort(jets->begin(), jets->end(), LocalSortByPt());
706 
707  // put the collection into the event
708  iEvent.put(jets, outputLabel);
709 }
710 
711 
713  const unsigned nPreclustersFound)
714 {
715  // Write recombined jets
716  jet_type_switch(writeJets, ev, iSetup);
717 
718  // Check if we should resum unclustered energy constituents
719  VectorLike unclusE(unclustered);
720  if (resumConstituents)
721  {
722  VectorLike sum(0.0, 0.0, 0.0, 0.0);
723  const unsigned nCon = constituents[0].size();
724  const reco::CandidatePtr* cn = nCon ? &constituents[0][0] : 0;
725  for (unsigned i=0; i<nCon; ++i)
726  sum += cn[i]->p4();
727  unclusE = sum;
728  }
729 
730  // Write the jet reconstruction summary
731  const double minScale = minLevel ? sparseTree.getScale(minLevel) : 0.0;
732  const double maxScale = maxLevel ? sparseTree.getScale(maxLevel) : 0.0;
733  const double scaleUsed = usedLevel ? sparseTree.getScale(usedLevel) : 0.0;
734 
735  std::auto_ptr<reco::FFTJetProducerSummary> summary(
737  thresholds, occupancy, unclusE,
738  constituents[0], unused,
739  minScale, maxScale, scaleUsed,
740  nPreclustersFound, iterationsPerformed,
741  iterationsPerformed == 1U ||
743  ev.put(summary, outputLabel);
744 }
745 
746 
747 // ------------ method called to for each event ------------
749  const edm::EventSetup& iSetup)
750 {
751  // Load the clustering tree made by FFTJetPatRecoProducer
753  loadSparseTreeData<float>(iEvent);
754  else
755  loadSparseTreeData<double>(iEvent);
756 
757  // Do we need to load the candidate collection?
759  loadInputCollection(iEvent);
760 
761  // Do we need to have discretized energy flow?
763  {
764  if (reuseExistingGrid)
765  {
766  if (loadEnergyFlow(iEvent, energyFlow))
767  buildGridAlg();
768  }
769  else
771  }
772 
773  // Calculate cluster occupancy as a function of level number
774  sparseTree.occupancyInScaleSpace(*peakSelector, &occupancy);
775 
776  // Select the preclusters using the requested resolution scheme
777  preclusters.clear();
778  if (resolution == FROM_GENJETS)
779  genJetPreclusters(sparseTree, iEvent, iSetup,
781  else
783  if (preclusters.size() > maxInitialPreclusters)
784  {
785  std::sort(preclusters.begin(), preclusters.end(), std::greater<fftjet::Peak>());
787  }
788 
789  // Prepare to run the jet recombination procedure
791 
792  // Assign membership functions to preclusters. If this function
793  // is not overriden in a derived class, default algorithm membership
794  // function will be used for every cluster.
796 
797  // Count the preclusters going in
798  unsigned nPreclustersFound = 0U;
799  const unsigned npre = preclusters.size();
800  for (unsigned i=0; i<npre; ++i)
801  if (preclusters[i].membershipFactor() > 0.0)
802  ++nPreclustersFound;
803 
804  // Run the recombination algorithm once
805  int status = 0;
807  status = gridAlg->run(preclusters, *energyFlow,
808  &noiseLevel, 1U, 1U,
810  else
811  status = recoAlg->run(preclusters, eventData, &noiseLevel, 1U,
813  if (status)
814  throw cms::Exception("FFTJetInterface")
815  << "FFTJet algorithm failed (first iteration)" << std::endl;
816 
817  // If requested, iterate the jet recombination procedure
818  if (maxIterations > 1U && !recoJets.empty())
819  {
820  // It is possible to have a smaller number of jets than we had
821  // preclusters. Fake preclusters are possible, but for a good
822  // choice of pattern recognition kernel their presence should
823  // be infrequent. However, any fake preclusters will throw the
824  // iterative reconstruction off balance. Deal with the problem now.
825  const unsigned nJets = recoJets.size();
826  if (preclusters.size() != nJets)
827  {
828  assert(nJets < preclusters.size());
830  }
832  }
833  else
834  iterationsPerformed = 1U;
835 
836  // Determine jet constituents. FFTJet returns a map
837  // of constituents which is inverse to what we need here.
838  const unsigned nJets = recoJets.size();
839  if (constituents.size() <= nJets)
840  constituents.resize(nJets + 1U);
841  if (assignConstituents)
842  {
843  for (unsigned i=0; i<=nJets; ++i)
844  constituents[i].clear();
847  else
849  }
850 
851  // Figure out the pile-up
852  if (calculatePileup)
853  {
854  if (loadPileupFromDB)
855  determinePileupDensityFromDB(iEvent, iSetup,
857  else
860  determinePileup();
861  assert(pileup.size() == recoJets.size());
862  }
863 
864  // Write out the results
865  saveResults(iEvent, iSetup, nPreclustersFound);
866 }
867 
868 
869 std::auto_ptr<fftjet::Functor1<bool,fftjet::Peak> >
871 {
873  ps.getParameter<edm::ParameterSet>("PeakSelectorConfiguration"));
874 }
875 
876 
877 // Parser for the jet membership function
878 std::auto_ptr<fftjet::ScaleSpaceKernel>
880 {
882  ps.getParameter<edm::ParameterSet>("jetMembershipFunction"));
883 }
884 
885 
886 // Parser for the background membership function
887 std::auto_ptr<AbsBgFunctor>
889 {
891  ps.getParameter<edm::ParameterSet>("bgMembershipFunction"));
892 }
893 
894 
895 // Calculator for the recombination scale
896 std::auto_ptr<fftjet::Functor1<double,fftjet::Peak> >
898 {
900  ps.getParameter<edm::ParameterSet>("recoScaleCalcPeak"));
901 }
902 
903 
904 // Pile-up density calculator
905 std::auto_ptr<fftjetcms::AbsPileupCalculator>
907 {
909  ps.getParameter<edm::ParameterSet>("pileupDensityCalc"));
910 }
911 
912 
913 // Calculator for the recombination scale ratio
914 std::auto_ptr<fftjet::Functor1<double,fftjet::Peak> >
916 {
918  ps.getParameter<edm::ParameterSet>("recoScaleRatioCalcPeak"));
919 }
920 
921 
922 // Calculator for the membership function factor
923 std::auto_ptr<fftjet::Functor1<double,fftjet::Peak> >
925 {
927  ps.getParameter<edm::ParameterSet>("memberFactorCalcPeak"));
928 }
929 
930 
931 std::auto_ptr<fftjet::Functor1<double,FFTJetProducer::RecoFFTJet> >
933 {
935  ps.getParameter<edm::ParameterSet>("recoScaleCalcJet"));
936 }
937 
938 
939 std::auto_ptr<fftjet::Functor1<double,FFTJetProducer::RecoFFTJet> >
941 {
943  ps.getParameter<edm::ParameterSet>("recoScaleRatioCalcJet"));
944 }
945 
946 
947 std::auto_ptr<fftjet::Functor1<double,FFTJetProducer::RecoFFTJet> >
949 {
951  ps.getParameter<edm::ParameterSet>("memberFactorCalcJet"));
952 }
953 
954 
955 std::auto_ptr<fftjet::Functor2<
958 {
960  ps.getParameter<edm::ParameterSet>("jetDistanceCalc"));
961 }
962 
963 
964 void FFTJetProducer::assignMembershipFunctions(std::vector<fftjet::Peak>*)
965 {
966 }
967 
968 
969 // ------------ method called once each job just before starting event loop
971 {
973 
974  // Parse the peak selector definition
976  checkConfig(peakSelector, "invalid peak selector");
977 
979  checkConfig(jetMembershipFunction, "invalid jet membership function");
980 
982  checkConfig(bgMembershipFunction, "invalid noise membership function");
983 
984  // Build the energy recombination algorithm
985  if (!useGriddedAlgorithm)
986  {
987  fftjet::DefaultVectorRecombinationAlgFactory<
988  VectorLike,BgData,VBuilder> factory;
989  if (factory[recombinationAlgorithm] == NULL)
990  throw cms::Exception("FFTJetBadConfig")
991  << "Invalid vector recombination algorithm \""
992  << recombinationAlgorithm << "\"" << std::endl;
993  recoAlg = std::auto_ptr<RecoAlg>(
994  factory[recombinationAlgorithm]->create(
995  jetMembershipFunction.get(),
996  &VectorLike::Et, &VectorLike::Eta, &VectorLike::Phi,
997  bgMembershipFunction.get(),
999  }
1000  else if (!reuseExistingGrid)
1001  {
1003  ps.getParameter<edm::ParameterSet>("GridConfiguration"));
1004  checkConfig(energyFlow, "invalid discretization grid");
1005  buildGridAlg();
1006  }
1007 
1008  // Create the grid subsequently used for pile-up subtraction
1009  if (calculatePileup)
1010  {
1012  ps.getParameter<edm::ParameterSet>("PileupGridConfiguration"));
1013  checkConfig(pileupEnergyFlow, "invalid pileup density grid");
1014 
1015  if (!loadPileupFromDB)
1016  {
1018  checkConfig(pileupDensityCalc, "invalid pile-up density calculator");
1019  }
1020  }
1021 
1022  // Parse the calculator of the recombination scale
1024  checkConfig(recoScaleCalcPeak, "invalid spec for the "
1025  "reconstruction scale calculator from peaks");
1026 
1027  // Parse the calculator of the recombination scale ratio
1029  checkConfig(recoScaleRatioCalcPeak, "invalid spec for the "
1030  "reconstruction scale ratio calculator from peaks");
1031 
1032  // Calculator for the membership function factor
1034  checkConfig(memberFactorCalcPeak, "invalid spec for the "
1035  "membership function factor calculator from peaks");
1036 
1037  if (maxIterations > 1)
1038  {
1039  // We are going to run iteratively. Make required objects.
1041  checkConfig(recoScaleCalcJet, "invalid spec for the "
1042  "reconstruction scale calculator from jets");
1043 
1045  checkConfig(recoScaleRatioCalcJet, "invalid spec for the "
1046  "reconstruction scale ratio calculator from jets");
1047 
1049  checkConfig(memberFactorCalcJet, "invalid spec for the "
1050  "membership function factor calculator from jets");
1051 
1053  checkConfig(memberFactorCalcJet, "invalid spec for the "
1054  "jet distance calculator");
1055  }
1056 }
1057 
1058 
1060 {
1061  // There are two possible reasons for fake preclusters:
1062  // 1. Membership factor was set to 0
1063  // 2. Genuine problem with pattern recognition
1064  //
1065  // Anyway, we need to match jets to preclusters and keep
1066  // only those preclusters that have been matched
1067  //
1068  std::vector<int> matchTable;
1069  const unsigned nmatched = matchOneToOne(
1070  recoJets, preclusters, JetToPeakDistance(), &matchTable);
1071 
1072  // Ensure that all jets have been matched.
1073  // If not, we must have a bug somewhere.
1074  assert(nmatched == recoJets.size());
1075 
1076  // Collect all matched preclusters
1077  iterPreclusters.clear();
1078  iterPreclusters.reserve(nmatched);
1079  for (unsigned i=0; i<nmatched; ++i)
1080  iterPreclusters.push_back(preclusters[matchTable[i]]);
1082 }
1083 
1084 
1086  const int mask, const bool value)
1087 {
1088  int status = jet->status();
1089  if (value)
1090  status |= mask;
1091  else
1092  status &= ~mask;
1093  jet->setStatus(status);
1094 }
1095 
1096 
1098  const edm::Event& iEvent,
1099  std::auto_ptr<fftjet::Grid2d<fftjetcms::Real> >& density)
1100 {
1102  iEvent.getByToken(input_pusummary_token_, summary);
1103 
1104  const reco::FFTJetPileupSummary& s(*summary);
1105  const AbsPileupCalculator& calc(*pileupDensityCalc);
1106  const bool phiDependent = calc.isPhiDependent();
1107 
1108  fftjet::Grid2d<Real>& g(*density);
1109  const unsigned nEta = g.nEta();
1110  const unsigned nPhi = g.nPhi();
1111 
1112  for (unsigned ieta=0; ieta<nEta; ++ieta)
1113  {
1114  const double eta(g.etaBinCenter(ieta));
1115 
1116  if (phiDependent)
1117  {
1118  for (unsigned iphi=0; iphi<nPhi; ++iphi)
1119  {
1120  const double phi(g.phiBinCenter(iphi));
1121  g.uncheckedSetBin(ieta, iphi, calc(eta, phi, s));
1122  }
1123  }
1124  else
1125  {
1126  const double pil = calc(eta, 0.0, s);
1127  for (unsigned iphi=0; iphi<nPhi; ++iphi)
1128  g.uncheckedSetBin(ieta, iphi, pil);
1129  }
1130  }
1131 }
1132 
1133 
1135  const edm::Event& iEvent, const edm::EventSetup& iSetup,
1136  std::auto_ptr<fftjet::Grid2d<fftjetcms::Real> >& density)
1137 {
1140  iSetup, pileupTableRecord, h);
1141  boost::shared_ptr<npstat::StorableMultivariateFunctor> f =
1143 
1145  iEvent.getByToken(input_pusummary_token_, summary);
1146 
1147  const float rho = summary->pileupRho();
1148  const bool phiDependent = f->minDim() == 3U;
1149 
1150  fftjet::Grid2d<Real>& g(*density);
1151  const unsigned nEta = g.nEta();
1152  const unsigned nPhi = g.nPhi();
1153 
1154  double functorArg[3] = {0.0, 0.0, 0.0};
1155  if (phiDependent)
1156  functorArg[2] = rho;
1157  else
1158  functorArg[1] = rho;
1159 
1160  for (unsigned ieta=0; ieta<nEta; ++ieta)
1161  {
1162  const double eta(g.etaBinCenter(ieta));
1163  functorArg[0] = eta;
1164 
1165  if (phiDependent)
1166  {
1167  for (unsigned iphi=0; iphi<nPhi; ++iphi)
1168  {
1169  functorArg[1] = g.phiBinCenter(iphi);
1170  g.uncheckedSetBin(ieta, iphi, (*f)(functorArg, 3U));
1171  }
1172  }
1173  else
1174  {
1175  const double pil = (*f)(functorArg, 2U);
1176  for (unsigned iphi=0; iphi<nPhi; ++iphi)
1177  g.uncheckedSetBin(ieta, iphi, pil);
1178  }
1179  }
1180 }
1181 
1182 
1184 {
1185  // This function works with crisp clustering only
1186  if (!isCrisp)
1187  assert(!"Pile-up subtraction for fuzzy clustering "
1188  "is not implemented yet");
1189 
1190  // Clear the pileup vector
1191  const unsigned nJets = recoJets.size();
1192  pileup.resize(nJets);
1193  if (nJets == 0)
1194  return;
1195  const VectorLike zero;
1196  for (unsigned i=0; i<nJets; ++i)
1197  pileup[i] = zero;
1198 
1199  // Pileup energy flow grid
1200  const fftjet::Grid2d<Real>& g(*pileupEnergyFlow);
1201  const unsigned nEta = g.nEta();
1202  const unsigned nPhi = g.nPhi();
1203  const double cellArea = g.etaBinWidth() * g.phiBinWidth();
1204 
1205  // Various calculators
1206  fftjet::Functor1<double,RecoFFTJet>& scaleCalc(*recoScaleCalcJet);
1207  fftjet::Functor1<double,RecoFFTJet>& ratioCalc(*recoScaleRatioCalcJet);
1208  fftjet::Functor1<double,RecoFFTJet>& factorCalc(*memberFactorCalcJet);
1209 
1210  // Make sure we have enough memory
1211  memFcns2dVec.resize(nJets);
1212  fftjet::AbsKernel2d** memFcns2d = &memFcns2dVec[0];
1213 
1214  doubleBuf.resize(nJets*4U + nJets*nPhi);
1215  double* recoScales = &doubleBuf[0];
1216  double* recoScaleRatios = recoScales + nJets;
1217  double* memFactors = recoScaleRatios + nJets;
1218  double* dEta = memFactors + nJets;
1219  double* dPhiBuf = dEta + nJets;
1220 
1221  cellCountsVec.resize(nJets);
1222  unsigned* cellCounts = &cellCountsVec[0];
1223 
1224  // Go over jets and collect the necessary info
1225  for (unsigned ijet=0; ijet<nJets; ++ijet)
1226  {
1227  const RecoFFTJet& jet(recoJets[ijet]);
1228  const fftjet::Peak& peak(jet.precluster());
1229 
1230  // Make sure we are using 2-d membership functions.
1231  // Pile-up subtraction scheme for 3-d functions should be different.
1232  fftjet::AbsMembershipFunction* m3d =
1233  dynamic_cast<fftjet::AbsMembershipFunction*>(
1234  peak.membershipFunction());
1235  if (m3d == 0)
1236  m3d = dynamic_cast<fftjet::AbsMembershipFunction*>(
1237  jetMembershipFunction.get());
1238  if (m3d)
1239  {
1240  assert(!"Pile-up subtraction for 3-d membership functions "
1241  "is not implemented yet");
1242  }
1243  else
1244  {
1245  fftjet::AbsKernel2d* m2d =
1246  dynamic_cast<fftjet::AbsKernel2d*>(
1247  peak.membershipFunction());
1248  if (m2d == 0)
1249  m2d = dynamic_cast<fftjet::AbsKernel2d*>(
1250  jetMembershipFunction.get());
1251  assert(m2d);
1252  memFcns2d[ijet] = m2d;
1253  }
1254  recoScales[ijet] = scaleCalc(jet);
1255  recoScaleRatios[ijet] = ratioCalc(jet);
1256  memFactors[ijet] = factorCalc(jet);
1257  cellCounts[ijet] = 0U;
1258 
1259  const double jetPhi = jet.vec().Phi();
1260  for (unsigned iphi=0; iphi<nPhi; ++iphi)
1261  {
1262  double dphi = g.phiBinCenter(iphi) - jetPhi;
1263  while (dphi > M_PI)
1264  dphi -= (2.0*M_PI);
1265  while (dphi < -M_PI)
1266  dphi += (2.0*M_PI);
1267  dPhiBuf[iphi*nJets+ijet] = dphi;
1268  }
1269  }
1270 
1271  // Go over all grid points and integrate
1272  // the pile-up energy density
1273  VBuilder vMaker;
1274  for (unsigned ieta=0; ieta<nEta; ++ieta)
1275  {
1276  const double eta(g.etaBinCenter(ieta));
1277  const Real* databuf = g.data() + ieta*nPhi;
1278 
1279  // Figure out dEta for each jet
1280  for (unsigned ijet=0; ijet<nJets; ++ijet)
1281  dEta[ijet] = eta - recoJets[ijet].vec().Eta();
1282 
1283  for (unsigned iphi=0; iphi<nPhi; ++iphi)
1284  {
1285  double maxW(0.0);
1286  unsigned maxWJet(nJets);
1287  const double* dPhi = dPhiBuf + iphi*nJets;
1288 
1289  for (unsigned ijet=0; ijet<nJets; ++ijet)
1290  {
1291  if (recoScaleRatios[ijet] > 0.0)
1292  memFcns2d[ijet]->setScaleRatio(recoScaleRatios[ijet]);
1293  const double f = memFactors[ijet]*
1294  (*memFcns2d[ijet])(dEta[ijet], dPhi[ijet],
1295  recoScales[ijet]);
1296  if (f > maxW)
1297  {
1298  maxW = f;
1299  maxWJet = ijet;
1300  }
1301  }
1302 
1303  if (maxWJet < nJets)
1304  {
1305  pileup[maxWJet] += vMaker(cellArea*databuf[iphi],
1306  eta, g.phiBinCenter(iphi));
1307  cellCounts[maxWJet]++;
1308  }
1309  }
1310  }
1311 }
1312 
1313 
1314 // ------------ method called once each job just after ending the event loop
1316 {
1317 }
1318 
1319 
1320 //define this as a plug-in
std::vector< std::vector< reco::CandidatePtr > > constituents
dbl * delta
Definition: mlp_gen.cc:36
virtual void produce(edm::Event &, const edm::EventSetup &) override
virtual ~FFTJetProducer()
unsigned matchOneToOne(const std::vector< T1 > &v1, const std::vector< T2 > &v2, const DistanceCalculator &calc, std::vector< int > *matchFrom1To2, const double maxMatchingDistance=1.0e300)
Definition: matchOneToOne.h:41
T getParameter(std::string const &) const
std::auto_ptr< fftjet::Grid2d< fftjetcms::Real > > pileupEnergyFlow
T getUntrackedParameter(std::string const &, T const &) const
int i
Definition: DBlmapReader.cc:9
std::auto_ptr< fftjet::Grid2d< fftjetcms::Real > > energyFlow
std::auto_ptr< RecoAlg > recoAlg
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > memberFactorCalcPeak
unsigned iterationsPerformed
const bool useGriddedAlgorithm
std::vector< fftjetcms::VectorLike > pileup
edm::Handle< reco::CandidateView > inputCollection
static Resolution parse_resolution(const std::string &name)
const bool resumConstituents
void selectTreeNodes(const SparseTree &tree, const fftjet::Functor1< bool, fftjet::Peak > &peakSelect, std::vector< SparseTree::NodeId > *nodes)
Class for storing FFTJet sparse clustering trees.
Definition: PattRecoTree.h:18
const double gridScanMaxEta
void saveResults(edm::Event &iEvent, const edm::EventSetup &, unsigned nPreclustersFound)
std::auto_ptr< fftjet::Grid2d< Real > > fftjet_Grid2d_parser(const edm::ParameterSet &ps)
virtual std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > parse_recoScaleRatioCalcPeak(const edm::ParameterSet &)
std::auto_ptr< GridAlg > gridAlg
std::auto_ptr< fftjetcms::AbsPileupCalculator > pileupDensityCalc
virtual void assignMembershipFunctions(std::vector< fftjet::Peak > *preclusters)
bool getByToken(EDGetToken token, Handle< PROD > &result) const
Definition: Event.h:446
const reco::Particle::Point & vertexUsed() const
#define DEFINE_FWK_MODULE(type)
Definition: MakerMacros.h:17
void loadInputCollection(const edm::Event &)
virtual std::auto_ptr< fftjet::Functor1< bool, fftjet::Peak > > parse_peakSelector(const edm::ParameterSet &)
virtual std::auto_ptr< fftjetcms::AbsPileupCalculator > parse_pileupDensityCalc(const edm::ParameterSet &ps)
double BgData
const std::string recombinationAlgorithm
static const int stable
Definition: TopGenEvent.h:11
Definition: DDAxes.h:10
const double fixedScale
Data processing summary generated by FFTJetProducer.
virtual std::auto_ptr< fftjetcms::AbsBgFunctor > parse_bgMembershipFunction(const edm::ParameterSet &)
const bool subtractPileupAs4Vec
fftjet::RecombinedJet< VectorLike > jetFromStorable(const reco::FFTJet< Real > &jet)
Definition: jetConverters.h:63
#define NULL
Definition: scimark2.h:8
std::auto_ptr< fftjet::ScaleSpaceKernel > fftjet_MembershipFunction_parser(const edm::ParameterSet &ps)
void checkConfig(const Ptr &ptr, const char *message)
const double unlikelyBgWeight
bool ev
void makeProduces(const std::string &alias, const std::string &tag)
const bool subtractPileup
Resolution resolution
std::auto_ptr< AbsPileupCalculator > fftjet_PileupCalculator_parser(const edm::ParameterSet &ps)
edm::EDGetTokenT< reco::PattRecoTree< fftjetcms::Real, reco::PattRecoPeak< fftjetcms::Real > > > input_recotree_token_
std::vector< double > doubleBuf
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > recoScaleCalcPeak
std::vector< fftjet::AbsKernel2d * > memFcns2dVec
std::vector< RecoFFTJet > recoJets
const bool isCrisp
T eta() const
const double recombinationDataCutoff
Summary info for pile-up determined by Gaussian filtering.
std::vector< unsigned > occupancy
const double minStableScale
const double maxStableScale
#define init_param(type, varname)
std::vector< fftjet::Peak > preclusters
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e g
Definition: Activities.doc:4
void determineVectorConstituents()
static std::string const input
Definition: EdmProvDump.cc:44
virtual std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > parse_memberFactorCalcPeak(const edm::ParameterSet &)
void loadSparseTreeData(const edm::Event &)
std::auto_ptr< fftjetcms::AbsBgFunctor > bgMembershipFunction
const bool reuseExistingGrid
std::auto_ptr< fftjet::Functor1< bool, fftjet::Peak > > fftjet_PeakSelector_parser(const edm::ParameterSet &ps)
const unsigned nClustersRequested
int iEvent
Definition: GenABIO.cc:230
std::vector< unsigned > candidateIndex
std::auto_ptr< fftjet::Functor2< double, fftjet::RecombinedJet< VectorLike >, fftjet::RecombinedJet< VectorLike > > > fftjet_JetDistance_parser(const edm::ParameterSet &ps)
double dPhi(double phi1, double phi2)
Definition: JetUtil.h:30
std::auto_ptr< std::vector< double > > iniScales
OrphanHandle< PROD > put(std::auto_ptr< PROD > product)
Put a new product.
Definition: Event.h:113
math::XYZTLorentzVector VectorLike
unsigned usedLevel
double p4[4]
Definition: TauolaWrapper.h:92
std::auto_ptr< fftjet::Functor1< double, RecoFFTJet > > memberFactorCalcJet
void clear(CLHEP::HepGenMatrix &m)
Helper function: Reset all elements of a matrix to 0.
Definition: matutil.cc:167
virtual std::auto_ptr< fftjet::Functor1< double, RecoFFTJet > > parse_recoScaleCalcJet(const edm::ParameterSet &)
vector< PseudoJet > jets
virtual void endJob() override
Implements inheritance relationships for FFTJet jets.
Definition: FFTAnyJet.h:16
const double noiseLevel
static void setJetStatusBit(RecoFFTJet *jet, int mask, bool value)
std::vector< RecoFFTJet > iterJets
double f[11][100]
fftjet::SparseClusteringTree< fftjet::Peak, long > SparseTree
The Signals That Services Can Subscribe To This is based on ActivityRegistry h
Helper function to determine trigger accepts.
Definition: Activities.doc:4
std::vector< unsigned > cellCountsVec
std::string pileupTableRecord
std::string pileupTableName
std::vector< double > thresholds
virtual std::auto_ptr< fftjet::Functor2< double, RecoFFTJet, RecoFFTJet > > parse_jetDistanceCalc(const edm::ParameterSet &)
#define M_PI
unsigned iterateJetReconstruction()
void setNCells(const double nc)
Definition: FFTJet.h:84
const bool calculatePileup
const bool assignConstituents
bool storeInSinglePrecision() const
void setPileup(const math::XYZTLorentzVector &p)
Definition: FFTJet.h:80
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > fftjet_PeakFunctor_parser(const edm::ParameterSet &ps)
bool checkConvergence(const std::vector< RecoFFTJet > &previousIterResult, std::vector< RecoFFTJet > &thisIterResult)
const edm::InputTag treeLabel
virtual void selectPreclusters(const SparseTree &tree, const fftjet::Functor1< bool, fftjet::Peak > &peakSelector, std::vector< fftjet::Peak > *preclusters)
virtual void determinePileupDensityFromDB(const edm::Event &iEvent, const edm::EventSetup &iSetup, std::auto_ptr< fftjet::Grid2d< fftjetcms::Real > > &density)
double Real
void sparsePeakTreeFromStorable(const reco::PattRecoTree< Real, reco::PattRecoPeak< Real > > &in, const std::vector< double > *scaleSetIfNotAdaptive, double completeEventScale, fftjet::SparseClusteringTree< fftjet::Peak, long > *out)
const edm::InputTag genJetsLabel
const edm::ParameterSet myConfiguration
edm::EDGetTokenT< reco::DiscretizedEnergyFlow > input_energyflow_token_
fftjet::RecombinedJet< fftjetcms::VectorLike > RecoFFTJet
edm::EDGetTokenT< reco::FFTJetPileupSummary > input_pusummary_token_
const double stabilityAlpha
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > recoScaleRatioCalcPeak
virtual std::auto_ptr< fftjet::Functor1< double, RecoFFTJet > > parse_memberFactorCalcJet(const edm::ParameterSet &)
const unsigned maxInitialPreclusters
std::string pileupTableCategory
SparseTree sparseTree
virtual std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > parse_recoScaleCalcPeak(const edm::ParameterSet &)
void setFourVec(const math::XYZTLorentzVector &p)
Definition: FFTJet.h:81
std::vector< SparseTree::NodeId > nodes
void determineGriddedConstituents()
const double convergenceDistance
edm::EDGetTokenT< std::vector< reco::FFTAnyJet< reco::GenJet > > > input_genjet_token_
void writeJets(edm::Event &iEvent, const edm::EventSetup &)
virtual std::auto_ptr< fftjet::ScaleSpaceKernel > parse_jetMembershipFunction(const edm::ParameterSet &)
virtual std::auto_ptr< fftjet::Functor1< double, RecoFFTJet > > parse_recoScaleRatioCalcJet(const edm::ParameterSet &)
std::auto_ptr< fftjet::Functor1< double, RecoFFTJet > > recoScaleRatioCalcJet
const edm::InputTag pileupLabel
virtual void beginJob() override
tuple level
Definition: testEve_cfg.py:34
#define jet_type_switch(method, arg1, arg2)
bool loadEnergyFlow(const edm::Event &iEvent, std::auto_ptr< fftjet::Grid2d< fftjetcms::Real > > &flow)
virtual void genJetPreclusters(const SparseTree &tree, edm::Event &, const edm::EventSetup &, const fftjet::Functor1< bool, fftjet::Peak > &peakSelector, std::vector< fftjet::Peak > *preclusters)
tuple status
Definition: ntuplemaker.py:245
virtual bool isPhiDependent() const =0
std::auto_ptr< AbsBgFunctor > fftjet_BgFunctor_parser(const edm::ParameterSet &ps)
long double T
static const Mapper & instance()
std::vector< fftjetcms::VectorLike > eventData
const std::string outputLabel
math::XYZTLorentzVector adjustForPileup(const math::XYZTLorentzVector &jet, const math::XYZTLorentzVector &pileup, bool subtractPileupAs4Vec)
fftjetcms::VectorLike unclustered
std::auto_ptr< fftjet::Functor1< bool, fftjet::Peak > > peakSelector
std::vector< fftjet::Peak > iterPreclusters
std::auto_ptr< std::vector< double > > fftjet_ScaleSet_parser(const edm::ParameterSet &ps)
virtual void determinePileupDensityFromConfig(const edm::Event &iEvent, std::auto_ptr< fftjet::Grid2d< fftjetcms::Real > > &density)
std::auto_ptr< fftjet::Functor2< double, RecoFFTJet, RecoFFTJet > > jetDistanceCalc
std::auto_ptr< fftjet::ScaleSpaceKernel > jetMembershipFunction
std::auto_ptr< fftjet::Functor1< double, fftjet::RecombinedJet< VectorLike > > > fftjet_JetFunctor_parser(const edm::ParameterSet &ps)
void writeSpecific(reco::CaloJet &jet, reco::Particle::LorentzVector const &p4, reco::Particle::Point const &point, std::vector< reco::CandidatePtr > const &constituents, edm::EventSetup const &c)
Definition: JetSpecific.cc:41
void removeFakePreclusters()
const unsigned maxIterations
std::auto_ptr< fftjet::Functor1< double, RecoFFTJet > > recoScaleCalcJet
void prepareRecombinationScales()
Definition: DDAxes.h:10