CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
CombinedSVComputer.h
Go to the documentation of this file.
1 #ifndef RecoBTag_SecondaryVertex_CombinedSVComputer_h
2 #define RecoBTag_SecondaryVertex_CombinedSVComputer_h
3 
4 #include <iostream>
5 #include <cstddef>
6 #include <string>
7 #include <cmath>
8 #include <vector>
9 
10 #include <Math/VectorUtil.h>
11 
15 
31 
36 
37 
38 #define range_for(i, x) \
39  for(int i = (x).begin; i != (x).end; i += (x).increment)
40 
41 
43  public:
44  explicit CombinedSVComputer(const edm::ParameterSet &params);
45 
47  operator () (const reco::TrackIPTagInfo &ipInfo,
48  const reco::SecondaryVertexTagInfo &svInfo) const;
50  operator () (const reco::CandIPTagInfo &ipInfo,
51  const reco::CandSecondaryVertexTagInfo &svInfo) const;
52 
53  inline void clearTaggingVariables() { taggingVariables.clear(); }
56  inline bool isUsed(reco::btau::TaggingVariableName var) const { return std::binary_search(taggingVariables.begin(), taggingVariables.end(), var); }
57 
58  struct IterationRange {
60  };
61  double flipValue(double value, bool vertex) const;
62  IterationRange flipIterate(int size, bool vertex) const;
63 
65 
67  threshTrack(const reco::CandIPTagInfo &trackIPTagInfo,
69  const reco::Jet &jet,
70  const GlobalPoint &pv) const;
72  threshTrack(const reco::TrackIPTagInfo &trackIPTagInfo,
74  const reco::Jet &jet,
75  const GlobalPoint &pv) const;
76  template <class SVTI,class IPTI>
78  const IPTI & ipInfo,const SVTI & svInfo,
79  double & vtx_track_ptSum, double & vtx_track_ESum) const;
80 
81  private:
82  bool trackFlip;
83  bool vertexFlip;
84  double charmCut;
89  unsigned int pseudoMultiplicityMin;
90  unsigned int trackMultiplicityMin;
96  std::vector<reco::btau::TaggingVariableName> taggingVariables;
97 };
98 
99 template <class SVTI,class IPTI>
101  const IPTI & ipInfo, const SVTI & svInfo,
102  double & vtx_track_ptSum, double & vtx_track_ESum) const
103 {
104  using namespace ROOT::Math;
105  using namespace reco;
106 
107  edm::RefToBase<Jet> jet = ipInfo.jet();
108  math::XYZVector jetDir = jet->momentum().Unit();
109  bool havePv = ipInfo.primaryVertex().isNonnull();
110  GlobalPoint pv;
111  if (havePv)
112  pv = GlobalPoint(ipInfo.primaryVertex()->x(),
113  ipInfo.primaryVertex()->y(),
114  ipInfo.primaryVertex()->z());
115 
117 
118 
119  if( isUsed(btau::jetPt) ) vars.insert(btau::jetPt, jet->pt(), true);
120  if( isUsed(btau::jetEta) ) vars.insert(btau::jetEta, jet->eta(), true);
121 
122  if (ipInfo.selectedTracks().size() < trackMultiplicityMin)
123  return;
124 
125  if( isUsed(btau::jetNTracks) ) vars.insert(btau::jetNTracks, ipInfo.selectedTracks().size(), true);
126 
127  TrackKinematics allKinematics;
128  TrackKinematics trackJetKinematics;
129 
130  double jet_track_ESum= 0.;
131 
132  int vtx = -1;
133 
134  IterationRange range = flipIterate(svInfo.nVertices(), true);
135  range_for(i , range) {
136  if (vtx < 0) vtx = i;
137  }
138 
139  if (vtx >= 0) {
140  vtxType = btag::Vertices::RecoVertex;
141 
142  if( isUsed(btau::flightDistance2dVal) ) vars.insert(btau::flightDistance2dVal,flipValue(svInfo.flightDistance(vtx, true).value(),true),true);
143  if( isUsed(btau::flightDistance2dSig) ) vars.insert(btau::flightDistance2dSig,flipValue(svInfo.flightDistance(vtx, true).significance(),true),true);
144  if( isUsed(btau::flightDistance3dVal) ) vars.insert(btau::flightDistance3dVal,flipValue(svInfo.flightDistance(vtx, false).value(),true),true);
145  if( isUsed(btau::flightDistance3dSig) ) vars.insert(btau::flightDistance3dSig,flipValue(svInfo.flightDistance(vtx, false).significance(),true),true);
146  if( isUsed(btau::vertexJetDeltaR) ) vars.insert(btau::vertexJetDeltaR,Geom::deltaR(svInfo.flightDirection(vtx), jetDir),true);
147  if( isUsed(btau::jetNSecondaryVertices) ) vars.insert(btau::jetNSecondaryVertices, svInfo.nVertices(), true);
148  }
149 
150  std::vector<std::size_t> indices = ipInfo.sortedIndexes(sortCriterium);
151  const std::vector<reco::btag::TrackIPData> &ipData = ipInfo.impactParameterData();
152 
153  const typename IPTI::input_container &tracks = ipInfo.selectedTracks();
154  std::vector<const Track *> pseudoVertexTracks;
155 
156  const Track * trackPairV0Test[2];
157  range = flipIterate(indices.size(), false);
158  range_for(i, range) {
159  std::size_t idx = indices[i];
160  const reco::btag::TrackIPData &data = ipData[idx];
161  const Track * trackPtr = reco::btag::toTrack(tracks[idx]);
162  const Track &track = *trackPtr;
163 
164  jet_track_ESum += std::sqrt(track.momentum().Mag2() + ROOT::Math::Square(ParticleMasses::piPlus));
165 
166  // add track to kinematics for all tracks in jet
167  //allKinematics.add(track); // would make more sense for some variables, e.g. vertexEnergyRatio nicely between 0 and 1, but not necessarily the best option for the discriminating power...
168 
169  // filter track -> this track selection can be tighter than the vertex track selection (used to fill the track related variables...)
170  if (!trackSelector(track, data, *jet, pv))
171  continue;
172 
173  // add track to kinematics for all tracks in jet
174  allKinematics.add(track);
175 
176  // if no vertex was reconstructed, attempt pseudo vertex
177  if (vtxType == btag::Vertices::NoVertex && trackPseudoSelector(track, data, *jet, pv)) {
178  pseudoVertexTracks.push_back(trackPtr);
179  vertexKinematics.add(track);
180  }
181 
182  // check against all other tracks for V0 track pairs
183  trackPairV0Test[0] = reco::btag::toTrack(tracks[idx]);
184  bool ok = true;
185  range_for(j, range) {
186  if (i == j)
187  continue;
188 
189  std::size_t pairIdx = indices[j];
190  const reco::btag::TrackIPData &pairTrackData = ipData[pairIdx];
191  const Track * pairTrackPtr = reco::btag::toTrack(tracks[pairIdx]);
192  const Track &pairTrack = *pairTrackPtr;
193 
194  if (!trackSelector(pairTrack, pairTrackData, *jet, pv))
195  continue;
196 
197  trackPairV0Test[1] = pairTrackPtr;
198  if (!trackPairV0Filter(trackPairV0Test, 2)) {
199  ok = false;
200  break;
201  }
202  }
203  if (!ok)
204  continue;
205 
206  trackJetKinematics.add(track);
207 
208  // add track variables
209  math::XYZVector trackMom = track.momentum();
210  double trackMag = std::sqrt(trackMom.Mag2());
211 
212  if( isUsed(btau::trackSip3dVal) ) vars.insert(btau::trackSip3dVal, flipValue(data.ip3d.value(), false), true);
214  if( isUsed(btau::trackSip2dVal) ) vars.insert(btau::trackSip2dVal, flipValue(data.ip2d.value(), false), true);
217 // if( isUsed(btau::trackJetDistSig) ) vars.insert(btau::trackJetDistSig, data.distanceToJetAxis.significance(), true);
218 // if( isUsed(btau::trackFirstTrackDist) ) vars.insert(btau::trackFirstTrackDist, data.distanceToFirstTrack, true);
219 // if( isUsed(btau::trackGhostTrackVal) ) vars.insert(btau::trackGhostTrackVal, data.distanceToGhostTrack.value(), true);
220 // if( isUsed(btau::trackGhostTrackSig) ) vars.insert(btau::trackGhostTrackSig, data.distanceToGhostTrack.significance(), true);
221  if( isUsed(btau::trackDecayLenVal) ) vars.insert(btau::trackDecayLenVal, havePv ? (data.closestToJetAxis - pv).mag() : -1.0, true);
222 
223  if( isUsed(btau::trackMomentum) ) vars.insert(btau::trackMomentum, trackMag, true);
224  if( isUsed(btau::trackEta) ) vars.insert(btau::trackEta, trackMom.Eta(), true);
225 
226  if( isUsed(btau::trackPtRel) ) vars.insert(btau::trackPtRel, VectorUtil::Perp(trackMom, jetDir), true);
227  if( isUsed(btau::trackPPar) ) vars.insert(btau::trackPPar, jetDir.Dot(trackMom), true);
228  if( isUsed(btau::trackDeltaR) ) vars.insert(btau::trackDeltaR, VectorUtil::DeltaR(trackMom, jetDir), true);
229  if( isUsed(btau::trackPtRatio) ) vars.insert(btau::trackPtRatio, VectorUtil::Perp(trackMom, jetDir) / trackMag, true);
230  if( isUsed(btau::trackPParRatio) ) vars.insert(btau::trackPParRatio, jetDir.Dot(trackMom) / trackMag, true);
231  }
232 
233  if (vtxType == btag::Vertices::NoVertex && vertexKinematics.numberOfTracks() >= pseudoMultiplicityMin && pseudoVertexV0Filter(pseudoVertexTracks))
234  {
236  for(std::vector<const Track *>::const_iterator track = pseudoVertexTracks.begin(); track != pseudoVertexTracks.end(); ++track)
237  {
238  if( isUsed(btau::trackEtaRel) ) vars.insert(btau::trackEtaRel, reco::btau::etaRel(jetDir,(*track)->momentum()), true);
239  vtx_track_ptSum += std::sqrt((*track)->momentum().Perp2());
240  vtx_track_ESum += std::sqrt((*track)->momentum().Mag2() + ROOT::Math::Square(ParticleMasses::piPlus));
241  }
242  }
243 
244  if( isUsed(btau::vertexCategory) ) vars.insert(btau::vertexCategory, vtxType, true);
245 
246  if( isUsed(btau::trackJetPt) ) vars.insert(btau::trackJetPt, trackJetKinematics.vectorSum().Pt(), true);
247  if( isUsed(btau::trackSumJetDeltaR) ) vars.insert(btau::trackSumJetDeltaR,VectorUtil::DeltaR(allKinematics.vectorSum(), jetDir), true);
248  if( isUsed(btau::trackSumJetEtRatio) ) vars.insert(btau::trackSumJetEtRatio,allKinematics.vectorSum().Et() / ipInfo.jet()->et(), true);
249 
250  if( isUsed(btau::trackSip3dSigAboveCharm) ) vars.insert(btau::trackSip3dSigAboveCharm, flipValue(threshTrack(ipInfo, reco::btag::IP3DSig, *jet, pv).ip3d.significance(),false),true);
252  if( isUsed(btau::trackSip2dSigAboveCharm) ) vars.insert(btau::trackSip2dSigAboveCharm, flipValue(threshTrack(ipInfo, reco::btag::IP2DSig, *jet, pv).ip2d.significance(),false),true);
254 
255  if (vtxType != btag::Vertices::NoVertex) {
257  ? allKinematics.weightedVectorSum()
258  : allKinematics.vectorSum();
260  ? vertexKinematics.weightedVectorSum()
261  : vertexKinematics.vectorSum();
262 
263  if (vtxType != btag::Vertices::RecoVertex) {
264  if( isUsed(btau::vertexNTracks) ) vars.insert(btau::vertexNTracks,vertexKinematics.numberOfTracks(), true);
265  if( isUsed(btau::vertexJetDeltaR) ) vars.insert(btau::vertexJetDeltaR,VectorUtil::DeltaR(vertexSum, jetDir), true);
266  }
267 
268  double vertexMass = vertexSum.M();
269  if (vtxType == btag::Vertices::RecoVertex &&
271  GlobalVector dir = svInfo.flightDirection(vtx);
272  double vertexPt2 = math::XYZVector(dir.x(), dir.y(), dir.z()).Cross(vertexSum).Mag2() / dir.mag2();
273  vertexMass = std::sqrt(vertexMass * vertexMass + vertexPt2) + std::sqrt(vertexPt2);
274  }
275  if( isUsed(btau::vertexMass) ) vars.insert(btau::vertexMass, vertexMass, true);
276 
277  double varPi = (vertexMass/5.2794) * (vtx_track_ESum /jet_track_ESum); // 5.2794 should be the average B meson mass of PDG! CHECK!!!
279  double varB = (std::sqrt(5.2794) * vtx_track_ptSum) / ( vertexMass * std::sqrt(jet->pt()));
280  if( isUsed(btau::vertexBoostOverSqrtJetPt) ) vars.insert(btau::vertexBoostOverSqrtJetPt,varB*varB/(varB*varB + 10.), true);
281 
282  if (allKinematics.numberOfTracks()) {
283  if( isUsed(btau::vertexEnergyRatio) ) vars.insert(btau::vertexEnergyRatio, vertexSum.E() / allSum.E(), true);
284  }
285  else {
287  }
288  }
289 
290  reco::PFJet const * pfJet = dynamic_cast<reco::PFJet const *>( &* jet ) ;
291  pat::Jet const * patJet = dynamic_cast<pat::Jet const *>( &* jet ) ;
292  if ( pfJet != 0 )
293  {
294  if( isUsed(btau::chargedHadronEnergyFraction) ) vars.insert(btau::chargedHadronEnergyFraction,pfJet->chargedHadronEnergyFraction(), true);
295  if( isUsed(btau::neutralHadronEnergyFraction) ) vars.insert(btau::neutralHadronEnergyFraction,pfJet->neutralHadronEnergyFraction(), true);
296  if( isUsed(btau::photonEnergyFraction) ) vars.insert(btau::photonEnergyFraction,pfJet->photonEnergyFraction(), true);
297  if( isUsed(btau::electronEnergyFraction) ) vars.insert(btau::electronEnergyFraction,pfJet->electronEnergyFraction(), true);
298  if( isUsed(btau::muonEnergyFraction) ) vars.insert(btau::muonEnergyFraction,pfJet->muonEnergyFraction(), true);
299  if( isUsed(btau::chargedHadronMultiplicity) ) vars.insert(btau::chargedHadronMultiplicity,pfJet->chargedHadronMultiplicity(), true);
300  if( isUsed(btau::neutralHadronMultiplicity) ) vars.insert(btau::neutralHadronMultiplicity,pfJet->neutralHadronMultiplicity(), true);
301  if( isUsed(btau::photonMultiplicity) ) vars.insert(btau::photonMultiplicity,pfJet->photonMultiplicity(), true);
302  if( isUsed(btau::electronMultiplicity) ) vars.insert(btau::electronMultiplicity,pfJet->electronMultiplicity(), true);
303  if( isUsed(btau::muonMultiplicity) ) vars.insert(btau::muonMultiplicity,pfJet->muonMultiplicity(), true);
304  if( isUsed(btau::hadronMultiplicity) ) vars.insert(btau::hadronMultiplicity,pfJet->chargedHadronMultiplicity()+pfJet->neutralHadronMultiplicity(), true);
305  if( isUsed(btau::hadronPhotonMultiplicity) ) vars.insert(btau::hadronPhotonMultiplicity,pfJet->chargedHadronMultiplicity()+pfJet->neutralHadronMultiplicity()+pfJet->photonMultiplicity(), true);
306  if( isUsed(btau::totalMultiplicity) ) vars.insert(btau::totalMultiplicity,pfJet->chargedHadronMultiplicity()+pfJet->neutralHadronMultiplicity()+pfJet->photonMultiplicity()+pfJet->electronMultiplicity()+pfJet->muonMultiplicity(), true);
307 
308  }
309  else if( patJet != 0 && patJet->isPFJet() )
310  {
311  if( isUsed(btau::chargedHadronEnergyFraction) ) vars.insert(btau::chargedHadronEnergyFraction,patJet->chargedHadronEnergyFraction(), true);
312  if( isUsed(btau::neutralHadronEnergyFraction) ) vars.insert(btau::neutralHadronEnergyFraction,patJet->neutralHadronEnergyFraction(), true);
313  if( isUsed(btau::photonEnergyFraction) ) vars.insert(btau::photonEnergyFraction,patJet->photonEnergyFraction(), true);
314  if( isUsed(btau::electronEnergyFraction) ) vars.insert(btau::electronEnergyFraction,patJet->electronEnergyFraction(), true);
315  if( isUsed(btau::muonEnergyFraction) ) vars.insert(btau::muonEnergyFraction,patJet->muonEnergyFraction(), true);
316  if( isUsed(btau::chargedHadronMultiplicity) ) vars.insert(btau::chargedHadronMultiplicity,patJet->chargedHadronMultiplicity(), true);
317  if( isUsed(btau::neutralHadronMultiplicity) ) vars.insert(btau::neutralHadronMultiplicity,patJet->neutralHadronMultiplicity(), true);
318  if( isUsed(btau::photonMultiplicity) ) vars.insert(btau::photonMultiplicity,patJet->photonMultiplicity(), true);
319  if( isUsed(btau::electronMultiplicity) ) vars.insert(btau::electronMultiplicity,patJet->electronMultiplicity(), true);
320  if( isUsed(btau::muonMultiplicity) ) vars.insert(btau::muonMultiplicity,patJet->muonMultiplicity(), true);
321  if( isUsed(btau::hadronMultiplicity) ) vars.insert(btau::hadronMultiplicity,patJet->chargedHadronMultiplicity()+patJet->neutralHadronMultiplicity(), true);
322  if( isUsed(btau::hadronPhotonMultiplicity) ) vars.insert(btau::hadronPhotonMultiplicity,patJet->chargedHadronMultiplicity()+patJet->neutralHadronMultiplicity()+patJet->photonMultiplicity(), true);
323  if( isUsed(btau::totalMultiplicity) ) vars.insert(btau::totalMultiplicity,patJet->chargedHadronMultiplicity()+patJet->neutralHadronMultiplicity()+patJet->photonMultiplicity()+patJet->electronMultiplicity()+patJet->muonMultiplicity(), true);
324 
325  }
326  else
327  {
341  }
342 }
343 
344 
345 #endif // RecoBTag_SecondaryVertex_CombinedSVComputer_h
reco::TrackSelector trackSelector
const double piPlus
Definition: ParticleMasses.h:9
int i
Definition: DBlmapReader.cc:9
T mag2() const
Definition: PV3DBase.h:66
const math::XYZTLorentzVector & weightedVectorSum() const
const reco::Track * toTrack(const reco::TrackRef &t)
Definition: IPTagInfo.h:24
unsigned int pseudoMultiplicityMin
void add(const reco::Track &track, double weight=1.0)
Base class for all types of Jets.
Definition: Jet.h:20
double etaRel(const math::XYZVector &dir, const math::XYZVector &track)
Measurement1D ip2d
Definition: IPTagInfo.h:30
reco::TrackSelector trackNoDeltaRSelector
reco::V0Filter pseudoVertexV0Filter
Global3DPoint GlobalPoint
Definition: GlobalPoint.h:10
T y() const
Definition: PV3DBase.h:63
virtual reco::TaggingVariableList operator()(const reco::TrackIPTagInfo &ipInfo, const reco::SecondaryVertexTagInfo &svInfo) const
CombinedSVComputer(const edm::ParameterSet &params)
const Vector & momentum() const
track momentum vector
Definition: TrackBase.h:651
Jets made from PFObjects.
Definition: PFJet.h:21
XYZTLorentzVectorD XYZTLorentzVector
Lorentz vector with cylindrical internal representation using pseudorapidity.
Definition: LorentzVector.h:29
reco::btag::SortCriteria sortCriterium
reco::TrackSelector trackPseudoSelector
T sqrt(T t)
Definition: SSEVec.h:48
T z() const
Definition: PV3DBase.h:64
int j
Definition: DBlmapReader.cc:9
Measurement1D ip3d
Definition: IPTagInfo.h:31
IterationRange flipIterate(int size, bool vertex) const
reco::V0Filter trackPairV0Filter
double deltaR(double eta1, double eta2, double phi1, double phi2)
Definition: TreeUtility.cc:17
std::vector< reco::btau::TaggingVariableName > taggingVariables
double significance() const
Definition: Measurement1D.h:32
unsigned int numberOfTracks() const
#define range_for(i, x)
GlobalPoint closestToJetAxis
Definition: IPTagInfo.h:28
tuple tracks
Definition: testEve_cfg.py:39
XYZVectorD XYZVector
spatial vector with cartesian internal representation
Definition: Vector3D.h:30
tuple idx
DEBUGGING if hasattr(process,&quot;trackMonIterativeTracking2012&quot;): print &quot;trackMonIterativeTracking2012 D...
double flipValue(double value, bool vertex) const
Analysis-level calorimeter jet class.
Definition: Jet.h:73
edm::ParameterSet dropDeltaR(const edm::ParameterSet &pset) const
double value() const
Definition: Measurement1D.h:28
const reco::btag::TrackIPData & threshTrack(const reco::CandIPTagInfo &trackIPTagInfo, const reco::btag::SortCriteria sort, const reco::Jet &jet, const GlobalPoint &pv) const
Measurement1D distanceToJetAxis
Definition: IPTagInfo.h:32
bool isUsed(reco::btau::TaggingVariableName var) const
void useTaggingVariable(reco::btau::TaggingVariableName var)
void fillCommonVariables(reco::TaggingVariableList &vars, reco::TrackKinematics &vertexKinematics, const IPTI &ipInfo, const SVTI &svInfo, double &vtx_track_ptSum, double &vtx_track_ESum) const
char data[epos_bytes_allocation]
Definition: EPOS_Wrapper.h:82
const math::XYZTLorentzVector & vectorSum() const
dbl *** dir
Definition: mlp_gen.cc:35
T x() const
Definition: PV3DBase.h:62
tuple size
Write out results.
void insert(const TaggingVariable &variable, bool delayed=false)
unsigned int trackMultiplicityMin