CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Types | Public Member Functions | Static Public Member Functions
BowedSurfaceAlignmentDerivatives Class Reference

#include <BowedSurfaceAlignmentDerivatives.h>

Public Types

enum  AlignmentParameterName {
  dx = 0, dy, dz, dslopeX,
  dslopeY, drotZ, dsagittaX, dsagittaXY,
  dsagittaY, N_PARAM
}
 

Public Member Functions

AlgebraicMatrix operator() (const TrajectoryStateOnSurface &tsos, double uWidth, double vLength, bool doSplit=false, double ySplit=0.) const
 Returns 9x2 jacobian matrix. More...
 

Static Public Member Functions

static double gammaScale (double width, double splitLength)
 

Detailed Description

Calculates alignment derivatives for a bowed surface using Legendre polynomials for the surface structure (as studied by Claus Kleinwort), i.e.

If a surface is split into two parts at a given ySplit value, rotation axes are re-centred to that part hit by the track (as predicted by TSOS) and the length of the surface is re-scaled.

by Gero Flucke, October 2010 $Date$ $Revision$ (last update by $Author$)

Definition at line 25 of file BowedSurfaceAlignmentDerivatives.h.

Member Enumeration Documentation

Member Function Documentation

double BowedSurfaceAlignmentDerivatives::gammaScale ( double  width,
double  splitLength 
)
static

scale to apply to convert drotZ to karimaki-gamma, depending on module width and length (the latter after splitting!)

Definition at line 82 of file BowedSurfaceAlignmentDerivatives.cc.

Referenced by TwoBowedSurfacesAlignmentParameters::apply(), operator()(), and BowedSurfaceAlignmentParameters::rotation().

83 {
84 // return 0.5 * std::sqrt(width*width + splitLength*splitLength);
85 // return 0.5 * (std::fabs(width) + std::fabs(splitLength));
86  return 0.5 * (width + splitLength);
87 }
AlgebraicMatrix BowedSurfaceAlignmentDerivatives::operator() ( const TrajectoryStateOnSurface tsos,
double  uWidth,
double  vLength,
bool  doSplit = false,
double  ySplit = 0. 
) const

Returns 9x2 jacobian matrix.

Definition at line 14 of file BowedSurfaceAlignmentDerivatives.cc.

References drotZ, dsagittaX, dsagittaXY, dsagittaY, dslopeX, dslopeY, dx, dy, dz, gammaScale(), TrajectoryStateOnSurface::localParameters(), LocalTrajectoryParameters::mixedFormatVector(), N_PARAM, and query::result.

17 {
18 
20 
21  // track parameters on surface:
22  const AlgebraicVector5 tsosPar(tsos.localParameters().mixedFormatVector());
23  // [1] dxdz : direction tangent in local xz-plane
24  // [2] dydz : direction tangent in local yz-plane
25  // [3] x : local x-coordinate
26  // [4] y : local y-coordinate
27  double myY = tsosPar[4];
28  double myLengthV = vLength;
29  if (doSplit) { // re-'calibrate' y length and transform myY to be w.r.t. surface middle
30  // Some signs depend on whether we are in surface part below or above ySplit:
31  const double sign = (tsosPar[4] < ySplit ? +1. : -1.);
32  const double yMiddle = ySplit * 0.5 - sign * vLength * .25; // middle of surface
33  myY = tsosPar[4] - yMiddle;
34  myLengthV = vLength * 0.5 + sign * ySplit;
35  }
36 
37  const AlgebraicMatrix karimaki(KarimakiAlignmentDerivatives()(tsos)); // it's just 6x2...
38  // copy u, v, w from Karimaki - they are independent of splitting
39  result[dx][0] = karimaki[0][0];
40  result[dx][1] = karimaki[0][1];
41  result[dy][0] = karimaki[1][0];
42  result[dy][1] = karimaki[1][1];
43  result[dz][0] = karimaki[2][0];
44  result[dz][1] = karimaki[2][1];
45  const double aScale = gammaScale(uWidth, myLengthV);
46  result[drotZ][0] = myY / aScale; // Since karimaki[5][0] == vx;
47  result[drotZ][1] = karimaki[5][1] / aScale;
48 
49  double uRel = 2. * tsosPar[3] / uWidth; // relative u (-1 .. +1)
50  double vRel = 2. * myY / myLengthV; // relative v (-1 .. +1)
51  // 'range check':
52  const double cutOff = 1.5;
53  if (uRel < -cutOff) { uRel = -cutOff; } else if (uRel > cutOff) { uRel = cutOff; }
54  if (vRel < -cutOff) { vRel = -cutOff; } else if (vRel > cutOff) { vRel = cutOff; }
55 
56  // Legendre polynomials renormalized to LPn(1)-LPn(0)=1 (n>0)
57  const double uLP0 = 1.0;
58  const double uLP1 = uRel;
59  const double uLP2 = uRel * uRel - 1./3.;
60  const double vLP0 = 1.0;
61  const double vLP1 = vRel;
62  const double vLP2 = vRel * vRel - 1./3.;
63 
64  // 1st order (slopes, replacing angles beta, alpha)
65  result[dslopeX][0] = tsosPar[1] * uLP1 * vLP0;
66  result[dslopeX][1] = tsosPar[2] * uLP1 * vLP0;
67  result[dslopeY][0] = tsosPar[1] * uLP0 * vLP1;
68  result[dslopeY][1] = tsosPar[2] * uLP0 * vLP1;
69 
70  // 2nd order (sagitta)
71  result[dsagittaX ][0] = tsosPar[1] * uLP2 * vLP0;
72  result[dsagittaX ][1] = tsosPar[2] * uLP2 * vLP0;
73  result[dsagittaXY][0] = tsosPar[1] * uLP1 * vLP1;
74  result[dsagittaXY][1] = tsosPar[2] * uLP1 * vLP1;
75  result[dsagittaY ][0] = tsosPar[1] * uLP0 * vLP2;
76  result[dsagittaY ][1] = tsosPar[2] * uLP0 * vLP2;
77 
78  return result;
79 }
const LocalTrajectoryParameters & localParameters() const
CLHEP::HepMatrix AlgebraicMatrix
tuple result
Definition: query.py:137
static double gammaScale(double width, double splitLength)
ROOT::Math::SVector< double, 5 > AlgebraicVector5
AlgebraicVector5 mixedFormatVector() const