16 #include <forward_list>
19 #include <unordered_set>
21 #include <unordered_map>
26 #include <boost/shared_ptr.hpp>
31 namespace serialization {
50 struct access<
T, typename std::enable_if<std::is_integral<T>::value or std::is_enum<T>::value>
::type>
59 struct access<
T, typename std::enable_if<std::is_floating_point<T>::value>
::type>
84 template <std::
size_t N>
93 template <
typename T,
typename U>
98 return equal(first.first, second.first) and
equal(first.second, second.second);
102 template <std::size_t
N,
typename... Ts>
107 if (not
equal(std::get<N - 1>(first), std::get<N - 1>(second)))
114 template <
typename... Ts>
123 template <
typename... Ts>
128 return equal_tuple<
sizeof...(Ts), Ts...>::equal_(first, second);
132 template <
typename T>
137 if (first ==
nullptr or second ==
nullptr)
144 return first == second
or equal(*first, *second);
148 #define equal_pointer(TYPE) \
149 template <typename T> \
150 struct access<TYPE<T>> \
152 static bool equal_(const TYPE<T> & first, const TYPE<T> & second) \
154 return equal(first.get(), second.get()); \
163 template <
typename T, std::
size_t N>
168 for (std::size_t
i = 0;
i <
N; ++
i)
175 template <
typename T, std::
size_t N>
180 for (std::size_t
i = 0;
i <
N; ++
i)
181 if (not
equal(first[
i], second[i]))
187 #define equal_sequence(TYPE) \
188 template <typename T> \
189 struct access<TYPE<T>> \
191 static bool equal_(const TYPE<T> & first, const TYPE<T> & second) \
193 return first.size() == second.size() && std::equal(first.cbegin(), first.cend(), second.cbegin(), \
194 [](decltype(*first.cbegin()) a, decltype(a) b) -> bool { \
195 return equal(a, b); \
206 #undef equal_sequence
210 template <
typename T>
215 auto first_it = first.cbegin();
216 auto second_it = second.cbegin();
218 while (first_it != first.cend() and second_it != second.cend()) {
219 if (not
equal(*first_it, *second_it))
225 return first_it == first.cend() and second_it == second.cend();
230 #define equal_mapping(TYPE) \
231 template <typename T, typename U> \
232 struct access<TYPE<T, U>> \
234 static bool equal_(const TYPE<T, U> & first, const TYPE<T, U> & second) \
236 return first.size() == second.size() && std::equal(first.cbegin(), first.cend(), second.cbegin(), \
237 [](decltype(*first.cbegin()) a, decltype(a) b) -> bool { \
238 return equal(a, b); \
247 #define equal_unorderedmapping(TYPE) \
248 template <typename T, typename U> \
249 struct access<TYPE<T, U>> \
251 static bool equal_(const TYPE<T, U> & first, const TYPE<T, U> & second) \
253 if (first.size() != second.size()) \
256 auto first_it = first.cbegin(); \
257 while (first_it != first.cend()) { \
258 auto second_it = second.find(first_it->first); \
259 if (second_it == second.cend()) \
261 if (not equal(first_it->second, second_it->second)) \
270 #undef equal_unorderedmapping
static bool equal_(const std::tuple< Ts...> &first, const std::tuple< Ts...> &second)
static bool equal_(const T first, const T second)
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e< void, edm::EventIDconst &, edm::Timestampconst & > We also list in braces which AR_WATCH_USING_METHOD_ is used for those or
equal_sequence(std::vector)
equal_pointer(std::unique_ptr)
static bool equal_(const std::tuple< Ts...> &first, const std::tuple< Ts...> &second)
equal_unorderedmapping(std::unordered_map)
bool equal(const T &first, const T &second)
U second(std::pair< T, U > const &p)
static bool equal_(const std::tuple< Ts...> &first, const std::tuple< Ts...> &second)
static bool equal_(const std::bitset< N > &first, const std::bitset< N > &second)
static bool equal_(const T(&first)[N], const T(&second)[N])
static bool equal_(const std::array< T, N > &first, const std::array< T, N > &second)
static bool equal_(const std::string &first, const std::string &second)
static bool equal_(const std::forward_list< T > &first, const std::forward_list< T > &second)
static bool equal_(const T first, const T second)
static bool equal_(const std::pair< T, U > &first, const std::pair< T, U > &second)
static bool equal_(const T first, const T second)
How EventSelector::AcceptEvent() decides whether to accept an event for output otherwise it is excluding the probing of A single or multiple positive and the trigger will pass if any such matching triggers are PASS or EXCEPTION[A criterion thatmatches no triggers at all is detected and causes a throw.] A single negative with an expectation of appropriate bit checking in the decision and the trigger will pass if any such matching triggers are FAIL or EXCEPTION A wildcarded negative criterion that matches more than one trigger in the trigger list("!*","!HLTx*"if it matches 2 triggers or more) will accept the event if all the matching triggers are FAIL.It will reject the event if any of the triggers are PASS or EXCEPTION(this matches the behavior of"!*"before the partial wildcard feature was incorporated).Triggers which are in the READY state are completely ignored.(READY should never be returned since the trigger paths have been run