CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
sicif.h
Go to the documentation of this file.
1 /* sicif.c
2  *
3  * Sine and cosine integrals
4  *
5  *
6  *
7  * SYNOPSIS:
8  *
9  * float x, Ci, Si;
10  *
11  * sicif( x, &Si, &Ci );
12  *
13  *
14  * DESCRIPTION:
15  *
16  * Evaluates the integrals
17  *
18  * x
19  * -
20  * | cos t - 1
21  * Ci(x) = eul + ln x + | --------- dt,
22  * | t
23  * -
24  * 0
25  * x
26  * -
27  * | sin t
28  * Si(x) = | ----- dt
29  * | t
30  * -
31  * 0
32  *
33  * where eul = 0.57721566490153286061 is Euler's constant.
34  * The integrals are approximated by rational functions.
35  * For x > 8 auxiliary functions f(x) and g(x) are employed
36  * such that
37  *
38  * Ci(x) = f(x) sin(x) - g(x) cos(x)
39  * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
40  *
41  *
42  * ACCURACY:
43  * Test interval = [0,50].
44  * Absolute error, except relative when > 1:
45  * arithmetic function # trials peak rms
46  * IEEE Si 30000 2.1e-7 4.3e-8
47  * IEEE Ci 30000 3.9e-7 2.2e-8
48  */
49 
50 /*
51 Cephes Math Library Release 2.1: January, 1989
52 Copyright 1984, 1987, 1989 by Stephen L. Moshier
53 Direct inquiries to 30 Frost Street, Cambridge, MA 02140
54 */
55 
56 #include "vdt/vdtMath.h"
57 
58 
59 static const float SN[] = {
60 -8.39167827910303881427E-11,
61  4.62591714427012837309E-8,
62 -9.75759303843632795789E-6,
63  9.76945438170435310816E-4,
64 -4.13470316229406538752E-2,
65  1.00000000000000000302E0,
66 };
67 static const float SD[] = {
68  2.03269266195951942049E-12,
69  1.27997891179943299903E-9,
70  4.41827842801218905784E-7,
71  9.96412122043875552487E-5,
72  1.42085239326149893930E-2,
73  9.99999999999999996984E-1,
74 };
75 
76 static const float CN[] = {
77  2.02524002389102268789E-11,
78 -1.35249504915790756375E-8,
79  3.59325051419993077021E-6,
80 -4.74007206873407909465E-4,
81  2.89159652607555242092E-2,
82 -1.00000000000000000080E0,
83 };
84 static const float CD[] = {
85  4.07746040061880559506E-12,
86  3.06780997581887812692E-9,
87  1.23210355685883423679E-6,
88  3.17442024775032769882E-4,
89  5.10028056236446052392E-2,
90  4.00000000000000000080E0,
91 };
92 
93 
94 static const float FN4[] = {
95  4.23612862892216586994E0,
96  5.45937717161812843388E0,
97  1.62083287701538329132E0,
98  1.67006611831323023771E-1,
99  6.81020132472518137426E-3,
100  1.08936580650328664411E-4,
101  5.48900223421373614008E-7,
102 };
103 static const float FD4[] = {
104 /* 1.00000000000000000000E0,*/
105  8.16496634205391016773E0,
106  7.30828822505564552187E0,
107  1.86792257950184183883E0,
108  1.78792052963149907262E-1,
109  7.01710668322789753610E-3,
110  1.10034357153915731354E-4,
111  5.48900252756255700982E-7,
112 };
113 
114 
115 static const float FN8[] = {
116  4.55880873470465315206E-1,
117  7.13715274100146711374E-1,
118  1.60300158222319456320E-1,
119  1.16064229408124407915E-2,
120  3.49556442447859055605E-4,
121  4.86215430826454749482E-6,
122  3.20092790091004902806E-8,
123  9.41779576128512936592E-11,
124  9.70507110881952024631E-14,
125 };
126 static const float FD8[] = {
127 /* 1.00000000000000000000E0,*/
128  9.17463611873684053703E-1,
129  1.78685545332074536321E-1,
130  1.22253594771971293032E-2,
131  3.58696481881851580297E-4,
132  4.92435064317881464393E-6,
133  3.21956939101046018377E-8,
134  9.43720590350276732376E-11,
135  9.70507110881952025725E-14,
136 };
137 
138 static const float GN4[] = {
139  8.71001698973114191777E-2,
140  6.11379109952219284151E-1,
141  3.97180296392337498885E-1,
142  7.48527737628469092119E-2,
143  5.38868681462177273157E-3,
144  1.61999794598934024525E-4,
145  1.97963874140963632189E-6,
146  7.82579040744090311069E-9,
147 };
148 static const float GD4[] = {
149 /* 1.00000000000000000000E0,*/
150  1.64402202413355338886E0,
151  6.66296701268987968381E-1,
152  9.88771761277688796203E-2,
153  6.22396345441768420760E-3,
154  1.73221081474177119497E-4,
155  2.02659182086343991969E-6,
156  7.82579218933534490868E-9,
157 };
158 
159 static const float GN8[] = {
160  6.97359953443276214934E-1,
161  3.30410979305632063225E-1,
162  3.84878767649974295920E-2,
163  1.71718239052347903558E-3,
164  3.48941165502279436777E-5,
165  3.47131167084116673800E-7,
166  1.70404452782044526189E-9,
167  3.85945925430276600453E-12,
168  3.14040098946363334640E-15,
169 };
170 static const float GD8[] = {
171 /* 1.00000000000000000000E0,*/
172  1.68548898811011640017E0,
173  4.87852258695304967486E-1,
174  4.67913194259625806320E-2,
175  1.90284426674399523638E-3,
176  3.68475504442561108162E-5,
177  3.57043223443740838771E-7,
178  1.72693748966316146736E-9,
179  3.87830166023954706752E-12,
180  3.14040098946363335242E-15,
181 };
182 
183 inline
184 float polevlf( float xx, const float *coef, int N ) {
185 float ans, x;
186 const float *p;
187 int i;
188 
189 x = xx;
190 p = coef;
191 ans = *p++;
192 
193 i = N;
194 do
195  ans = ans * x + *p++;
196 while( --i );
197 
198 return( ans );
199 }
200 
201 /* p1evl() */
202 /* N
203  * Evaluate polynomial when coefficient of x is 1.0.
204  * Otherwise same as polevl.
205  */
206 inline
207 float p1evlf( float xx, const float *coef, int N ){
208 float ans, x;
209 const float *p;
210 int i;
211 
212 x = xx;
213 p = coef;
214 ans = x + *p++;
215 i = N-1;
216 
217 do
218  ans = ans * x + *p++;
219 while( --i );
220 
221 return( ans );
222 }
223 
224 
225 
226 inline
227 int sicif( float xx, float & si, float & ci ){
228  const float MAXNUMF = 1.7014117331926442990585209174225846272e38;
229  const float PIO2F = 1.5707963267948966192;
230  // const float MACHEPF = 5.9604644775390625E-8;
231  const float EUL = 0.57721566490153286061;
232 
233  float x, z, c, s, f, g;
234  int sign;
235 
236  x = xx;
237  if( x < 0.0f )
238  {
239  sign = -1;
240  x = -x;
241  }
242  else
243  sign = 0;
244 
245 
246  if( x == 0.0f )
247  {
248  si = 0.0;
249  ci = -MAXNUMF;
250  return( 0 );
251  }
252 
253 
254  if( x > 1.0e9f )
255  {
256  float su,cu; vdt::fast_sincosf(x,su,cu);
257  si = PIO2F - cu/x;
258  ci = su/x;
259  return( 0 );
260  }
261 
262 
263 
264  if( x > 4.0f )
265  goto asympt;
266 
267  z = x * x;
268  s = x * polevlf( z, SN, 5 ) / polevlf( z, SD, 5 );
269  c = z * polevlf( z, CN, 5 ) / polevlf( z, CD, 5 );
270 
271  if( sign )
272  s = -s;
273  si = s;
274  ci = EUL + vdt::fast_logf(x) + c; /* real part if x < 0 */
275  return(0);
276 
277 
278 
279  /* The auxiliary functions are:
280  *
281  *
282  * *si = *si - PIO2;
283  * c = cos(x);
284  * s = sin(x);
285  *
286  * t = *ci * s - *si * c;
287  * a = *ci * c + *si * s;
288  *
289  * *si = t;
290  * *ci = -a;
291  */
292 
293 
294  asympt:
295  vdt::fast_sincosf(x,s,c);
296  z = 1.0f/(x*x);
297  if( x < 8.0f )
298  {
299  f = polevlf( z, FN4, 6 ) / (x * p1evlf( z, FD4, 7 ));
300  g = z * polevlf( z, GN4, 7 ) / p1evlf( z, GD4, 7 );
301  }
302  else
303  {
304  f = polevlf( z, FN8, 8 ) / (x * p1evlf( z, FD8, 8 ));
305  g = z * polevlf( z, GN8, 8 ) / p1evlf( z, GD8, 9 );
306  }
307  si = PIO2F - f * c - g * s;
308  if( sign )
309  si = -( si );
310  ci = f * s - g * c;
311 
312  return(0);
313 }
int i
Definition: DBlmapReader.cc:9
static const float FN8[]
Definition: sicif.h:115
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e g
Definition: Activities.doc:4
float float float z
static const float GD8[]
Definition: sicif.h:170
static const float SN[]
Definition: sicif.h:59
static const float SD[]
Definition: sicif.h:67
static const float FN4[]
Definition: sicif.h:94
float polevlf(float xx, const float *coef, int N)
Definition: sicif.h:184
double f[11][100]
static const float CD[]
Definition: sicif.h:84
static const float GD4[]
Definition: sicif.h:148
#define N
Definition: blowfish.cc:9
static const float GN8[]
Definition: sicif.h:159
static const float CN[]
Definition: sicif.h:76
static const float FD4[]
Definition: sicif.h:103
static const float GN4[]
Definition: sicif.h:138
Definition: DDAxes.h:10
float fast_logf(float x)
float p1evlf(float xx, const float *coef, int N)
Definition: sicif.h:207
static const float FD8[]
Definition: sicif.h:126
int sicif(float xx, float &si, float &ci)
Definition: sicif.h:227